首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. Feeding behaviour of generalist and specialist predators is determined by a variety of trophic adaptations. Specialised prey‐capture adaptations allow specialists to catch relatively large prey on a regular basis. As a result, specialists might be adapted to exploit each item of prey more thoroughly than do generalists. 2. It was expected that obligatory specialist cursorial spiders would feed less frequently than generalists but for a longer time and, thus, that their foraging pause would be longer. First, the feeding frequencies of three generalist spider species (Cybaeodamus taim, Harpactea hombergi, Hersiliola sternbergsi) were compared with those three phylogenetically related specialist species: myrmecophagous Zodarion rubidum, and araneophagous Nops aff. variabilis and Palpimanus orientalis. 3. Generalists captured more prey, exploited each item of prey for a significantly shorter time, and had a shorter foraging pause than was the case for specialists. Generalists also gained significantly less relative amount of prey mass than did specialists. 4. Second, the study compared the prey DNA degradation rate in the gut of generalists and specialists by means of PCR. The degradation rate was not significantly different between specialists and generalists: the detectability half‐life was estimated to exist for 14.3 days after feeding. 5. This study shows that the feeding strategies of cursorial generalist and obligatory specialist spiders are different. Obligatory specialists have evolved a feeding strategy that is based on thorough exploitation of a few large prey, whereas generalists have evolved a strategy that is based on short exploitation of multiple small items of prey.  相似文献   

2.
DNA barcoding was used to investigate dietary habits and prey selection in members of the African‐endemic family Distichodontidae noteworthy for displaying highly specialized ectoparasitic fin‐eating behaviors (pterygophagy). Fin fragments recovered from the stomachs of representatives of three putatively pterygophagous distichodontid genera (Phago, Eugnathichthys, and Ichthyborus) were sequenced for the mitochondrial gene co1. DNA barcodes (co1 sequences) were then used to identify prey items in order to determine whether pterygophagous distichodontids are opportunistic generalists or strict specialists with regard to prey selection and, whether as previously proposed, aggressive mimicry is used as a strategy for successful pterygophagy. Our findings do not support the hypothesis of aggressive mimicry suggesting instead that, despite the possession of highly specialized trophic anatomies, fin‐eating distichodontids are opportunistic generalists, preying on fishes from a wide phylogenetic spectrum and to the extent of engaging in cannibalism. This study demonstrates how DNA barcoding can be used to shed light on evolutionary and ecological aspects of highly specialized ectoparasitic fin‐eating behaviors by enabling the identification of prey species from small pieces of fins found in fish stomachs.  相似文献   

3.
Synopsis The ecomorphological relationships between the oral jaws and food spectra were highlighted in 34 species of Gulf of California blennioid fishes (5 Tripterygiidae, 13 Labrisomidae, 11 Chaenopsidae and 5 Blenniidae). Twenty-nine species are microcarnivorous, two are omnivorous browsers, two are algae grazers and one was an ‘ectoparasite’ feeder. The spectrum of oral (as opposed to pharyngeal) jaw (OJA) morphology ranges from plesiomorphic, suction-feeding (relatively large, protrusible jaws, with many coniform-caniniform teeth) to apomorphic, biting (relatively small, non protrusible jaws, with a single row of incisiform teeth). As species with similar morphology may widely differ in food, it is concluded, that morphology is not a reliable predictor for ecology in this case. With the exception of a few specialists, species with apomorphic, biting OJA utilize sessile items in addition to mobile categories and thus show a higher food diversity as compared to species with plesiomorphic OJA. Thus in the present case morphological differentiation goes along with ecological generalization. Only three blenniid species with the most apomorphic OJA may be considered as specialized also with regard to food resource utilization. Transformation of morphological characters and the ecological role of the OJA of blennioids may serve as a model to illustrate the steps required to achieve a biting-browsing and grazing feeding apparatus in many taxa of modern acanthopterygian reef fishes.  相似文献   

4.
Synopsis This paper describes a study performed in the Gulf of Aqaba on food selectivity and hunting behaviour of three species of sympatric fish from the genusCephalopholis. These fishes occur in the shallow-water coral habitats of the Red Sea and feed on fishes and invertebrates. Of these,C. argus andC. miniata prefer selected fish species (95 and 86% of their diet respectively), whereasC. hemistiktos consumes more invertebrates (36%) and is less selective with respect to fish species. All three species employ various techniques to catch their prey and in situations where their elected food is absent they readily switch to substitute prey species.  相似文献   

5.
Summary Previous studies indicated that at Taboguilla Island (Gulf of Panama), persistence of many intertidal organisms depended on holes and crevices in the rock as refuges from both vertebrate (fishes) and invertebrate (crabs, gastropods, chitons) consumers. Here, we evaluate the influences of substratum heterogeneity and consumers on patterns of diversity of sessile organisms in this habitat. Local substratum topography is highly variable, ranging from smooth to irregular surfaces. Algal crusts typically dominate all low zone rock surfaces, and most other sessile spegies (invertebrates and foliose algae) occur in holes and crevices. Number (S) and diversity (H) of sessile species is lower on homogeneous surfaces than on heterogeneous surfaces. Rate of increase in S with area sampled is positively correlated with substratum heterogeneity; number of species sampled per transect at a homogeneous site would be about 10 vs 30 to 60 on a heterogeneous site. Large fishes and crabs forage intensively over both substratum types, but cannot enter holes and crevices to eat prey. Gastropods, chitons, limpets, and small crabs feed on both substrata but vary in abundance from hole to hole. Prey mortality is thus intense and constant on open surfaces, but variable in space and time in holes and crevices. When consumers are excluded from the general rock surface, algal crusts are settled upon and overgrown by foliose algae, hydrozoans, and sessile invertebrates, particularly bivalves. Both S and H first increase, as sessile species invade and become more abundant, and then decrease as the rock oyster Chama echinata begins to outcompete other species and dominate primary space. Hence, consumers normally keep local diversity low by removing most sessile prey from open surfaces.In these experiments, a consumer pressure gradient was established by removing 0, 1, 2, 3, and all of 4 distinct groups of consumers. As predicted by the intermediate disturbance hypothesis, lowest diversity occurred at lowest (total exclusion) and highest consumer pressure (normal condition). Highest diversity occurred at intermediate consumer pressure. Unexplained variation in this relationship is probably due to quantitative and qualitative differences in consumer regime, variation among plots in substratum heterogeneity, and insufficient time for competitive dominance by Chama to be fully expressed. On a small (0.25 m2) spatial scale, consumers maintain low diversity by keeping prey scarce and causing local extinctions. On larger spatial scales, they may maintain and even produce high diversity through their interaction with substratum heterogeneity and possibly low dispersal rates of sessile species.  相似文献   

6.
The feeding ecology of the lesser weever, Echiichthys vipera, from the adjacent coastal areas of the Douro and Tagus estuaries (Portugal) was studied between October 2000 and July 2002. The stomach contents of 246 individuals were analysed and diet was characterized by the numerical, gravimetric, occurrence and vacuity indices. Variation of feeding habits with fish length (<95 and >95 mm) and geographical area was considered. Diet of the lesser weever comprised a large variety of prey (28 species), the most important of which were crustaceans (numerical index, NI = 93.5%; occurrence index, OI = 75.6%), namely Mysidacea (especially Schistomysis sp.), Amphipoda (mainly Gammarus subtypicus) and Isopoda (Idotea spp.), and also Teleostei (mostly larval stages that posted a gravimetric index, GI = 53.0%). Diet varied with fish length, with large individuals showing a larger diversity of prey items. Furthermore, specimens from Douro also showed a higher diversity of prey items than those from Tagus. More than 50% of the stomachs were empty, being the highest vacuity values relative to smaller fishes as well as to individuals from the Tagus estuary adjacent coastal area.  相似文献   

7.
A case of local feeding specialization in the European badger (Meles meles), a carnivore species with morphological, physiological and behavioural traits proper to a trophic generalist, is described. For the first time, we report a mammalian species, the European rabbit (Oryctolagus cuniculus), as the preferred prey of badgers. Secondary prey are consumed according to their availability, compensating for temporal fluctuations in the abundance of rabbit kittens. We discuss how both predator (little ability to hunt) and prey (profitability and predictability) features, may favour the observed specialization, as predicted by foraging theory. Badgers show a trend to specialize on different prey in different areas throughout the species range. It is suggested that changes in prey features can reverse the badger feeding strategy at the population level. Such dynamic behavioural responses make difficult to label badgers as generalists or specialists at the species level.  相似文献   

8.
Habitat loss, resource specialization, and extinction on coral reefs   总被引:6,自引:0,他引:6  
Coral reefs worldwide are being degraded because of global warming (coral bleaching) and coastal development (sedimentation and eutrophication). Predicting the risk of species extinctions from this type of habitat degradation is one of the most challenging and urgent tasks facing ecologists. Habitat specialists are thought to be more prone to extinction than generalists; however, specialists may be more susceptible to extinction because (1) they are specialists per se, (2) they are less abundant than generalists, or (3) both. Here, I show that declines in coral abundance lead to corresponding declines in the abundance of coral‐dwelling fishes, but with proportionally greater losses to specialists than generalists. In addition, specialists have smaller initial population sizes than generalists. Consequently, specialists face a dual risk of extinction because their already small populations decline more rapidly than those of generalists. Corresponding with this increased extinction risk, I describe the local extinction of one specialist species and the near‐global extinction of another species. I conclude that habitat specialists will be the first species lost from coral reefs because their small populations suffer the most from human‐induced disturbances.  相似文献   

9.
The geographical variation in the Genet Genetta genetta L. diet was analysed from 12 locations covering its entire range. Data were obtained from the available literature on food studies in this species. We studied the general food spectrum of this species and compared the importance of different prey items in each area through PCA analysis. The possible influence of some large-scale environmental factors (latitude, altitude, Mediterraneity) on diet were studied by means of regression analysis and anova . The study assessed the frequency of occurrence of each prey group and diet diversity. Results show the existence of two ‘food’ groups: (i) Genets which feed on a wide food spectrum, especially arthropods and (ii) Genets which feed on small mammals at a high frequency, while the remaining prey items are scarce or absent. At the intraspecific level, Genets behave as generalist species, with the small mammals (especially, the Woodmouse) as the most outstanding prey item. However, when compared with the diet of other medium-sized Palaearctic carnivores, we can say that the Genet is intermediate between typical generalists (Martens Martes spp., Red Foxes Vulpes vulpes and Badgers Meles meles) and specialists (Otters Lutra lutra, Stoat Mustela erminea and Weasel Mustela nivalis). Finally, anova shows the existence of a relationship between diet diversity and Mediterraneity (associated with taxa such as arthropods, reptiles and amphibians), but no relationship was found for latitude or altitude. The importance of interspecific competition, based on island data, is discussed.  相似文献   

10.
Ecosystem functioning is affected by horizontal (within trophic groups) and vertical (across trophic levels) biodiversity. Theory predicts that the effects of vertical biodiversity depend on consumer specialization. In a microcosm experiment, we investigated ciliate consumer diversity and specialization effects on algal prey biovolume, evenness and composition, and on ciliate biovolume production. The experimental data was complemented by a process‐based model further analyzing the ecological mechanisms behind the observed diversity effects. Overall, increasing consumer diversity had no significant effect on prey biovolume or evenness. However, consumer specialization affected the prey community. Specialist consumers showed a stronger negative impact on prey biovolume and evenness than generalists. The model confirmed that this pattern was mainly driven by a single specialist with a high per capita grazing rate, consuming the two most productive prey species. When these were suppressed, the prey assemblage became dominated by a less productive species, consequently decreasing prey biovolume and evenness. Consumer diversity increased consumer biovolume, which was stronger for generalists than for specialists and highest in mixed combinations, indicating that consumer functional diversity, i.e. more diverse feeding strategies, increased resource use efficiency. Overall, our results indicate that consumer diversity effects on prey and consumers strongly depend on species‐specific growth and grazing rates, which may be at least equally important as consumer specialization in driving consumer diversity effects across trophic levels. Synthesis In a microcosm experiment, we investigated multitrophic consumer diversity and specialization effects using ciliate consumers and microalgal prey. Consumer diversity increased consumer biovolume, which was highest in combinations containing both generalists and specialists. Specialist consumers showed a stronger negative effect on prey biovolume and evenness than generalists. These experimental data were supported by a process‐based model, indicating that the large effect of the specialists was based on high per capita grazing rate on the two most productive prey species. Species‐specific traits such as growth and grazing rates were equally important for multitrophic diversity effects than consumer specialization.  相似文献   

11.
Evolutionary patterns in tropical marine reef fish feeding   总被引:3,自引:0,他引:3  
The majority of tropical reef fishes are acanthopterygians. Most of them are percomorphs and thus are likely monophyletic. In accordance to modern systematics, the primitive types among the latter are large-mouthed suction feeders. Species from advanced families often have biting oral jaws with a reduced number and complexly shaped teeth. Mouth sizes decrease from the primitive towards the advanced reef fishes when ranked according to increasing family numbers (Nelson 1984). To create a functional resource axis, Randall's (1967) and Hobson's (1974) data on tropical reef fish feeding were re-interpreted by ranking food items from mobile to sessile prey. The primitive paracantho pterygian and acanthopterygian reef fishes are large-mouthed, suction-feeding predators on mobile prey. Most of the advanced, small-mouthed species are browsers and grazers, but often feed on mobile prey too. Obligatory specialists (monophagous and unable to switch) seem to be relatively rare among modern reef fishes. The trends stated above indicate a wealth of parallel developments in many advanced families of reef fishes towards small, often biting oral jaws. This parallelism may be the result of comparable regimes of selection pressures in reefs and of the need for newly evolved species to establish themselves within the already existing guilds.  相似文献   

12.
We investigated the feeding rates, agonistic behaviour and diet of two blenny species, Entomacrodus vomerinus and Ophioblennius trinitatis, by direct observation and gut content analysis. Both species coexist in small and shallow tide pools in the St Peter and St Paul's Archipelago, equatorial North Atlantic Ocean. The feeding rate of O. trinitatis was c. 55% higher than E. vomerinus. On the other hand, agonistic rate of O. trinitatis was negatively related to body size, whereas in E. vomerinus was positively related. Both species showed a high diet overlap, in which detritus was the most important food item (86% in O. trinitatis and 80% in E. vomerinus). Feeding activity was more intense during the morning for O. trinitatis but afternoon for E. vomerinus. These behavioural observations support the importance of temporal feeding partitioning as the main strategy allowing species co-existence in tide pools.  相似文献   

13.
Calcareous grasslands harbour a high biodiversity, but are highly fragmented and endangered in central Europe. We tested the relative importance of habitat area, habitat isolation, and landscape diversity for species richness of vascular plants. Plants were recorded on 31 calcareous grasslands in the vicinity of the city of Göttingen (Germany) and were divided into habitat specialist and generalist species. We expected that habitat specialists were more affected by area and isolation, and habitat generalists more by landscape diversity. In multiple regression analysis, the species richness of habitat specialists (n = 66 species) and habitat generalists (n = 242) increased with habitat area, while habitat isolation or landscape diversity did not have significant effects. Contrary to predictions, habitat specialists were not more affected by reduced habitat area than generalists. This may have been caused by delayed extinction of long-living plant specialists in small grasslands. Additionally, non-specialists may profit more from high habitat heterogeneity in large grasslands compared to habitat specialists. Although habitat isolation and landscape diversity revealed no significant effect on local plant diversity, only an average of 54% of habitat specialists of the total species pool were found within one study site. In conclusion, habitat area was important for plant species conservation, but regional variation between habitats contributed also an important 46% of total species richness.  相似文献   

14.
I studied the feeding behavior and diet of the carangid jack Caranx latus in a subtropical reef at Búzios Island on the southeastern Brazilian coast. Caranx latus foraged alone or in small groups of up to three individuals during daytime employing two main feeding styles: searching for prey while swimming in mid-water and following individuals of other fish species which disturbed the substrate while foraging among the rocks. The labrid wrasse Bodianus rufus was the main fish species followed by the jack. The jack feeds on crustaceans and fishes some of which are benthic rocky bottom dwellers and are caught during following. The behavioral flexibility of C. latus enables this fish to consume both crustaceans from the water column and benthic rocky dweller fishes. There is little dietary overlap between C. latus and the followed B. rufus. The interspecific feeding associations could be regarded as advantageous for C. latus allowing access to a broader range of prey categories and increasing the food intake through the consumption of large benthic fish prey  相似文献   

15.
In this study, the feeding behaviour of the non‐native invasive predatory fishes largemouth bass Micropterus salmoides and bluegill Lepomis macrochirus was studied in the Ezura River, a northern tributary of Lake Biwa, Japan. Prey composition was estimated based on visual examination of stomach contents and faecal DNA analysis to determine feeding habits of these predatory fishes. Stomach content analysis showed that native fishes (e.g. ayu Plecoglossus altivelis and gobies Rhinogobius spp.) and shrimps (e.g. Palaemon paucidens) were the major prey items for M. salmoides, while snails, larval Chironomidae and submerged macrophytes were the dominant prey items of L. macrochirus. Micropterus salmoides tended to select larger fish in the case of crucian carp Carassius spp., but smaller fishes in the case of P. altivelis and Rhinogobius spp. Faecal DNA analyses revealed prey compositions similar to those identified in predator stomach contents, and identified additional prey species not detected in stomach content inspection. This study demonstrated that both stomach content inspection and DNA‐based analysis bear several inherent shortcomings and advantages. The former method is straightforward, although identification of species can be inaccurate or impossible, whereas the latter method allows for accurate species identification, but cannot distinguish prey size or stage. Hence, integration of morphology‐based and DNA‐based methods can provide more reliable estimates of foraging habits of predatory fishes.  相似文献   

16.
Adaptive hypotheses based on interspecific comparisons can be tested by evaluating the context‐dependence of the behaviour of individual organisms. Drummond (Behaviour, 86, 1983, 1) categorized garter snake species (Thamnophis) as terrestrial–aquatic generalists or aquatic specialists based on diet and aquatic foraging behaviour. He hypothesized that the characteristic foraging behaviours of aquatic specialists – including frequent crawling on the underwater substrate and a high rate of underwater predatory strikes – are adaptations for feeding on relatively widely dispersed aquatic prey. Drummond's hypothesis based on interspecific comparisons suggests that individual snakes might change their foraging in the direction of aquatic specialist behaviour with an increase in water depth (which increases prey dispersion). I tested this prediction through laboratory observations of Mexican Pacific lowlands garter snakes (T. validus) feeding on minnows in shallow (2 cm) and deep (3–7 cm) water. Members of this species are appropriate subjects because they are ecologically intermediate between the generalists and aquatic specialists studied by Drummond, and thus might be expected to show more variation in aquatic foraging behaviour than those species. T. validus showed significantly higher frequencies of crawling on the underwater substrate and of underwater strikes in the deep water than in the shallow water; i.e. increased water depth shifted the behaviour of these snakes toward that of aquatic specialists, thus supporting Drummond's hypothesis. Individuals of an aquatic specialist species, the narrow‐headed garter snake (T. rufipunctatus), showed less pronounced changes in behaviour with increased water depth. Western ribbon snakes (T. proximus), which feed primarily at the land–water interface (and are expected to act like terrestrial–aquatic generalists), typically refused to feed in deep water. Interspecific differences in underwater visual acuity may underly the behavioural differences among the three species by determining whether changes in foraging behaviour with water depth are advantageous. Information on phylogenetic relationships suggests that the facultative behaviour of T. validus may represent an intermediate stage in the evolution of aquatic specialization.  相似文献   

17.
Clarifying interspecific differences in prey items in relation to morphological characteristics is a fundamental aspect to understand the mechanism enabling the diversity of feeding ecology of fishes. The aim of the present study was to clarify the relationship between prey items and body shape variation, teeth and mandible characteristics for four lutjanid species: Lutjanus decussatus, L. fulviflamma, L. fulvus and L. gibbus. Stomach contents analysis revealed that the main prey items of L. decussatus were fishes, L. fulviflamma were crabs and fishes, and L. fulvus and L. gibbus was crabs. Body shape analysis revealed that L. decussatus and L. fulviflamma had a shallower body depth whereas L. fulvus and L. gibbus had a deeper body depth. The two species with a shallower body had long teeth whereas the other two species with a deeper body depth had shorter teeth. The jaw-lever mechanics were compared and L. decussatus and L. fulviflamma have a faster mouth opening–closing mechanism. Canonical correspondence analysis revealed that fishes was the major prey item for the species having a shallower body depth, higher teeth length and lower ratios of in-lever to out-lever of mandibles, whereas crabs was the major prey item for the species having a deeper body depth, lower teeth length and higher ratios of in-lever to out-lever of mandibles. It is suggested that the interspecific differences in main prey items among the four species are directly related to behavioral differences based on body shape, teeth characteristics and jaw-lever mechanics.  相似文献   

18.
Indo-Pacific Lionfish (Pterois volitans and P. miles) are venomous marine fishes in the family Scorpaenidae that invaded the Caribbean Sea, Gulf of Mexico, and western North Atlantic Ocean beginning in the mid-1980s. Lionfish are generalist, opportunistic predators that consume a variety of invertebrates and small reef fishes, such that the presence of Lionfish can significantly reduce reef fish abundance, diversity, and recruitment on invaded reefs. This study focused on the feeding ecology of Lionfish in Biscayne National Park (BNP), located in southeast Florida, USA. BNP consists of multiple marine habitats, including mangroves, seagrass beds, coral reefs, and limestone keys that support a diverse array of species resulting in multi-million dollar fishing and tourism industries. These habitats within BNP are at risk from the predatory impacts of invasive Lionfish. Through morphological prey identification of stomach contents, supplemented with DNA barcoding for identification of highly-digested prey items, Lionfish diet was analyzed and compared among fish sizes (immature, transitional and mature), BNP region (bay, shelf, and edge), and seasons (wet and dry). A total of 513 stomachs, containing more than 2600 prey items, were examined. We report that Lionfish in BNP fed predominantly on small reef fishes and small crustaceans, with a dietary shift from crustaceans to fishes occurring with increasing Lionfish size. Diets differed among BNP regions for medium-sized (100–179 mm) transitional Lionfish but not for large-sized (≥?180 mm) mature individuals. Furthermore, dietary differences between seasons were observed in mature Lionfish, but no seasonal differences were detected for smaller Lionfish (i.e., immature and transitional Lionfish). Based on the diet habits observed, Lionfish in BNP could have significant ecological and economic consequences for BNP and south Florida coastal habitats.  相似文献   

19.
The objective of this study was to analyse the feeding habits and trophic interactions between four oceanic predatory fish around the Fernando de Noronha Archipelago (FNA), Brazil, in the western equatorial Atlantic (3.86°S/32.42°W), internationally recognized as an environment of high economic and ecological value. For this purpose, biological samples of yellowfin tuna (Thunnus albacares), wahoo (Acanthocybium solandri), barracuda (Sphyraena barracuda) and dolphinfish (Coryphaena hippurus) were collected for stomach content and stable isotope analysis. Values of the index of relative importance revealed varied diets, with a strong presence of teleost fishes (Diodontidae and Exocoetidae) for all species, with yellowfin tuna having a greater diversity of food items. Despite being generalists/opportunists, the feeding strategy of these predators showed a tendency towards a specialized diet in the use of the available resources around the FNA. They presented a narrow trophic niche width (Levin's index, Bi < 0.6) and low overlap between species, except between barracuda and wahoo (MacArthur and Levin's, R0 = 0.72). Isotopic compositions had broad values of δ13C and δ15N, and were significantly different between species. Our results provide information about the four species' trophic organization and suggest that the predators avoid competition by preying on different prey, thus allowing their coexistence.  相似文献   

20.
The shimofuri goby (Tridentiger bifasciatus), which is native to Asian estuaries, was recently introduced to the San Francisco Estuary, California, USA. We conducted gut content analyses to examine the gobys feeding ecology in this highly invaded estuary. Shimofuri gobies were generalist predators on benthic invertebrates, consuming seasonally abundant prey, especially amphipods (Corophium spp.). In addition, shimofuri goby utilized two novel prey items not exploited by other resident fishes – hydroids (Cordylophora caspia) and barnacle (Balanus improvisus) cirri, both of which are alien. The shimofuri gobys feeding ecology appears well-suited to the fluctuating environment of the San Francisco Estuary and may partially explain observed increases in shimofuri goby abundance compared with declines in populations of some native species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号