首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Many cultured cells in spherical reaggregates (100–1000 μm diameter), prepared using cells isolated from embryonic chick ventricles (16 days in ovo), retain great sensitivity to tetrodotoxin (TTX; 0.1 μg/ml), rapidly rising action potentials (up to 200 V/sec), high resting potentials (up to ?90 mV), and they lack automaticity. The Na+ channels generating the action potential upstroke inactivate totally at about ?50 mV. The chronaxie (hence, excitability), the ratio of PNaPK, and the intracellular K+ concentration are about the same as in adult cells. Following blockade of the Na+ channels with TTX, norepinephrine produces slowly rising overshooting responses, indicating the presence of functional beta-adrenergic receptors. Thus, trypsin-dispersed myocardial cells can be made to retain highly differentiated membrane properties in vitro.  相似文献   

6.
Embryonic heart cell aggregates were irradiated with ultraviolet light at wavelengths between 260 and 310 nm. Spontaneous beat rate was monitored with the aid of a closed-circuit TV camera and, in separate experiments, electrophysiological changes were assayed by intracellular recording. The characteristic response of 7-day aggregates was an increase in spontaneous beat rate to a maximum plateau level, followed by a rather abrupt cessation of beating. Intracellular recordings during irradiation showed a marked decline in the maximum rate of rise, overshoot, and repolarization phase of the action potential, and a significant change in threshold toward zero. The action spectrum for the termination of beating peaked between 290 and 295 nm; it fell off sharply at longer wavelengths and more slowly at shorter wavelengths. The maximum increase in beat rate was increasingly greater for shorter wavelengths and exhibited no peak in the wavelength range investigated. The sensitivity of aggregates to 295-nm light, as measured by the inverse of irradiation time required to terminate beating, decreased with increasing aggregate size and external potassium concentration, was relatively independent of temperature, and increased with embryonic age. The ultraviolet-induced increase in beat rate and termination of beating are attributed to separate complementary processes, a depolarization of the membrane, and a decline in "fast" sodium conductance.  相似文献   

7.
8.
9.
A tissue system in which fibroblasts and myocytes from chick embryonic hearts were separately maintained was used to study the toxicity of ethanol. To reproduce the teratogenic effects of acute, high concentrations of ethanol typical of binge drinking, an open tissue culture system was employed. With open cultures, the cells were initially exposed to peak alcohol levels for approximately 6 hr and were exposed to decreasing concentrations of ethanol for the remainder of each 24 hr period. After the first day of ethanol exposure, there was substantial cell loss in both fibroblast and myocyte cultures. Alcohol-induced cell loss was dose-dependent. Despite decreased cell density after the first day of ethanol exposure, the surviving cells differentiated into monolayers of fibroblasts or beating cardiac muscle fibers. However, both ethanol-exposed fibroblasts and myocytes appeared atrophic, that is, smaller and shrunken. Electrophoretic analysis or these ethanol-exposed fibroblast and myocyte cultures revealed specific reduction in the cellular contents of -actinin, myosin, and actin. These decreases in cytoskeletal proteins may be responsible for the morphological abnormalities noted in these cells.Abbreviations FAS, fetal alcohol syndrome - NAD, nicotinamide adenine dinucleotide - PAS, periodic acid Schiff - SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis  相似文献   

10.
The rapid inward sodium current in spherical clusters of 11-d-old embryonic chick heart cells, ranging in size between 65 and 90 micron diameter, was studied using the two-microelectrode voltage-clamp technique. Using these preparations, it was possible to resolve the activation phase of the rapid inward current for potentials negative to -25 mV at 37 degrees C. The rapid inward current exhibited a voltage and time dependence similar to that observed in other excitable tissues. It was initiated at potential steps more positive than -45 mV. The magnitude of the current reached its maximum value at a potential of approximately -20 mV. The measured reversal potential was that predicted by the Nernst equation for sodium ions. The falling phase of the current followed a single exponential time-course with a time constant of inactivation, tau h, ranging between 2.14 ms at -40 mV and 0.18 ms at -5 mV. The time constant of inactivation, tau h, determined by a single voltage-step protocol was compared to the constant, tau c, determined by a double voltage-step protocol and no significant different between the two constants of inactivation was found. Furthermore, the time constants of inactivation and reactivation at the same potential in the same preparation were similar. The results of this study demonstrate that the sodium current of heart cells recorded at 37 degrees C can be described by Hodgkin-Huxley kinetics with speeds approximately four times faster than the squid giant axon at 15 degrees C.  相似文献   

11.
12.
13.
Wei H  Mei YA  Sun JT  Zhou HQ  Zhang ZH 《Cell research》2003,13(1):21-28
Swelling-activated Cl^- currents,I(Cl,swell),were measured during hyposmotic shock in white Leghorn embryonic chick heart cells using the whole-cell recording of patch-clamp technique.Genistein,an inhibitor of protein tyrosine kinase(PTK),suppressed I(Cl,swell).Under isosmotic condition phorbol 12-myristate 13-actetate(PMA),and activator of PKC,elicited the Cl^- current similar to that in hyposmotic solution,whereas hyposmotic shock did not elicit I(Cl,swell) in chelerythrine chloride(an inhibitor of PKC)-treated cells,Confocal microscopy experiments using FITC-phalloidin as a fluorescent label of F-actin showed that the actin network was moved from cortical region of the cell to the center after hyposmotic shock as compared with the image under isosmotic condition,When the cells were treated with cytochalasin B(CB)or cytochalasin D(CD)under isosmotic condition the disruption of the F-actin integrity was observed,and I(C,l,swell). The results suggested that the role of PTK,probably receptor tyrosine kinase,for regulation of I(Cl,swell) appeared to be at upstream site related to the role of F-actin.Then PKC signal pathway was activated somehow and finally change in the polymerization state of cytoskeleton led to activate the swelling-activated Cl^- channels.These results demonstrate clearly that PTK,PKC and F-actin are important factors for regulation of I(Cl,swell),in embryonic chick heart cells as compared with often controversial results reported in different cell types.  相似文献   

14.
Outward membrane currents in aggregates of atrial cells prepared from 7-12-d-old chick embryonic hearts were measured with the two microelectrode voltage-clamp technique. Two outward current components, Ix1 and Ix2, were found in the plateau potential range of the action potential. The Ix1 component is activated between -50 and -20 mV; the Ix2 component is activated between -15 and +20 mV. The Ix1 component inwardly rectifies, whereas Ix2 has an approximately linear current-voltage relation. These preparations lack a time-dependent pacemaker current component, even though they beat spontaneously with an interbeat interval of approximately 1 s. A mathematical model of electrical activity is described based on our measurements of time-dependent outward current, and measurements in the literature of inward current components.  相似文献   

15.
16.
Neuregulin stimulates DNA synthesis in embryonic chick heart cells.   总被引:1,自引:0,他引:1  
Neuregulins are a family of growth factors that have been shown to promote the growth or differentiation of various cell types. Recently, targeted mutations of the genes for neuregulins or their putative receptors by homologous recombination resulted in embryonic lethality characterized by cardiac malformation. Here we investigate a role for neuregulin in the growth of cultured chick heart cells. Neuregulin induced the tyrosine phosphorylation of a 185-kDa protein in cultured heart cells, and it also stimulated an increase in [(3)H]thymidine incorporation and BrDU labeling in the cell cultures. Immunocytochemistry revealed that the increased DNA synthesis was primarily in mesenchymal cells and not detected in myocytes or endocardial cells. These data suggest that neuregulin may function as a paracrine signal in mesenchymal-endothelial interactions during cardiac development.  相似文献   

17.
18.
H Schmidt  G Oettling  U Drews 《FEBS letters》1988,230(1-2):35-37
Activation of muscarinic receptors of heart cells elevates the intracellular Ca2+ concentration. The increase is considered to be due to influx of extracellular Ca2+. We show that intracellular Ca2+ mobilization is involved. Cell suspensions prepared from hearts of 6-day-old chick embryos were loaded with the fluorescent Ca2+ chelator chlortetracycline. Muscarinic stimulation induces a dose-dependent fluorescence decrease (ED50=2.6 × 10−6 M) indicating intracellular Ca2+ mobilization.  相似文献   

19.
20.
The effect of taurine (2-aminoethanesulphonic acid) on myocardial slow action potentials (APs) and accompanying contractions was examined in isolated perfused chick hearts and reaggregated cultured cells. Isoproterenol (ISO), histamine (HIS), or tetraethylammonium (TEA) induced slow APs and contractions in hearts whose fast Na+ channels had been inactivated by elevated K+. Taurine (10 mM) not only failed to induce slow APs, but actually decreased ISO (10(-8) M), HIS (10(-4) M), or TEA (10 mM) induced slow APs and contractions transiently (about 30s-2 min after the addition of taurine). The properties of the slow APs recovered to control levels by 7-13 min after the addition of the taurine; at this time, there was an increase in developed tension of the contraction accompanying the slow APs. These results suggest that the positive inotropic action of taurine is not mediated through an increase in the slow inward Ca2+ current. However, the transient depression of Ca2+-dependent slow APs by taurine probably explains the transient negative inotropic effect of taurine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号