首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In tobacco, as in other species, ethylene is produced in response to pollination. Although tobacco is a self-compatible species, it displays unilateral incongruity with other Nicotianaplants. Incongruous pollination also results in ethylene production, but this production differs depending on the pollen used and is related to the extent to which pollen tubes grow in the tobacco style. In the investigation reported here we followed the expression of the ACC synthase- and ACC oxidase-coding genes upon pollination of tobacco pistils and compared self-pollination with incongruous pollination. The pattern of expression of these genes also correlated with pollen-tube growth, although wounding alone cannot explain the results obtained. We also examined the expression of these genes upon pollination of immature tobacco pistils, in which different pollen tubes grew indistinctly inside the tobacco style and reached the ovary at the same rate. In this situation no significant differences in gene expression could be observed between the different pollinations. Ethephon, a substance that produces ethylene, could, in some cases, minimize the arrest of incongruous pollen tubes inside the style.  相似文献   

3.
Carnation petals, at a stage in which they are already producing ethylene, show a sigmoidal dependency of ethylene production on temperature within the range of 0 to 30°C. An Arrhenius plot of these data show a break atca. 22°C in the straight lines connecting the points. The activity of the ethylene-forming enzyme (EFE), measured bothin vitro, using isolated membranes, andin vivo, using petals pretreated with 1-aminocyclopropane-1-carboxylic acid (ACC), shows an exponential dependency on temperature within the same range. Arrhenius plots of EFE activity fail to show any discontinuity.In contrast, ACC synthase activity measuredin vitro shows the same sigmoidal dependency on temperature as that of the intact petals. We suggest, therefore, that ACC synthase activity is the rate-limiting step mediating the influence of temperature on ethylene biosynthesis by carnation petals over the range studied.  相似文献   

4.
Xiong AS  Yao QH  Peng RH  Li X  Han PL  Fan HQ 《Plant cell reports》2005,23(9):639-646
RNA interference (RNAi) is a potent trigger for specific gene silencing of expression in a number of organisms and is an efficient way of shutting down gene expression. 1-Aminocyclopropane-1-carboxylate (ACC) oxidase catalyzes the oxidation of ACC to ethylene, a plant growth regulator that plays an important role in the tomato ripening process. In this research, to produce double-stranded (ds)RNA of tomato ACC oxidase, we linked the sense and antisense configurations of DNA fragments with 1,002-bp or 7-nt artificially synthesized fragments, respectively, and then placed these under the control of a modified cauliflower mosaic virus 35S promoter. The dsRNA expression unit was successfully introduced into tomato cultivar Hezuo 906 by Agrobacterium tumefaciens-mediated transformation. Molecular analysis of 183 transgenic plants revealed that the dsRNA unit was integrated into the tomato genome. With respect to the construct with the 1,002-bp linker, the severity of phenotypes indicated that 72.3% of the transformed plants had non-RNA interference, about 18.1% had semi-RNA interference, and only 9.6% had full-RNA interference. However when the construct with the 7-nt linker was used for transformation, the results were 13.0%, 18.0%, and 69.0%, respectively, indicating that the short linker was more efficient in RNAi of transgenic tomato plants. When we applied this fast way of shutting down the ACC oxidase gene, transgenic tomato plants were produced that had fruit which released traces of ethylene and had a prolonged shelf life of more than 120 days. The RNA and protein analyses indicated that there was non-RNA interference, semi-RNA interference and full-RNA interference of ACC oxidase in the transgenic tomato plants.  相似文献   

5.
6.
Ethanol and acetaldehyde both prevent the formation of ethylene bysenescing cut carnation flowers. This is due to the almost complete inhibitionof the activity of 1-aminocyclopropane-carboxylic acid oxidase. Thesetreatmentsalso reduce the 1-aminocyclopropane-1-carboxylic acid content of the tissue andresult in a loss of protein. The protein content of treated flowers wassignificantly lower than that of control flowers, due to a general rather thanspecific loss of protein. This affects the metabolism of the flowers,preventingenzyme mediated reactions as well as cell growth and development. One enzymethat remained active was alcohol dehydrogenase, allowing for a constantshuttling between ethanol and acetaldehyde.  相似文献   

7.
The effects of 1,1-dimethyl-4-(phenylsulfonyl)semicarbazide (DPSS) on the in vitro activities of 1-aminocyclopropane-1-carboxylate (ACC) oxidase and ACC synthase isolated from senescing carnation petals were investigated. In contrast to a previous proposal, DPSS at 1 mM did not inhibit the in vitro activity of ACC oxidase. It was confirmed that DPSS does not inhibit ACC synthase activity. DPSS probably does not exert its inhibitory action on ethylene production by a direct action on ACC oxidase and ACC synthase, but by some unknown action.  相似文献   

8.
9.
10.
11.
Ethylene regulates entry into several types of plant developmental cell death and senescence programs besides mediating plant responses to biotic and abiotic stress. The response of cereals to conditions of drought includes loss of leaf function and premature onset of senescence in older leaves. In this study, ACC synthase ( ACS ) mutants, affecting the first step in ethylene biosynthesis, were isolated in maize and their effect on leaf function examined. Loss of ZmACS6 expression resulted in delayed leaf senescence under normal growth conditions and inhibited drought-induced senescence. Zmacs6 leaves continued to be photosynthetically active under both conditions indicating that leaf function was maintained. The delayed senescence phenotype associated with loss of ZmACS6 expression was complemented by exogenous ACC. Surprisingly, elevated levels of foliar chlorophyll, Rubisco, and soluble protein as well as improved leaf performance was observed for all Zmasc6 leaves, including young and fully expanded leaves which were far from initiating senescence. These observations suggest that ethylene may serve to regulate leaf performance throughout its lifespan as well as to determine the onset of natural senescence and mediate drought-induced senescence.  相似文献   

12.
13.
L-Vinylglycine (L-VG) is both a substrate for and a mechanism-based inhibitor of 1-aminocyclopropane-1-carboxylate (ACC) synthase. The ratio of the rate constants for catalytic conversion to alpha-ketobutyrate and ammonia to inactivation is 500/1. The crystal structure of the covalent adduct of the inactivated enzyme was determined at 2.25 Angstroms resolution. The active site contains an external aldimine of the adduct of L-VG with the pyridoxal 5'-phosphate cofactor. The side chain gamma-carbon of L-VG is covalently bound to the epsilon-amino group of Lys273. This species corresponds to one of the two alternatives proposed by Feng and Kirsch [Feng, L. and Kirsch, J.F. (2000) L-Vinylglycine is an alternative substrate as well as a mechanism-based inhibitor of 1-aminocyclopropane-1-carboxylate synthase. Biochemistry 39, 2436-2444] and presumably results from Michael addition to a vinylglycine ketimine intermediate.  相似文献   

14.
2-Aminooxyisobutyric acid (AOIB) has a partial structure of aminooxyacetic acid (AOA) in its whole structure, and resembles 2-aminoisobutyric acid (AIB) in their tetrahedral structures. Both AOA and AIB are inhibitors of ethylene biosynthesis; AOA inhibits the action of 1-aminocyclopropane-1-carboxylate (ACC) synthase and AIB inhibits that of ACC oxidase. The present study showed that AOIB inhibited the in vitro activities of both ACC synthase and ACC oxidase, which were synthesized heterologously in E. coli cells from corresponding carnation cDNAs, and the magnitudes of inhibition were similar to those caused by AOA and AIB; AOIB and AOA at 0.1 mM inhibited ACC synthase action by 75%, and AOIB and AIB at 10 mM inhibited ACC oxidase action by 16.3 and 22.5%, respectively. AOIB at 1 mM caused 91.5% reduction of maximum ethylene production rate as compared to the control in cut ‘Excerea’ carnation flowers undergoing senescence, thereby lengthening their vase life to 7 d from 3 d of the control flowers. The inhibition by AOIB was probably caused by its action resembling AOA, but not AIB. AOIB also extended significantly the vase life of cut flowers of ‘Pax’ carnation, and tended to do so in ‘Primero Mango’ carnation. The present findings suggest the potential of AOIB as a new preservative for carnations and other ornamentals in which ethylene plays a key role in the induction of senescence.  相似文献   

15.
16.
Experiments were carried out to evaluate the effect of glucose on ripening and ethylene biosynthesis in tomato fruit (Lycopersicon esculentum Mill.). Fruit at the light-red stage were vacuum infiltrated with glucose solutions post-harvest and changes in 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, ACC, ACC oxidase, and ethylene production monitored over time. ACC oxidase activity was also measured in pericarp discs from the same fruits that were treated either with glucose, fructose, mannose, or galactose. While control fruit displayed a typical peak of ethylene production, fruit treated with glucose did not. Glucose appeared to exert its effect on ethylene biosynthesis by suppressing ACC oxidase activity. Fructose, mannose, and galactose did not inhibit ACC oxidase activity in tomato pericarp discs. Glucose treatment inhibited ripening-associated colour development in whole fruit. The extent of inhibition of colour development was dependent upon the concentration of glucose. These results indicate that glucose may play an important role in ethylene-associated regulation of fruit ripening.  相似文献   

17.
18.
植物乙烯生物合成过程中活性氧的作用   总被引:1,自引:0,他引:1  
大量的研究结果表明,活性氧参与植物乙烯生物合成过程具有明显的普遍性,超氧阴离子自由基是参与乙烯生物合成过程的主要活性氧。近年来研究的焦点主要从乙烯生物合成的关键调控酶ACC合酶及ACC氧化酶的酶活性、酶动力学特性、酶蛋白空间结构、酶基因表达水平等方面来阐明活性氧调控植物乙烯生物合成的机制。最新的研究表明:植物在各种正常或应激的生长条件下首先诱导了活性氧产生水平的变化,活性氧在基因或蛋白质水平上影响ACC合酶和ACC氧化酶的活性水平,从而调节乙烯的生物合成。本文首次综述了活性氧影响植物乙烯生物合成过程的最新研究进展,并对活性氧在植物乙烯生物合成中具有诱导与抑制并存的“双重性”作用进行了探讨。  相似文献   

19.
康乃馨ACC氧化酶cDNA的克隆及其反义植物表达载体的构建   总被引:1,自引:0,他引:1  
以康乃馨(Dianthus caryophyllus L.)花瓣为材料,用改进的异硫氰酸胍一步法提取总RNA,根据已报道的康乃馨ACC氧化酶(1-aminocyclopropane-1-carboxylic acid oxidase,CO)基因的序列设计产合成一对引物,通过RT-PCR方法获得一约1.2kb特异片段,把该片段连接pGEM^(R)-Teasy vector上进行测序,其全长共1156bp,编码区915bp。共编码304个氨基酸残基,序列分析结果表明该序列与GenBankL35152中的康乃馨ACC氧化酶基因的cDNA序列完全相符,推断该基因在康乃馨种内可能是完全或高度保守的,随 后将此片段反向插入植物表达载体pBI121的35S启动子和NOS终止子之间,构建了一反义植物表达载体pBO;又把花特异表达启动子PchsA插入pBI121的HindⅢ Xbal位点构建中间载体pGHB,再把康乃馨ACC氧化酶基因反向插入中间载体pCHB的XbaI Satl位点构建成另一反义植物表达载体pCBO。  相似文献   

20.
The maize endosperm undergoes programmed cell death late in its development so that, with the exception of the aleurone layer, the tissue is dead by the time the kernel matures. Although ethylene is known to regulate the onset of endosperm cell death, the temporal and spatial control of the ethylene biosynthetic and perception machinery during maize endosperm development has not been examined. In this study, we report the isolation of the maize gene families for ACC synthase, ACC oxidase, the ethylene receptor, and EIN2 and EIL, which act downstream of the receptor. We show that ACC oxidase is expressed primarily in the endosperm, and only at low levels in the developing embryo late in its development. ACC synthase is expressed throughout endosperm development but, in contrast to ACC oxidase, it is transiently expressed to a significantly higher level in the developing embryo at a time that corresponds with the onset of endosperm cell death. Only two ethylene receptor gene families were identified in maize, in contrast to the five types previously identified in Arabidopsis. Members of both ethylene receptor families were expressed to substantially higher levels in the developing embryo than in the endosperm, as were members of the EIN2 and EIL gene families. These results suggest that the endosperm and embryo both contribute to the synthesis of ethylene, and they provide a basis for understanding why the developing endosperm is especially sensitive to ethylene-induced cell death while the embryo is protected.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by G. Jürgens  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号