首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reaction center triplet states in photosystem I and photosystem II   总被引:3,自引:0,他引:3  
A photosystem I (PS I) particle has been prepared by lithium dodecyl sulfate digestion which lacks the acceptor X, and iron-sulfur centers B and A. Illumination of these particles at liquid helium temperature results in the appearance of a light-induced spin-polarized triplet signal observed by EPR. This signal is attributed to the triplet state of P-700, the primary donor, formed by recombination of the light induced radical pair P-700+ A1- (where A1 is the intermediate acceptor). Formation of the triplet does not occur if P-700 is oxidized or if A1 is reduced, prior to the illumination. A comparison of the P-700 triplet with that of P-680, the primary donor of Photosystem II, shows several differences. (1) The P-680 triplet is 1.5 mT (15 G) wider than the P-700 triplet. This is reflected by the zero-field splitting parameters, which indicate that P-700 is a slightly larger species than P-680. The zero-field splitting parameters do not indicate that either P-700 or P-680 are dimeric. (2) The P-700 triplet is induced by red and far-red light, while the P-680 triplet is induced only by red light. (3) The temperature dependences of the P-700 triplet and the P-680 triplet are different.  相似文献   

2.
3.
A wide range of values for the photosystem II to photosystem I stoichiometry have been reported. It is likely that some of this variation is due to measurement artifacts, which are discussed. Careful measurements of photosystem II reactions by absorption change at 325 nm, and flash yields of oxygen evolution, of protons from oxidation of water and of reduction of dichloroindophenol give equivalent results. Stoichiometries other than 1:1 are routinely found, and they vary with growth conditions as well as plant type. Two atrazine binding sites are found for every photosystem II reaction center that is active in oxygen evolution.  相似文献   

4.
A model for the photochemical apparatus of photosynthesis is presented which accounts for the fluorescence properties of Photosystem II and Photosystem I as well as energy transfer between the two photosystems. The model was tested by measuring at - 196 degrees C fluorescence induction curves at 690 and 730 nm in the absence and presence of 5mMMgCl2 which presumably changes the distrubution of excitation energy between the two photosystems. The equations describing the fluorescence properties involve terms for the distribution of absorbed quanta, alpha, being the fraction distributed to Photosystem I, and beta, the fraction to Photosystem II to Photosystem I, KT(II yields I). The data, analyzed within the context of the model, permit a direct comparison of alpha and kt(II yields I) in the absence (minus) and presence (+) of Mg-2+ :alpha minus/alpha-+ equals 1.2 and k-minus t)II yields I)/K-+T(II yields I) equal to 1.9. If the criterion that alpha + beta equal to 1 is applied absolute values can be calculated: in the presence of Mg-2+, alpha-+ equal to 0.27 and the yield of energy transfer, phi-+ t(II yields I) varied the presence of Mg-2+, alpha-+ equal to 0.27 and the yield of energy transfer, phi-+ t(II yields I) varied from 0.065 when the Photosystem II reaction centers were all open to 0.23 when they were closed. In the absence of Mg-2+, alpha-minus equal to 0.32 and phi t(II yields I) varied from 0.12 to 0.28. The data were also analyzed assuming that two types of energy transfer could be distinguished; a transfer from the light-harvesting chlorophyll of Photosystem II to Photosystem I, kt(II yields I), and a transfer from the reaction centers of Photosystem II to Photosystem I, kt(II yields I). In that case alpha-minus/alpha+ equal to 1.3, k-minus t(II yields I)/k+ t(II yields I)equal to 1.3 and k-minus t(II yields I) equal to 3.0. It was concluded, however, that both of these types of energy transfer are different manifestations of a single energy transfer process.  相似文献   

5.
Rates of photooxidation of P-700 by green (560 nm) or blue (438 nm) light were measured in whole cells of porphyridium cruentum which had been frozen to -196 degrees C under conditions in which the Photosystem II reaction centers were either all open (dark adapted cells) or all closed (preilluminated cells). The rate of photooxidation of P-700 at -196 degrees C by green actinic light was approx. 80% faster in the preilluminated cells than in the dark-adapted cells. With blue actinic light, the rates of P-700 photooxidation in the dark-adapted and preilluminated cells were not significantly different. These results are in excellent agreement with predictions based on our previous estimates of energy distribution in the photosynthetic apparatus of Porphyridium cruentum including the yield of energy transfer from Photosystem II to Photosystem I determined from low temperature fluorescence measurements.  相似文献   

6.
The effects of UV radiation on the low temperature fluorescenceand primary photochemistry of PSII and PSI of spinach chloroplastswere studied. Fluorescence induction curves at –196°Cwere measured at 695 nm for PSII fluorescence and at 730 nmfor PSI fluorescence to determine both the initial Fo and finalFM levels. The primary photochemistry of PSII was measured asthe rate of photoreduction of C-550 at – 196°C, thatof PSI as the rate of photooxidation of P700 at –196°C.The results were analyzed in terms of a model for the photosyntheticapparatus which accounts for the yields of fluorescence andprimary photochemistry. According to this analysis UV radiationincreases nonradiative decay processes at the reaction centerchlorophyll of PSII. However, the effect of UV radiation isnot uniform throughout the sample during irradiation so thataccount must be taken of the fraction of PSII reaction centerswhich have been irradiated at any given time. UV radiation alsoinactivates P700 and causes a slight increase in nonradiativedecay in the antenna chlorophyll of PSI. All fluorescence ofvariable yield, FV = FM–Fo, at 730 nm is due to energytransfer from PSII to PSI so that the sensitivity of Fv to UVradiation is the same at 730 and 695 nm. 1Present address: Department of Biology, Faculty of Science,Toho University, Narashino, Chiba 275, Japan. 2Present address: Central Research Laboratories, Fuji PhotoFilm Co., Ltd., 105 Mizonuma, Asaka-Shi, Saitama 351, Japan. (Received September 10, 1975; )  相似文献   

7.
Photoinhibition of photosystem I   总被引:1,自引:0,他引:1  
The photoinhibition of Photosystem I (PSI) drew less attention compared with that of Photosystem II (PSII). This could be ascribed to several reasons, e.g. limited combinations of plant species and environmental conditions that cause PSI photoinhibition, the non-regulatory aspect of PSI photoinhibition, and methodological difficulty to determine the accurate activity of PSI under stress conditions. However, the photoinhibition of PSI could be more dangerous than that of PSII because of the very slow recovery rate of PSI. This article is intended to introduce such characteristics of PSI photoinhibition with special emphasis on the relationship between two photosystems as well as the protective mechanism of PSI in vivo. Although the photoinhibition of PSI could be induced only in specific conditions and specific plant species in intact leaves, PSI itself is quite susceptible to photoinhibition in isolated thylakoid membranes. PSI seems to be well protected from photoinhibition in vivo in many plant species and many environmental conditions. This is quite understandable because photoinhibition of PSI is not only irreversible but also the potential cause of many secondary damages. This point would be different from the case of PSII photoinhibition, which could be regarded as one of the regulatory mechanisms under stressed as well as non-stressed conditions.  相似文献   

8.
Improving Rubisco catalysis is considered a promising way to enhance C3-photosynthesis and photosynthetic water use efficiency (WUE) provided the introduced changes have little or no impact on other processes affecting photosynthesis such as leaf photochemistry or leaf CO2 diffusion conductances. However, the extent to which the factors affecting photosynthetic capacity are co-regulated is unclear. The aim of the present study was to characterize the photochemistry and CO2 transport processes in the leaves of three transplantomic tobacco genotypes expressing hybrid Rubisco isoforms comprising different Flaveria L-subunits that show variations in catalysis and differing trade-offs between the amount of Rubisco and its activation state. Stomatal conductance (g s) in each transplantomic tobacco line matched wild-type, while their photochemistry showed co-regulation with the variations in Rubisco catalysis. A tight co-regulation was observed between Rubisco activity and mesophyll conductance (g m) that was independent of g s thus producing plants with varying g m/g s ratios. Since the g m/g s ratio has been shown to positively correlate with intrinsic WUE, the present results suggest that altering photosynthesis by modifying Rubisco catalysis may also be useful for targeting WUE.  相似文献   

9.
Photoinhibition of photosystem I   总被引:2,自引:0,他引:2  
Scheller HV  Haldrup A 《Planta》2005,221(1):5-8
  相似文献   

10.
The abundance of photosystem II in chloroplast thylakoid membranes has been a contentious issue because different techniques give quite different estimates of photosystem II titer. This discrepancy led in turn to disagreements regarding the stoichiometry of photosystem II to photosystem I in these membranes. We believe that the discrepancy in photosystem II quantitation is resolved by evidence which shows that a large population of photosystem II centers with negligible turnover rates are present in isolated thylakoid membranes as well as in normally developed leaves of healthy plants.  相似文献   

11.
Arthur C. Ley  Warren L. Butler 《BBA》1977,462(2):290-294
Rates of photooxidation of P-700 by green (560 nm) or blue (438 nm) light were measured in whole cells of Porphyridium cruentum which had been frozen to ?196 °C under conditions in which the Photosystem II reaction centers were either all open (dark adapted cells) or all closed (preilluminated cells). The rate of photooxidation of P-700 at ?196 °C by green actinic light was approx. 80% faster in the preilluminated cells than in the dark-adapted cells. With blue actinic light, the rates of P-700 photooxidation in the dark-adapted and preilluminated cells were not significantly different. These results are in excellent agreement with predictions based on our previous estimates of energy distribution in the photosynthetic apparatus of Porphyridium cruentum including the yield of energy transfer from Photosystem II to Photosystem I determined from low temperature fluorescence measurements.  相似文献   

12.
K. Satoh  R. Strasser  W.L. Butler 《BBA》1976,440(2):337-345
Photosystem I activity of Tris-washed chloroplasts was measured at room temperature as the rate of photoreduction of NADP and as the rate of oxygen uptake mediated by methyl viologen in both cases using dichlorophenolindophenol plus ascorbate as the source of electrons for Photosystem I. With both assay systems the rate of electron transport by Photosystem I was stimulated approx. 20 % by the addition of 3-(3,4-dichlorophenyl)-1, 1-dimethylurea which caused the Photosystem II reaction centers to close. Photosystem I activity of chloroplasts was measured at low temperature as the rate of photooxidation of P-700. Chloroplasts suspended in the presence of hydroxylamine and 3-(3,4-dichlorophenyl)-1, 1-dimethylurea were frozen to ?196 °C after adaptation to darkness or after a preillumination at room temperature. The Photosystem II reaction centers of the frozen dark-adapted sample were all open; those of the preilluminated sample were all closed. The rate of photooxidation of P-700 at ?196 °C with the preilluminated sample was approx. 25 % faster than with the dark-adapted sample. We conclude from both the room temperature and the low temperature experiments that there is greater energy transfer from Photosystem II to Photosystem I when the Photosystem II reaction centers are closed and that these results are a direct demonstration of spillover.  相似文献   

13.
A photosystem II (PSII) core complex lacking the internal antenna CP43 protein was isolated from the photosystem II of Synechocystis PCC6803, which lacks photosystem I (PSI). CP47-RC and reaction centre (RCII) complexes were also obtained in a single procedure by direct solubilization of whole thylakoid membranes. The CP47-RC subcore complex was characterized by SDS/PAGE, immunoblotting, MALDI MS, visible and fluorescence spectroscopy, and absorption detected magnetic resonance. The purity and functionality of RCII was also assayed. These preparations may be useful for mutational analysis of PSII RC and CP47-RC in studying primary reactions of oxygenic photosynthesis.  相似文献   

14.
Summary— The molecular organization of the thylakoids of Cryptomonas rufescens was studied by immunoelectron microscopy employing antibodies against photosystem (PS)-I and two PS-II antenna proteins. The PS-I complex and the 19-kDa chlorophyll a/c light-harvesting (LH) protein are both localized along the length of the thylakoid membranes. The external membranes of the paired thylakoids are enriched in PS-I whereas the chlorophyll a/c LH protein is more concentrated in the internal or appressed membranes. However, unlike the situation in higher plants and Chlamydomonas, there is not a marked asymmetry in the concentration of PS-I and chorophyll a/c LH protein in the two types of membranes. Double labelling studies of sections and isolated PE-PS-II particles with anti-phycoerythrin and anti-LH confirmed that phycoerythrin is localized in the thylakoid lumen and that this pigment exists in two forms, a fraction closely associated with the thylakoid membranes and another fraction free in the lumen. These results confirm the uniqueness of cryptomonad thylakoids.  相似文献   

15.
Cells of the cyanobacterium Synechococcus 6301 were grown in yellow light absorbed primarily by the phycobilisome (PBS) light-harvesting antenna of photosystem II (PS II), and in red light absorbed primarily by chlorophyll and, therefore, by photosystem I (PS I). Chromatic acclimation of the cells produced a higher phycocyanin/chlorophyll ratio and higher PBS-PS II/PS I ratio in cells grown under PS I-light. State 1-state 2 transitions were demonstrated as changes in the yield of chlorophyll fluorescence in both cell types. The amplitude of state transitions was substantially lower in the PS II-light grown cells, suggesting a specific attenuation of fluorescence yield by a superimposed non-photochemical quenching of excitation. 77 K fluorescence emission spectra of each cell type in state 1 and in state 2 suggested that state transitions regulate excitation energy transfer from the phycobilisome antenna to the reaction centre of PS II and are distinct from photosystem stoichiometry adjustments. The kinetics of photosystem stoichiometry adjustment and the kinetics of the appearance of the non-photochemical quenching process were measured upon switching PS I-light grown cells to PS II-light, and vice versa. Photosystem stoichiometry adjustment was complete within about 48 h, while the non-photochemical quenching occurred within about 25 h. It is proposed that there are at least three distinct phenomena exerting specific effects on the rate of light absorption and light utilization by the two photoreactions: state transitions; photosystem stoichiometry adjustment; and non-photochemical excitation quenching. The relationship between these three distinct processes is discussed.Abbreviations Chl chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - F relative fluorescence intensity at emission wavelength nm - F o fluorescence intensity when all PS II traps are open - light 1 light absorbed preferentially by PS I - light 2 light absorbed preferentially by PS II - PBS phycobilisome - PS photosystem  相似文献   

16.
With the aim to specifically study the molecular mechanisms behind photoinhibition of photosystem I, stacked spinach (Spinacia oleracea) thylakoids were irradiated at 4 degrees C with far-red light (>715 nm) exciting photosystem I, but not photosystem II. Selective excitation of photosystem I by far-red light for 130 min resulted in a 40% inactivation of photosystem I. It is surprising that this treatment also caused up to 90% damage to photosystem II. This suggests that active oxygen produced at the reducing side of photosystem I is highly damaging to photosystem II. Only a small pool of the D1-protein was degraded. However, most of the D1-protein was modified to a slightly higher molecular mass, indicative of a damage-induced conformational change. The far-red illumination was also performed using destacked and randomized thylakoids in which the distance between the photosystems is shorter. Upon 130 min of illumination, photosystem I showed an approximate 40% inactivation as in stacked thylakoids. In contrast, photosystem II only showed 40% inactivation in destacked and randomized thylakoids, less than one-half of the inactivation observed using stacked thylakoids. In accordance with this, photosystem II, but not photosystem I is more protected from photoinhibition in destacked thylakoids. Addition of active oxygen scavengers during the far-red photosystem I illumination demonstrated superoxide to be a major cause of damage to photosystem I, whereas photosystem II was damaged mainly by superoxide and hydrogen peroxide.  相似文献   

17.
This article presents an investigation of the energy migration dynamics in intact cells of the unicellular photosynthetic cryptophyte Chroomonas CCMP270 by steady-state and time-resolved fluorescence measurements. By kinetic modeling of the fluorescence data on chlorophyll and phycocyanin 645 excitation (at 400 and 582 nm respectively), it has been possible to show the excited state energy distribution in the photosynthetic antenna of this alga. Excitation energy from phycocyanin 645 is distributed nearly equally between photosystem I and photosystem II with very high efficiency on a 100-ps timescale. The excitation energy trapping times for both photosystem I (∼30 ps) and photosystem I (200 and ∼540 ps) correspond well to those obtained from experiments on isolated photosystems. The results are compared with previous results for another cryptophyte species, Rhodomonas CS24, and suggest a similar membrane organization for the cryptophytes with the phycobiliproteins tightly packed in the thylakoid lumen around the periphery of the photosystems.  相似文献   

18.
1. 3,3'-Diaminobenzidine was shown to serve as an electron donor to photosystem 1 in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. In Tris-treated chloroplasts diaminobenzidine serves as an electron donor to photosystem 1 and to photosystem 2; the latter is sensitive to 3-(3,4-dichlorophenyl)-1,1-dimethylurea. 2. Addition of diaminobenzidine to Tris-treated chloroplasts causes an increase in fluorescence yield. 3. Diaminobenzidine-dependent electron transport mediated by photosystem 2 is coupled to synthesis of ATP even in the absence of an electron acceptor. This phosphorylation which is presumably supported by cyclic electron flow, is sensitive to 3-(3,4-dichlorophenyl)-1,1-dimethylurea. 4. Diaminobenzidine-dependent ATP formation, in Tris-treated chloroplasts exhibits the red-drop phenomenon. 5. The diaminobenzidine-induced cyclic photophosphorylation (mediated by photosystem 2) is resistant to a large extent to KCN-treatment which is known to inhibit reactions catalyzed by photosystem 1. On the other hand ATP formation supported by electron transport from diaminobenzidine to methyl viologen [in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea] is largely inhibited by KCN-treatment. This observation suggests that there are two coupling sites of ATP formation, one catalyzed by diaminobenzidine as a donor to photosystem 1 (in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea), and the other supported by diaminobenzidine which acts both as a donor to photosystem 2 (in Tris-treated chloroplasts) and as an acceptor (in its oxidized form) from a carrier located between the two photosystems.  相似文献   

19.
The fast fluorescence decay kinetics of two photosynthetic mutants of corn (Zea mays) have been compared with those of normal corn. The fluorescence of normal corn can be resolved into three exponential decay components of lifetime 900–1500 ps (slow), 300–500 ps (middle) and 50–120 ps (fast), the yields of which are affected by light intensity and Mg2+ levels. The Photosystem II-(PS II)-defective mutant hcf-3 has similar decay lifetimes (approx. 1200, 450 and 100 ps) but is not affected by light intensity, reflecting the absence of PS II charge recombination. However, yields do respond to Mg2+ in a fashion typical of normal corn, which may be correlated with the presence of normal levels of light-harvesting chlorophyll a + b complex (LHCP). The PS I mutant hcf-50 also shows three-component decay kinetics. In conjunction with the results on the LHCP-deficient mutant of barley presented in a recent paper (Karukstis, K.K. and Sauer, K. (1984) Biochim. Biophys. Acta 766, 148–155), these data suggest that the slow component of normal chloroplasts is kinetically controlled by the decay processes of the LHCP and that the energy comes from one of two sources: (a) charge recombination in the reaction centre or (b) energy transferred within or between LHCP units only. The fast component appears to originate from both PS I and PS II. The complex response of the middle component to cations and light intensity, and its presence in all of the mutants, suggests that it also may have multiple origins.  相似文献   

20.
Inhibition of photosystem 2 by the peptide-modification reagent, tetranitromethane, has been investigated with spinach digitonin particles. In the presence of tetranitromethane, (1) the initial fluoresence yield is suppressed with a concomitant elimination of the variable component of fluorescence; (2) the optical absorption transient at 820 nm, attributed to P680+, is greatly attenuated; (3) diphenylcarbazide-supported photoreduction of dichlorophenol indophenol is abolished; and (4) electron spin resonance Signal 2f and Signal 2s are eliminated. These results are consistent with multiple sites of modification in photosystem 2 by tetranitromethane, and suggest further that this reagent can inhibit charge stabilization in the reaction center.Abbreviations D1 electron donor to P680+ in oxygen-inhibited photosystem 2 preparations - DPIP 2,6-dichlorophenol indophenol - esr electron spin resonance - Fi initial chlorophyll a fluorescence yield - Fmax maximum chlorophyll a fluorescence yield - Fv variable chlorophyll a fluorescence yield - FWHM full width at half maximum - Mes 2-(N-morpholino)ethanesulfonic acid - P680 primary electron donor chlorophyll of photosystem 2 - Ph pheophytin - PS 2-photosystem 2 - Qa primary quinone electron acceptor - Qb secondary quinone acceptor - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine - TNM tetranitromethane  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号