首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We recently identified Vav as a Ras-activating guanine nucleotide exchange factor (GEF) stimulated by a T-cell antigen receptor-coupled protein tyrosine kinase (PTK). Here, we describe a novel, protein kinase-independent alternative pathway of Vav activation. Phorbol ester, 1,2-diacylglycerol, or ceramide treatment of intact T cells, Vav immunoprecipitates, or partially purified Vav generated by in vitro translation or COS-1 cell transfection stimulated the Ras exchange activity of Vav in the absence of detectable tyrosine phosphorylation. GEF activity of gel-purified Vav was similarly stimulated by phorbol myristate acetate (PMA). Stimulation was resistant to PTK and protein kinase C inhibitors but was blocked by calphostin, a PMA and diacylglycerol antagonist. In vitro-translated Vav lacking its cysteine-rich domain, or mutated at a single cysteine residue within this domain (C528A), was not stimulated by PMA but was fully activated by p56lck. This correlated with increased binding of radiolabeled phorbol ester to COS-1 cells expressing wild-type, but not C528A-mutated, Vav. Thus, Vav itself is a PMA-binding and -activated Ras GEF. Recombinant interleukin-1 alpha stimulated Vav via this pathway, suggesting that diglyceride-mediated Vav activation may couple PTK-independent receptors which stimulate production of lipid second messengers to Ras in hematopoietic cells.  相似文献   

4.
Tec family kinases are intracellular non-receptor tyrosine kinases implicated in numerous functions, including T cell and B cell regulation. However, a role in microbial pathogenesis has not been described. Here, we identified Tec kinase as a novel key mediator of the inflammatory immune response in macrophages invaded by the human fungal pathogen C. albicans. Tec is required for both activation and assembly of the noncanonical caspase-8, but not of the caspase-1 inflammasome, during infections with fungal but not bacterial pathogens, triggering the antifungal response through IL-1β. Furthermore, we identify dectin-1 as the pathogen recognition receptor being required for Syk-dependent Tec activation. Hence, Tec is a novel innate-specific inflammatory kinase, whose genetic ablation or inhibition by small molecule drugs strongly protects mice from fungal sepsis. These data demonstrate a therapeutic potential for Tec kinase inhibition to combat invasive microbial infections by attenuating the host inflammatory response.  相似文献   

5.
The intracellular domain of the prolactin (PRL) receptor (PRLr) is required for PRL-induced signaling and proliferation. To identify and test the functional stoichiometry of those PRLr motifs required for transduction and growth, chimeras consisting of the extracellular domain of either the α or β subunit of human granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor (GM-CSFr) and the intracellular domain of the rat PRLr were synthesized. Because the high-affinity binding of GM-CSF results from the specific pairing of one α- and one β-GM-CSFr, use of GM-CSFr/PRLr chimera enabled targeted dimerization of the PRLr intracellular domain. To that end, the extracellular domains of the α- and β-GM-CSFr were conjugated to one of the following mutations: (i) PRLr C-terminal truncations, termed α278, α294, α300, α322, or β322; (ii) PRLr tyrosine replacements, termed Y309F, Y382F, or Y309+382F; or, (iii) PRLr wild-type short, intermediate, or long isoforms. These chimeras were cotransfected into the cytokine-responsive Ba/F3 line, and their expression was confirmed by ligand binding and Northern and Western blot analyses. Data from these studies revealed that heterodimeric complexes of the wild type with C-terminal truncation mutants of the PRLr intracellular domain were incapable of ligand-induced signaling or proliferation. Replacement of any single tyrosine residue (Y309F or Y382F) in the dimerized PRLr complex resulted in a moderate reduction of receptor-associated Jak2 activation and proliferation. In contrast, trans replacement of these residues (i.e., αY309F and βY382F) markedly reduced ligand-driven Jak2 activation and proliferation, while cis replacement of both tyrosine residues in a single intracellular domain (i.e., αY309+382F) produced an inactive signaling complex. Analysis of these GM-CSFr–PRLr complexes revealed equivalent levels of Jak2 in association with the mutant receptor chains, suggesting that the tyrosine residues at 309 and 382 do not contribute to Jak association, but instead to its activation. Heterodimeric pairings of the intracellular domains from the known PRLr receptor isoforms (short-intermediate, short-long, and intermediate-long) also yielded inactive receptor complexes. These data demonstrate that the tyrosine residues at 309 and 382, as well as additional residues within the C terminus of the dimerized PRLr complex, contribute to PRL-driven signaling and proliferation. Furthermore, these findings indicate a functional requirement for the pairing of Y309 and Y382 in trans within the dimerized receptor complex.  相似文献   

6.

Background

Vav proteins are guanine nucleotide exchange factors (GEF) for Rho family GTPases and are activated following engagement of membrane receptors. Overexpression of Vav proteins enhances lamellipodium and ruffle formation, migration, and cell spreading, and augments activation of many downstream signaling proteins like Rac, ERK and Akt. Vav proteins are composed of multiple structural domains that mediate their GEF function and binding interactions with many cellular proteins. In this report we examine the mechanisms responsible for stimulation of cell migration by an activated variant of Vav1 and identify the domains of Vav1 required for this activity.

Results

We found that expression of an active form of Vav1, Vav1Y3F, in MCF-10A mammary epithelial cells increases cell migration in the absence or presence of EGF. Vav1Y3F was also able to drive Rac1 activation and PAK and ERK phosphorylation in MCF-10A cells in the absence of EGF stimulation. Mutations in the Dbl homology, pleckstrin homology, or cysteine-rich domains of Vav1Y3F abolished Rac1 or ERK activation in the absence of EGF and blocked the migration-promoting activity of Vav1Y3F. In contrast, mutations in the SH2 and C-SH3 domains did not affect Rac activation by Vav1Y3F, but reduced the ability of Vav1Y3F to induce EGF-independent migration and constitutive ERK phosphorylation. EGF-independent migration of MCF-10A cells expressing Vav1Y3F was abolished by treatment of cells with an antibody that prevents ligand binding to the EGF receptor. In addition, conditioned media collected from Vav1Y3F expressing cells stimulated migration of parental MCF-10A cells. Lastly, treatment of cells with the EGF receptor inhibitory antibody blocked the Vav1Y3F-induced, EGF-independent stimulation of ERK phosphorylation, but had no effect on Rac1 activation or PAK phosphorylation.

Conclusion

Our results indicate that increased migration of active Vav1 expressing cells is dependent on Vav1 GEF activity and secretion of an EGF receptor ligand. In addition, activation of ERK downstream of Vav1 is dependent on autocrine EGF receptor stimulation while active Vav1 can stimulate Rac1 and PAK activation independent of ligand binding to the EGF receptor. Thus, stimulation of migration by activated Vav1 involves both EGF receptor-dependent and independent activities induced through the Rho GEF domain of Vav1.  相似文献   

7.
Lu N  Guarnieri DJ  Simon MA 《The EMBO journal》2004,23(5):1089-1100
Two tyrosine kinases, Src64 and Tec29, regulate the growth of actin rich-ring canals in the Drosophila ovary. We have shown previously that Src64 directs the localization of Tec29 to ring canals, but the mechanism underlying this process was unknown. Here, we show that Tec29 localizes to ring canals via its Src homology 3 (SH3) and Src homology 2 (SH2) domains. Tec29 activity is required for its own ring canal localization, suggesting that a phosphotyrosine ligand for the SH2 domain is generated by Tec29 itself. Src64 regulates this process by phosphorylating Y677 within the kinase domain of Tec29, an event required for Tec29 activation. We also show that the pleckstrin homology (PH) domain of Tec29 has dual functions in mediating Src64 regulation. In the absence of Src64, the PH domain prevents Tec29 ring canal localization. In the presence of Src64, it enhances membrane targeting of Tec29 by a PI(3,4,5)P(3)-mediated mechanism. In the absence of its PH domain, Tec29 constitutively localizes to ring canals, but still requires Src64 for full activation.  相似文献   

8.
T cells deficient in the Tec kinases Itk or Itk and Rlk exhibit defective TCR-stimulated proliferation, IL-2 production, and activation of phospholipase C-gamma. Evidence also implicates Tec kinases in actin cytoskeleton regulation, which is necessary for cell adhesion and formation of the immune synapse in T lymphocytes. In this study we show that Tec kinases are required for TCR-mediated up-regulation of adhesion via the LFA-1 integrin. We also demonstrate that the defect in adhesion is associated with defective clustering of LFA-1 and talin at the site of interaction of Rlk-/-Itk-/- and Itk-/- T cells with anti-TCR-coated beads. Defective recruitment of Vav1, protein kinase Ctheta, and Pyk2 was also observed in Rlk-/-Itk-/- and Itk-/- T cells. Stimulation with ICAM-2 in conjunction with anti-TCR-coated beads enhanced polarization of Vav1, protein kinase Ctheta, and Pyk2 in wild-type cells, demonstrating a role for integrins in potentiating the recruitment of signaling molecules in T cells. Increased recruitment of signaling molecules was most pronounced under conditions of low TCR stimulation. Under these suboptimal TCR stimulation conditions, ICAM-2 could also enhance the recruitment of signaling molecules in Itk-/-, but not Rlk-/-Itk-/- T cells. Thus, Tec kinases play key roles in regulating TCR-mediated polarization of integrins and signaling molecules to the site of TCR stimulation as well as the up-regulation of integrin adhesion.  相似文献   

9.
The guanine nucleotide exchange factor (GEF) Vav1 plays an important role in T-cell activation and tumorigenesis. In the GEF superfamily, Vav1 has the ability to interact with multiple families of Rho GTPases. The structure of the Vav1 DH-PH-CRD/Rac1 complex to 2.6 Å resolution reveals a unique intramolecular network of contacts between the Vav1 cysteine-rich domain (CRD) and the C-terminal helix of the Vav1 Dbl homology (DH) domain. These unique interactions stabilize the Vav1 DH domain for its intimate association with the Switch II region of Rac1 that is critical for the displacement of the guanine nucleotide. Small angle x-ray scattering (SAXS) studies support this domain arrangement for the complex in solution. Further, mutational analyses confirms that the atypical CRD is critical for maintaining both optimal guanine nucleotide exchange activity and broader specificity of Vav family GEFs. Taken together, the data outline the detailed nature of Vav1's ability to contact a range of Rho GTPases using a novel protein-protein interaction network.  相似文献   

10.
The Tec family kinases are tyrosine kinases that function primarily in hematopoietic cells. The catalytic activity of the Tec kinases is positively influenced by the regulatory domains outside of the kinase domain. The current lack of a full-length Tec kinase structure leaves a void in our understanding of how these positive regulatory signals are transmitted to the kinase domain. Recently, a conserved structure within kinases, the ‘regulatory spine’, which assembles and disassembles as a kinase switches between its active and inactive states, has been identified. Here, we define the residues that comprise the regulatory spine within Tec kinases. Compared to previously characterized systems, the Tec kinases contain an extended regulatory spine that includes a conserved methionine within the C-helix and a conserved tryptophan within the Src homology 2-kinase linker of Tec kinases. This extended regulatory spine forms a conduit for transmitting the presence of the regulatory domains of Tec kinases to the catalytic domain. We further show that mutation of the gatekeeper residue at the edge of the regulatory spine stabilizes the regulatory spine, resulting in a constitutively active kinase domain. Importantly, the regulatory spine is preassembled in this gatekeeper mutant, rendering phosphorylation on the activation loop unnecessary for its activity. Moreover, we show that the disruption of the conserved electrostatic interaction between Bruton's tyrosine kinase R544 on the activation loop and Bruton's tyrosine kinase E445 on the C-helix also aids in the assembly of the regulatory spine. Thus, the extended regulatory spine is a key structure that is critical for maintaining the activity of Tec kinases.  相似文献   

11.
IL-2 inducible T-cell kinase (Itk) is a Tec family non-receptor tyrosine kinase involved in signaling downstream of the T-cell receptor. Itk contains an amino-terminal Pleckstrin Homology (PH) domain that binds phosphatidylinositol (3,4,5)-trisphosphate, recruiting Itk to the plasma membrane upon T-cell receptor activation. In addition to phosphoinositide binding, accumulating data suggest that the Itk PH domain likely mediates additional interactions outside of the phosphoinositide ligand binding pocket. The structural basis for additional PH domain functions remains elusive because of the poor recombinant expression and in vitro solution behavior of the Itk PH domain. Here, we determine that the lone α-helix in the Itk PH domain is responsible for the poor solution properties and that mutation of just two residues in the Itk α-helix to the corresponding amino acids in Btk or Tec dramatically improves the soluble recombinant expression and solution behavior of the Itk PH domain. We present this double mutant as a valuable tool to characterize the structure and function of the Itk PH domain. It is also interesting to note that the precise sites of mutation identified in this study appear as somatic mutations associated with cancerous tissue. Collectively, the findings suggest that the two helical residues in the Itk PH domain may serve an important and unique structural role in wild-type Itk that differentiates this tyrosine kinase from its related family members.  相似文献   

12.
The acute inflammatory response involves neutrophils wherein recognition of bacterial products, such as lipopolysaccharide (LPS), activates intracellular signaling pathways. We have shown that the mitogen-activated protein kinase (MAPK) c-Jun NH2 terminal kinase (JNK) is activated by LPS in neutrophils and plays a critical role in monocyte chemoattractant protein (MCP)-1 expression and actin assembly. As the Tec family kinases are expressed in neutrophils and regulate activation of the MAPKs in other cell systems, we hypothesized that the Tec kinases are an upstream component of the signaling pathway leading to LPS-induced MAPKs activation in neutrophils. Herein, we show that the Tec kinases are activated in LPS-stimulated human neutrophils and that inhibition of the Tec kinases, with leflunomide metabolite analog (LFM-A13), decreased LPS-induced JNK, but not p38, activity. Furthermore, LPS-induced actin polymerization as well as MCP-1, tumor necrosis factor-α, interleukin-6, and interleukin-1β expression are dependent on Tec kinase activity.  相似文献   

13.
The Tec family of protein-tyrosine kinases (PTKs), that includes Tec, Itk, Btk, Bmx, and Txk, plays an essential role in phospholipase Cgamma (PLCgamma) activation following antigen receptor stimulation. This function requires activation of phosphatidylinositol 3-kinase (PI 3-kinase), which promotes Tec membrane localization through phosphatidylinositol 3,4,5-trisphosphate (PtdIns 3,4,5-P(3)) generation. The mechanism of negative regulation of Tec family PTKs is poorly understood. In this study, we show that the inositol 5' phosphatases SHIP1 and SHIP2 interact preferentially with Tec, compared with other Tec family members. Four lines of evidence suggest that SHIP phosphatases are negative regulators of Tec. First, SHIP1 and SHIP2 are potent inhibitors of Tec activity. Second, inactivation of the Tec SH3 domain, which is necessary and sufficient for SHIP binding, generates a hyperactive form of Tec. Third, SHIP1 inhibits Tec membrane localization. Finally, constitutively targeting Tec to the membrane relieves SHIP1-mediated inhibition. These data suggest that SHIP phosphatases can interact with and functionally inactivate Tec by de-phosphorylation of local PtdIns 3,4,5-P(3) and inhibition of Tec membrane localization.  相似文献   

14.
Etk, also named Bmx, is a member of the Tec tyrosine kinase family, which is characterized by a multimodular structure including a pleckstrin homology (PH) domain, an SH3 domain, an SH2 domain, and a catalytic domain. The signaling mechanisms regulating Etk kinase activity remain largely unknown. To identify factor(s) regulating Etk activity, we used the PH domain and a linker region of Etk as a bait for a yeast two-hybrid screen. Three independent clones encoding protein-tyrosine phosphatase D1 (PTPD1) fragments were isolated. The binding of PTPD1 to Etk is specific since PTPD1 cannot associate with either the Akt PH domain or lamin. In vitro and in vivo binding studies demonstrated that PTPD1 can interact with Etk and that residues 726-848 of PTPD1 are essential for this interaction. Deletion analysis of Etk indicated that the PH domain is essential for PTPD1 interaction. Furthermore, the Etk-PTPD1 interaction stimulated the kinase activity of Etk, resulting in an increased phosphotyrosine content in both factors. The Etk-PTPD1 interaction also increased Stat3 activation. The effect of PTPD1 on Etk activation is specific since PTPD1 cannot potentiate Jak2 activity upon Stat3 activation. In addition, Tec (but not Btk) kinase can also be activated by PTPD1. Taken together, these findings indicate that PTPD1 can selectively associate with and stimulate Tec family kinases and modulate Stat3 activation.  相似文献   

15.
The signal transduction pathway involving the Vav1 guanine nucleotide exchange factor (GEF) and the Rac1 GTPase plays several key roles in the immune response mediated by the T cell receptor. Vav1 is also a unique member of the GEF family in that it contains a cysteine-rich domain (CRD) that is critical for Rac1 binding and maximal guanine nucleotide exchange activity, and thus may provide a unique protein-protein interface compared to other GEF/GTPase pairs. Here, we have applied a number of remedial structural proteomics strategies, such as construct and expression optimization, surface mutagenesis, limited proteolysis, and protein formulation to successfully express, purify, and crystallize the Vav1-DH-PH-CRD/Rac1 complex in an active conformation. We have also systematically characterized various Vav1 domains in a GEF assay and Rac1 in vitro binding experiments. In the context of Vav1-DH-PH-CRD, the zinc finger motif of the CRD is required for the expression of stable Vav1, as well as for activity in both a GEF assay and in vitro formation of a Vav1/Rac1 complex suitable for biophysical and structural characterization. Our data also indicate that the isolated CRD maintains a low level of specific binding to Rac1, appears to be folded based on 1D NMR analysis and coordinates two zinc ions based on ICP-MS analysis. The protein reagents generated here are essential tools for the determination of a three dimensional Vav1/Rac1 complex crystal structure and possibly for the identification of inhibitors of the Vav1/Rac1 protein-protein interaction with potential to inhibit lymphocyte activation.  相似文献   

16.
17.
Stimulation of T cells via the CD3--T-cell receptor (TCR) complex results in rapid increases in beta 1 integrin-mediated adhesion via poorly defined intracellular signaling events. We demonstrate that TCR-mediated activation of beta 1 integrins requires activation of the Tec family tyrosine kinase Itk and phosphatidylinositol 3-kinase (PI 3-K)-dependent recruitment of Itk to detergent-insoluble glycosphingolipid-enriched microdomains (DIGs) via binding of the pleckstrin homology domain of Itk to the PI 3-K product PI(3,4,5)-P(3). Activation of PI 3-K and the src family kinase Lck, via stimulation of the CD4 co-receptor, can initiate beta 1 integrin activation that is dependent on Itk function. Targeting of Itk specifically to DIGs, coupled with CD4 stimulation, can also activate beta 1 integrin function independently of TCR stimulation. Changes in beta 1 integrin function mediated by TCR activation of Itk are also accompanied by Itk-dependent modulation of the actin cytoskeleton. Thus, TCR-mediated activation of beta 1 integrins involves membrane relocalization and activation of Itk via coordinate action of PI 3-K and a src family tyrosine kinase.  相似文献   

18.
The Tec family tyrosine kinases regulate lymphocyte development, activation, and differentiation. In T cells, the predominant Tec kinase is Itk, which functions downstream of the T-cell receptor to regulate phospholipase C-γ. This review highlights recent advances in our understanding of Itk kinase structure and enzymatic regulation, focusing on Itk protein domain interactions and mechanisms of substrate recognition. We also discuss the role of Itk in the development of conventional versus innate T-cell lineages, including both αβ and γδ T-cell subsets. Finally, we describe the complex role of Itk signaling in effector T-cell differentiation and the regulation of cytokine gene expression. Together, these data implicate Itk as an important modulator of T-cell signaling and function.The Tec family nonreceptor tyrosine kinases, Tec, Btk, Itk/Emt/Tsk, Rlk/Txk, and Bmx/Etk, are expressed primarily in hematopoietic cells and serve as important mediators of antigen receptor signaling in lymphocytes (Berg et al. 2005; Felices et al. 2007; Readinger et al. 2009). The demonstration that the human B-cell immunodeficiency, X-linked agammaglobulinemia (XLA), is caused by mutations in Btk first underscored the importance of this tyrosine kinase family in lymphocyte development and antigen receptor signaling (Rawlings et al. 1993; Thomas et al. 1993; Tsukada et al. 1993; Vetrie et al. 1993). T lymphocytes express three Tec kinases: Itk, Rlk and Tec. To date, only Itk has been found to have a clearly defined function in T cells, leading to the conclusion that Itk is the predominant Tec kinase in T cells. In this review, we will cover recent findings that highlight the critical role of Itk in T-cell signaling and function.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号