首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Channelrhodospin-2 (ChR2), a light-sensitive ion channel, and its variants have emerged as new excitatory optogenetic tools not only in neuroscience, but also in other areas, including cardiac electrophysiology. An accurate quantitative model of ChR2 is necessary for in silico prediction of the response to optical stimulation in realistic tissue/organ settings. Such a model can guide the rational design of new ion channel functionality tailored to different cell types/tissues. Focusing on one of the most widely used ChR2 mutants (H134R) with enhanced current, we collected a comprehensive experimental data set of the response of this ion channel to different irradiances and voltages, and used these data to develop a model of ChR2 with empirically-derived voltage- and irradiance- dependence, where parameters were fine-tuned via simulated annealing optimization. This ChR2 model offers: 1) accurate inward rectification in the current-voltage response across irradiances; 2) empirically-derived voltage- and light-dependent kinetics (activation, deactivation and recovery from inactivation); and 3) accurate amplitude and morphology of the response across voltage and irradiance settings. Temperature-scaling factors (Q10) were derived and model kinetics was adjusted to physiological temperatures. Using optical action potential clamp, we experimentally validated model-predicted ChR2 behavior in guinea pig ventricular myocytes. The model was then incorporated in a variety of cardiac myocytes, including human ventricular, atrial and Purkinje cell models. We demonstrate the ability of ChR2 to trigger action potentials in human cardiomyocytes at relatively low light levels, as well as the differential response of these cells to light, with the Purkinje cells being most easily excitable and ventricular cells requiring the highest irradiance at all pulse durations. This new experimentally-validated ChR2 model will facilitate virtual experimentation in neural and cardiac optogenetics at the cell and organ level and provide guidance for the development of in vivo tools.  相似文献   

2.
Grubb MS  Burrone J 《PloS one》2010,5(10):e13761
The light-gated cation channel Channelrhodopsin-2 (ChR2) is a powerful and versatile tool for controlling neuronal activity. Currently available versions of ChR2 either distribute uniformly throughout the plasma membrane or are localised specifically to somatodendritic or synaptic domains. Localising ChR2 instead to the axon initial segment (AIS) could prove an extremely useful addition to the optogenetic repertoire, targeting the channel directly to the site of action potential initiation, and limiting depolarisation and associated calcium entry elsewhere in the neuron. Here, we describe a ChR2 construct that we localised specifically to the AIS by adding the ankyrinG-binding loop of voltage-gated sodium channels (Na(v)II-III) to its intracellular terminus. Expression of ChR2-YFP-Na(v)II-III did not significantly affect the passive or active electrical properties of cultured rat hippocampal neurons. However, the tiny ChR2 currents and small membrane depolarisations resulting from AIS targeting meant that optogenetic control of action potential firing with ChR2-YFP-Na(v)II-III was unsuccessful in baseline conditions. We did succeed in stimulating action potentials with light in some ChR2-YFP-Na(v)II-III-expressing neurons, but only when blocking KCNQ voltage-gated potassium channels. We discuss possible alternative approaches to obtaining precise control of neuronal spiking with AIS-targeted optogenetic constructs and propose potential uses for our ChR2-YFP-Na(v)II-III probe where subthreshold modulation of action potential initiation is desirable.  相似文献   

3.

Background

Malignant melanoma is an aggressive tumor of the skin and seems to be resistant to current therapeutic approaches. Melanocytic transformation is thought to occur by sequential accumulation of genetic and molecular alterations able to activate the Ras/Raf/MEK/ERK (MAPK) and/or the PI3K/AKT (AKT) signalling pathways. Specifically, mutations of B-RAF activate MAPK pathway resulting in cell cycle progression and apoptosis prevention. According to these findings, MAPK and AKT pathways may represent promising therapeutic targets for an otherwise devastating disease.

Result

Here we show a computational model able to simulate the main biochemical and metabolic interactions in the PI3K/AKT and MAPK pathways potentially involved in melanoma development. Overall, this computational approach may accelerate the drug discovery process and encourages the identification of novel pathway activators with consequent development of novel antioncogenic compounds to overcome tumor cell resistance to conventional therapeutic agents. The source code of the various versions of the model are available as S1 Archive.  相似文献   

4.
Electrically excitable cells are important in the normal functioning and in the pathophysiology of many biological processes. These cells are typically embedded in dense, heterogeneous tissues, rendering them difficult to target selectively with conventional electrical stimulation methods. The algal protein Channelrhodopsin-2 offers a new and promising solution by permitting minimally invasive, genetically targeted and temporally precise photostimulation. Here we explore technological issues relevant to the temporal precision, spatial targeting and physiological implementation of ChR2, in the context of other photostimulation approaches to optical control of excitable cells.  相似文献   

5.
Channelrhodopsin-2 (ChR2) from the green alga Chlamydomonas reinhardtii functions as a light-gated cation channel that has been developed as an optogenetic tool to stimulate specific nerve cells in animals and control their behavior by illumination. The molecular mechanism of ChR2 has been extensively studied by a variety of spectroscopic methods, including light-induced difference Fourier transform infrared (FTIR) spectroscopy, which is sensitive to structural changes in the protein upon light activation. An atomic structure of channelrhodopsin was recently determined by x-ray crystallography using a chimera of channelrhodopsin-1 (ChR1) and ChR2. Electrophysiological studies have shown that ChR1/ChR2 chimeras are less desensitized upon continuous illumination than native ChR2, implying that there are some structural differences between ChR2 and chimeras. In this study, we applied light-induced difference FTIR spectroscopy to ChR2 and ChR1/ChR2 chimeras to determine the molecular basis underlying these functional differences. Upon continuous illumination, ChR1/ChR2 chimeras exhibited structural changes distinct from those in ChR2. In particular, the protonation state of a glutamate residue, Glu-129 (Glu-90 in ChR2 numbering), in the ChR chimeras is not changed as dramatically as in ChR2. Moreover, using mutants stabilizing particular photointermediates as well as time-resolved measurements, we identified some differences between the major photointermediates of ChR2 and ChR1/ChR2 chimeras. Taken together, our data indicate that the gating and desensitizing processes in ChR1/ChR2 chimeras are different from those in ChR2 and that these differences should be considered in the rational design of new optogenetic tools based on channelrhodopsins.  相似文献   

6.
While functional imaging is widely used in studies of the brain, how well the hemodynamic signal represents the underlying neural activity is still unclear. And there is a debate on whether hemodynamic signal is more tightly related to synaptic activity or action potentials. This study intends to address these questions by examining neurovascular coupling driven by pyramidal cells in the motor cortex of rats. Pyramidal cells in the motor cortex of rats were selectively transduced with the light sensitive cation channel channelrhodopsin-2 (ChR2). Electrophysiological recordings and optical intrinsic signal imaging were performed simultaneously and synchronously to capture the neural activity and hemodynamics induced by optical stimulation of ChR2-expressing pyramidal cells. Our results indicate that both synaptic activity (local field potential, LFP) and action potentials (multi-unit activity, MUA) are tightly related to hemodynamic signals. While LFPs in γ band are better in predicting hemodynamic signals elicited by short stimuli, MUA has better predictions to hemodynamic signals elicited by long stimuli. Our results also indicate that strong nonlinearity exists in neurovascular coupling.  相似文献   

7.
Over the past few years, the light-gated cation channel Channelrhodopsin-2 (ChR2) has seen a remarkable diversity of applications in neuroscience. However, commonly used wide-field illumination provides poor spatial selectivity for cell stimulation. We explored the potential of focal laser illumination to map photocurrents of individual neurons in sparsely transfected hippocampal slice cultures. Interestingly, the best spatial resolution of photocurrent induction was obtained at the lowest laser power. By adjusting the light intensity to a neuron's spike threshold, we were able to trigger action potentials with a spatial selectivity of less than 30 microm. Experiments with dissociated hippocampal cells suggested that the main factor limiting the spatial resolution was ChR2 current density rather than scattering of the excitation light. We conclude that subcellular resolution can be achieved only in cells with a high ChR2 expression level and that future improved variants of ChR2 are likely to extend the spatial resolution of photocurrent induction to the level of single dendrites.  相似文献   

8.
Channelrhodopsin-2 (ChR2) is a light-activated nonselective cation channel that is found in the eyespot of the unicellular green alga Chlamydomonas reinhardtii. Despite the wide employment of this protein to control the membrane potential of excitable membranes, the molecular determinants that define the unique ion conductance properties of this protein are not well understood. To elucidate the cation permeability pathway of ion conductance, we performed cysteine scanning mutagenesis of transmembrane domain three followed by labeling with methanethiosulfonate derivatives. An analysis of our experimental results as modeled onto the crystal structure of the C1C2 chimera demonstrate that the ion permeation pathway includes residues on one face of transmembrane domain three at the extracellular side of the channel that face the center of ChR2. Furthermore, we examined the role of a residue at the extracellular side of transmembrane domain three in ion conductance. We show that ion conductance is mediated, in part, by hydrogen bonding at the extracellular side of transmembrane domain three. These results provide a starting point for examining the cation permeability pathway for ChR2.  相似文献   

9.
Migraine and its transformation to chronic migraine are healthcare burdens in need of improved treatment options. We seek to define how neural immune signaling modulates the susceptibility to migraine, modeled in vitro using spreading depression (SD), as a means to develop novel therapeutic targets for episodic and chronic migraine. SD is the likely cause of migraine aura and migraine pain. It is a paroxysmal loss of neuronal function triggered by initially increased neuronal activity, which slowly propagates within susceptible brain regions. Normal brain function is exquisitely sensitive to, and relies on, coincident low-level immune signaling. Thus, neural immune signaling likely affects electrical activity of SD, and therefore migraine. Pain perception studies of SD in whole animals are fraught with difficulties, but whole animals are well suited to examine systems biology aspects of migraine since SD activates trigeminal nociceptive pathways. However, whole animal studies alone cannot be used to decipher the cellular and neural circuit mechanisms of SD. Instead, in vitro preparations where environmental conditions can be controlled are necessary. Here, it is important to recognize limitations of acute slices and distinct advantages of hippocampal slice cultures. Acute brain slices cannot reveal subtle changes in immune signaling since preparing the slices alone triggers: pro-inflammatory changes that last days, epileptiform behavior due to high levels of oxygen tension needed to vitalize the slices, and irreversible cell injury at anoxic slice centers. In contrast, we examine immune signaling in mature hippocampal slice cultures since the cultures closely parallel their in vivo counterpart with mature trisynaptic function; show quiescent astrocytes, microglia, and cytokine levels; and SD is easily induced in an unanesthetized preparation. Furthermore, the slices are long-lived and SD can be induced on consecutive days without injury, making this preparation the sole means to-date capable of modeling the neuroimmune consequences of chronic SD, and thus perhaps chronic migraine. We use electrophysiological techniques and non-invasive imaging to measure neuronal cell and circuit functions coincident with SD. Neural immune gene expression variables are measured with qPCR screening, qPCR arrays, and, importantly, use of cDNA preamplification for detection of ultra-low level targets such as interferon-gamma using whole, regional, or specific cell enhanced (via laser dissection microscopy) sampling. Cytokine cascade signaling is further assessed with multiplexed phosphoprotein related targets with gene expression and phosphoprotein changes confirmed via cell-specific immunostaining. Pharmacological and siRNA strategies are used to mimic and modulate SD immune signaling.  相似文献   

10.
Optogenetic approaches using light-activated proteins like Channelrhodopsin-2 (ChR2) enable investigating the function of populations of neurons in live Caenorhabditis elegans (and other) animals, as ChR2 expression can be targeted to these cells using specific promoters. Sub-populations of these neurons, or even single cells, can be further addressed by restricting the illumination to the cell of interest. However, this is technically demanding, particularly in free moving animals. Thus, it would be helpful if expression of ChR2 could be restricted to single neurons or neuron pairs, as even wide-field illumination would photostimulate only this particular cell. To this end we adopted the use of Cre or FLP recombinases and conditional ChR2 expression at the intersection of two promoter expression domains, i.e. in the cell of interest only. Success of this method depends on precise knowledge of the individual promoters' expression patterns and on relative expression levels of recombinase and ChR2. A bicistronic expression cassette with GFP helps to identify the correct expression pattern. Here we show specific expression in the AVA reverse command neurons and the aversive polymodal sensory ASH neurons. This approach shall enable to generate strains for optogenetic manipulation of each of the 302 C. elegans neurons. This may eventually allow to model the C. elegans nervous system in its entirety, based on functional data for each neuron.  相似文献   

11.
Channelrhodopsins (ChRs) are light-gated cation channels. After blue-light excitation, the protein undergoes a photocycle with different intermediates. Here, we have recorded transient absorbance changes of ChR2 from Chlamydomonas reinhardtii in the visible and infrared regions with nanosecond time resolution, the latter being accomplished using tunable quantum cascade lasers. Because proton transfer reactions play a key role in channel gating, we determined vibrational as well as kinetic isotope effects (VIEs and KIEs) of carboxylic groups of various key aspartic and glutamic acid residues by monitoring their C=O stretching vibrations in H2O and in D2O. D156 exhibits a substantial KIE (>2) in its deprotonation and reprotonation, which substantiates its role as the internal proton donor to the retinal Schiff base. The unusual VIE of D156, upshifted from 1736 cm−1 to 1738 cm−1 in D2O, was scrutinized by studying the D156E variant. The C=O stretch of E156 shifted down by 8 cm−1 in D2O, providing evidence for the accessibility of the carboxylic group. The C=O stretching band of E90 exhibits a VIE of 9 cm−1 and a KIE of ∼2 for the de- and the reprotonation reactions during the lifetime of the late desensitized state. The KIE of 1 determined in the time range from 20 ns to 5 ms is incompatible with early deprotonation of E90.  相似文献   

12.
The rodent whisker-barrel system has been an ideal model for studying somatosensory representations in the cortex. However, it remains a challenge to experimentally stimulate whiskers with a given pattern under spatiotemporal precision. Recently the optogenetic manipulation of neuronal activity has made possible the analysis of the neuronal network with precise spatiotemporal resolution. Here we identified the selective expression of channelrhodopsin-2 (ChR2), an algal light-driven cation channel, in the large mechanoreceptive neurons in the trigeminal ganglion (TG) as well as their peripheral nerve endings innervating the whisker follicles of a transgenic rat. The spatiotemporal pattern of whisker irradiation thus produced a barrel-cortical response with a specific spatiotemporal pattern as evidenced by electrophysiological and functional MRI (fMRI) studies. Our methods of generating an optogenetic tactile pattern (OTP) can be expected to facilitate studies on how the spatiotemporal pattern of touch is represented in the somatosensory cortex, as Hubel and Wiesel did in the visual cortex.  相似文献   

13.
Abstract

An ab initio model to study oxygen ordering in the high temperature superconductor YBa2Cu3Oz is presented. The phase diagram computed with this model contains several ordered structures and is in excellent agreement with the known experimental information. At high temperature, an orthorhombic structure transforms by a second order reaction into a tetragonal structure. At low temperature, a branching algorithm generates an infinity of ordered structures all consisting of long O–Cu–O chains. By looking at the kinetic evolution of quenched samples in a Monte Carlo simulation it was possible to clarify how annealing of the material can influence its superconducting transition temperature.  相似文献   

14.
15.
Computational models using metabolic reconstructions for in silico simulation of metabolic disorders such as type 2 diabetes mellitus (T2DM) can provide a better understanding of disease pathophysiology and avoid high experimentation costs. There is a limited amount of computational work, using metabolic reconstructions, performed in this field for the better understanding of T2DM. In this study, a new algorithm for generating tissue-specific metabolic models is presented, along with the resulting multi-confidence level (MCL) multi-tissue model. The effect of T2DM on liver, muscle, and fat in MKR mice was first studied by microarray analysis and subsequently the changes in gene expression of frank T2DM MKR mice versus healthy mice were applied to the multi-tissue model to test the effect. Using the first multi-tissue genome-scale model of all metabolic pathways in T2DM, we found out that branched-chain amino acids'' degradation and fatty acids oxidation pathway is downregulated in T2DM MKR mice. Microarray data showed low expression of genes in MKR mice versus healthy mice in the degradation of branched-chain amino acids and fatty-acid oxidation pathways. In addition, the flux balance analysis using the MCL multi-tissue model showed that the degradation pathways of branched-chain amino acid and fatty acid oxidation were significantly downregulated in MKR mice versus healthy mice. Validation of the model was performed using data derived from the literature regarding T2DM. Microarray data was used in conjunction with the model to predict fluxes of various other metabolic pathways in the T2DM mouse model and alterations in a number of pathways were detected. The Type 2 Diabetes MCL multi-tissue model may explain the high level of branched-chain amino acids and free fatty acids in plasma of Type 2 Diabetic subjects from a metabolic fluxes perspective.  相似文献   

16.
Zinc is released from glutamatergic (zincergic) neuron terminals in the brain, followed by the increase in Zn2+ concentration in the intracellular (cytosol) compartment as well as that in the extracellular compartment. Intracellular Zn2+ concentration mainly increases through calcium-permeable channels and serves as Zn2+ signal as well as extracellular Zn2+ concentration. Hippocampal Zn2+ signaling may participate in synaptic plasticity such as long-term potentiation and cognitive function. On the other hand, subclinical zinc deficiency is common in the old who might be more susceptible to depression. Zinc deficiency causes abnormal glucocorticoid secretion and increases depression-like behavior in animals. Neuropsychological symptoms are observed prior to the decrease in Zn2+ signal in the hippocampus under zinc deficiency. This paper summarizes that hippocampal Zn2+ signaling serves to maintain healthy brain and that glucocorticoid signaling, which is responsive to zinc homeostasis in the living body, is linked to the pathophysiology of depression.  相似文献   

17.
leukotriene B4 receptors BLT1 and BLT2 are promising targets for the treatment of allergic and inflammatory diseases. However, no working model of ligand binding to either of these receptors has been developed so far. Under the assumption that homologous receptors bind their ligands in a similar way, computational modeling of agonist binding to BLT1 and BLT2 was performed using fully flexible docking in Galaxy7TM. For both receptors, the carboxyl group of the ligand forms a salt bridge with an arginine residue, while the tail hydroxyl groups form hydrogen bonds with three amino acid residues. The differential specificity of ligands to BLT1 and BLT2 is explained by the replacement of histidine with tyrosine. In BLT1, the histidine residue binds the 5-OH group of the ligand, while the tyrosine residue in BLT2 repels it. The presented models are in agreement with experimental data and may be useful for developing new BLT1- and BLT2-targeted drugs.  相似文献   

18.
19.
Most tumors arise from epithelial tissues, such as mammary glands and lobules, and their initiation is associated with the disruption of a finely defined epithelial architecture. Progression from intraductal to invasive tumors is related to genetic mutations that occur at a subcellular level but manifest themselves as functional and morphological changes at the cellular and tissue scales, respectively. Elevated proliferation and loss of epithelial polarization are the two most noticeable changes in cell phenotypes during this process. As a result, many three-dimensional cultures of tumorigenic clones show highly aberrant morphologies when compared to regular epithelial monolayers enclosing the hollow lumen (acini). In order to shed light on phenotypic changes associated with tumor cells, we applied the bio-mechanical IBCell model of normal epithelial morphogenesis quantitatively matched to data acquired from the non-tumorigenic human mammary cell line, MCF10A. We then used a high-throughput simulation study to reveal how modifications in model parameters influence changes in the simulated architecture. Three parameters have been considered in our study, which define cell sensitivity to proliferative, apoptotic and cell-ECM adhesive cues. By mapping experimental morphologies of four MCF10A-derived cell lines carrying different oncogenic mutations onto the model parameter space, we identified changes in cellular processes potentially underlying structural modifications of these mutants. As a case study, we focused on MCF10A cells expressing an oncogenic mutant HER2-YVMA to quantitatively assess changes in cell doubling time, cell apoptotic rate, and cell sensitivity to ECM accumulation when compared to the parental non-tumorigenic cell line. By mapping in vitro mutant morphologies onto in silico ones we have generated a means of linking the morphological and molecular scales via computational modeling. Thus, IBCell in combination with 3D acini cultures can form a computational/experimental platform for suggesting the relationship between the histopathology of neoplastic lesions and their underlying molecular defects.  相似文献   

20.
Reciprocating exchange with other humans requires individuals to infer the intentions of their partners. Despite the importance of this ability in healthy cognition and its impact in disease, the dimensions employed and computations involved in such inferences are not clear. We used a computational theory-of-mind model to classify styles of interaction in 195 pairs of subjects playing a multi-round economic exchange game. This classification produces an estimate of a subject''s depth-of-thought in the game (low, medium, high), a parameter that governs the richness of the models they build of their partner. Subjects in each category showed distinct neural correlates of learning signals associated with different depths-of-thought. The model also detected differences in depth-of-thought between two groups of healthy subjects: one playing patients with psychiatric disease and the other playing healthy controls. The neural response categories identified by this computational characterization of theory-of-mind may yield objective biomarkers useful in the identification and characterization of pathologies that perturb the capacity to model and interact with other humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号