首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most bacteria synthesize muramyl-pentapeptide peptidoglycan precursors ending with a D-alanyl residue (e.g., UDP-N-acetylmuramyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala). However, it was recently demonstrated that other types of precursors, notably D-lactate-ending molecules, could be synthesized by several lactic acid bacteria. This particular feature leads to vancomycin resistance. Vancomycin is a glycopeptide antibiotic that blocks cell wall synthesis by the formation of a complex with the extremity of peptidoglycan precursors. Substitution of the terminal D-alanine by D-lactate reduces the affinity of the antibiotic for its target. Lactobacillus plantarum is a lactic acid bacterium naturally resistant to vancomycin. It converts most of the glycolytic pyruvate to L- and D-lactate by using stereospecific enzymes designated L- and D-lactate dehydrogenases, respectively. In the present study, we show that L. plantarum actually synthesizes D-lactate-ending peptidoglycan precursors. We also report the construction of a strain which is deficient for both D- and L-lactate dehydrogenase activities and which produces only trace amounts of D- and L-lactate. As a consequence, the peptidoglycan synthesis pathway is drastically affected. The wild-type precursor is still present, but a new type of D-alanine-ending precursor is also synthesized in large quantities, which results in a highly enhanced sensitivity to vancomycin.  相似文献   

2.
Lactate dehydrogenase (D-lactate:NAD+ oxidoreductase, EC 1.1.1.28) from the horseshoe crab, Limulus polyphemus, a dimeric enzyme stereospecific for D-lactate, has been purified by affinity chromatography. Maleyl tryptic peptides containing arginine residues isolated from the Limulus enzyme have been characterized and sequenced. The small peptides obtained from similarly treated L-lactate-specific enzyme homologs define major portions of the substrate and coenzyme binding regions and are virtually identical among L-lactate-specific enzymes. Although the six small peptides and free arginine isolated from the Limulus enzyme indicate that the small number of arginine tryptic peptides are located in a few discrete consecutive clusters similarly to the L-lactate dehydrogenases, the peptides nevertheless show no obvious sequence homology to the corresponding peptides from L-lactate dehydrogenases. These results indicate that this lactate dehydrogenase of altered substrate specificity either evolved with major rearrangements of the active site if it evolved from an L-lactate dehydrogenase, or that D-lactate dehydrogenases have evolved from a different protein. The results contradict proposed models which suggest that minor changes in the spatial orientation of pyruvate resulting from minimal rearrangement of the active site could accommodate the change in substrate specificity.  相似文献   

3.
Uptake of L-lactate into rabbit jejunal brush-border-membrane vesicles prepared by a Ca2+-precipitation procedure was studied by a rapid filtration technique with L-[14C]-lactate as tracer. Transport of L-lactate into an intravesicular (osmotically reactive) space could be established. An inwardly directed NaCl gradient (outside 21 mM/inside 0mM) stimulated the uptake of L-lactate at 15 s 2-4-fold compared with that observed with an equal KCl gradient. A transient accumulation of L-lactate inside the vesicles (overshoot) was observed in the presence of an NaCl gradient. Gradients of LiCl, RbCl, CsCl or choline chloride were not able to replace NaCl in the stimulation of L-lactate uptake. L-Lactate uptake was saturable only in the presence of Na+. D-Lactate, DL-thiolactate (2-DL-mercaptopropionate), pyruvate and propionate inhibited the Na+-stimulated L-lactate uptake; D-lactate, thiolactate and pyruvate provoked trans-stimulation of L-lactate uptake. Artificially imposed diffusion potentials (inside negative) did not exert any effect on the Na+-dependent L-lactate uptake. The results are consistent with the existence of an electroneutral Na+/L-lactate co-transport system in the brush border of rabbit small intestine.  相似文献   

4.
Transport of D-lactate in perfused rat liver   总被引:2,自引:0,他引:2  
The transport of D-lactate across the plasma membrane was investigated in hemoglobin-free perfused rat livers, applying the multiple-indicator dilution technique (pulse labelling of D-lactate and indicator substances). The following results were obtained: 1. The steady state exchange rate at 1 mM D-lactate was 2.5 mumol x min-1 x g wet wt-1. It was proportional to the extracellular concentration in the range between 0.1 and 70 mM. 2. The transport of D-lactate was inhibited by L-lactate and pyruvate; 50% inhibition was observed at 40 mM L-lactate or 5 mM pyruvate. 3. The transport was also inhibited by alpha-cyanocinnamate and 4,4'-diisocyanostilbene-2,2'-disulfonic acid. The inhibition by cyanocinnamate was complete (with 25 mM) and fully reversible, whereas the inhibition by diisothiocyanostilbenedisulfonic acid was incomplete and irreversible; it was dependent upon the amount of diisothiocyanostilbenedisulfonic acid bound by the liver. Maximal inhibition (80%) was observed with 2 mumol diisothiocyanostilbenedisulfonic acid bound per g wet weight. 4. The intracellular concentration (ci) of D-lactate was proportional to the extracellular concentration (ce); the ratio ci/ce was 0.5 throughout the concentration range studied. It decreased in the presence of L-lactate or pyruvate. It is concluded that the transport of D-lactate is carrier-mediated, and, at least partially, electroneutral.  相似文献   

5.
代谢工程大肠杆菌利用甘油高效合成L-乳酸   总被引:2,自引:0,他引:2  
以甘油为碳源高效合成L-乳酸有助于推进油脂水解产业和生物可降解材料制造业的共同发展。为此,首先分别从凝结芽胞杆菌Bacillus coagulans CICIM B1821和大肠杆菌Escherichia coli CICIM B0013中克隆了L-乳酸脱氢酶基因BcoaLDH和D-乳酸脱氢酶 (LdhA) 的启动子片段PldhA。将两条DNA片段连接组成了表达盒PldhA-BcoaLDH。然后将上述表达盒通过同源重组删除FMN为辅酶的L-乳酸脱氢酶编码基因lldD的同时克隆入ldhA基因缺失菌株E. coli CICIM B0013-080C (ack-pta pps pflB dld poxB adhE frdA ldhA)的染色体上,获得了L-乳酸高产菌株E. coli CICIM B0013-090B (B0013-080C,lldD::PldhA-BcoaLDH)。考察了菌株CICIM B0013-090B不同培养温度下代谢利用甘油和合成L-乳酸的特征后,建立并优化了一种新型L-乳酸变温发酵工艺。在7 L发酵罐上,发酵27 h,积累L-乳酸132.4 g/L,产酸强度4.90 g/(L·h),甘油到L-乳酸的得率为93.7%,L-乳酸的光学纯度达到99.95%。  相似文献   

6.
In Escherichia coli, the lct locus at min 80 on the chromosome map is associated with ability to grow on L-lactate and to synthesize a substrate-inducible flavin-linked dehydrogenase. Similar to that of the glpD-encoded aerobic glycerol-3-phosphate dehydrogenase, the level of induced enzyme activity is elevated by aerobiosis. Both of these controls are mediated by the two-component signal transduction system ArcB/ArcA, although sensitivity to the control is much more striking for L-lactate dehydrogenase. This study disclosed that the lct locus contained three overlapping genes in the clockwise order of lctD (encoding a flavin mononucleotide-dependent dehydrogenase), lctR (encoding a putative regulator), and lctP (encoding a permease) on the chromosomal map. These genes, however, are transcribed in the counterclockwise direction. No homology in amino acid sequence was found between aerobic glycerol-3-phosphate dehydrogenase and L-lactate dehydrogenase. A phi (lctD-lac) mutant was inducible by L-lactate but not D-lactate. Although the mutant lost the ability to grow on L-lactate, growth on D-lactate, known to depend on a different enzyme, remained normal.  相似文献   

7.
A reagentless carbon paste electrode was designed for D-lactic acid analysis in a flow injection system for the monitoring of the production of D-lactate in a batch fermentation. D-Lactate dehydrogenase, nicotinamide adenine dinucleotide (NAD(+)), a synthetic redox polymer containing covalently attached toluidine blue O as mediator, graphite powder, and paraffin oil were used for the construction of the modified carbon paste electrode. D-Lactate selectivity was indicated by insignificant responses from a variety of possible interfernces including L-lactate. The electrodes gave a linear response in the range between 0.05 and 5 mM D-lactate, with a detecting limit of 30 muM, allowing a sample throughput of 20 h(-1). Preliminary investigations were made by covering the electrode surface with electropolymerized membranes. Satisfactory stability was observed, indicated by a reproducibility of 3.3% relative standard deviation (RSD, n = 31), with a non-membrane-covered electrode for the analysis of D-lactate in fermentation broth. A long-term stability (230 broth samples) was proven, suggesting the electrodes to have a good potential for use in on-line monitoring of fermentation processes. (c) 1995 John Wiley & Sons, Inc.  相似文献   

8.
We investigated metabolic engineering of fermentation pathways in Escherichia coli for production of optically pure D- or L-lactate. Several pta mutant strains were examined, and a pta mutant of E. coli RR1 which was deficient in the phosphotransacetylase of the Pta-AckA pathway was found to metabolize glucose to D-lactate and to produce a small amount of succinate by-product under anaerobic conditions. An additional mutation in ppc made the mutant produce D-lactate like a homofermentative lactic acid bacterium. When the pta ppc double mutant was grown to higher biomass concentrations under aerobic conditions before it shifted to the anaerobic phase of D-lactate production, more than 62.2 g of D-lactate per liter was produced in 60 h, and the volumetric productivity was 1.04 g/liter/h. To examine whether the blocked acetate flux could be reoriented to a nonindigenous L-lactate pathway, an L-lactate dehydrogenase gene from Lactobacillus casei was introduced into a pta ldhA strain which lacked phosphotransacetylase and D-lactate dehydrogenase. This recombinant strain was able to metabolize glucose to L-lactate as the major fermentation product, and up to 45 g of L-lactate per liter was produced in 67 h. These results demonstrate that the central fermentation metabolism of E. coli can be reoriented to the production of D-lactate, an indigenous fermentation product, or to the production of L-lactate, a nonindigenous fermentation product.  相似文献   

9.
1. Under appropriate conditions L- and D-lactate enter the cells of rat aorta and are metabolized. Oxidation of lactate to CO2 occurs under aerobic conditions. 2. L- and D-lactate are taken up into the cells when oxygen, glucose, or both oxygen and glucose are present in the incubation medium. Both L- and D-lactate are excluded from the cells when neither oxygen nor glucose is present. 3. D,L-Glyceraldehyde prevents the uptake of L-lactate. The effect is apparently not due to the inhibition of glucose metabolism by L-glyceraldehyde. 4. L-lactate (20 mM) markedly inhibits the uptake of 5 mM D-lactate, but 20 mM D-lactate fails to inhibit the uptake of 5 mM L-lactate. 5. Raising the pH of the incubation medium markedly depresses the uptake of L-lactate. 6. The results provide evidence that L- and D-lactate enter the cells of rat aorta by a mediated transport system.  相似文献   

10.
1. Time courses for the uptake of L-lactate, D-lactate and pyruvate into isolated cardiac ventricular myocytes from guinea pig were determined at 11 degrees C or 0 degrees C (for pyruvate) in a citrate-based buffer by using a silicone-oil-filtration technique. These conditions enabled initial rates of transport to be measured without interference from metabolism of the substrates. 2. At a concentration of 0.5 mM, transport of all these substrates was inhibited by approx. 90% by 5 mM-alpha-cyano-4-hydroxycinnamate; at 10 mM-L-lactate a considerable portion of transport could not be inhibited. 3. Initial rates of L-lactate and pyruvate uptake in the presence of 5 mM-alpha-cyano-4-hydroxycinnamate were linearly related to the concentration of the monocarboxylate and probably represented diffusion of the free acid. The inhibitor-sensitive component of uptake obeyed Michaelis-Menten kinetics, with Km values for L-lactate and pyruvate of 2.3 and 0.066 mM respectively. 4. Pyruvate and D-lactate inhibited the transport of L-lactate, with Ki values (competitive) of 0.077 and 6.6 mM respectively; the Ki for pyruvate was very similar to its Km for transport. The Ki for alpha-cyano-4-hydroxycinnamate as a non-competitive inhibitor was 0.042 mM. 5. These results indicate that L-lactate, D-lactate and pyruvate share a common carrier in guinea-pig cardiac myocytes; the low stereoselectivity for L-lactate over D-lactate and the high affinity for pyruvate distinguish it from the carrier in erythrocytes and hepatocytes. The metabolic roles for this novel carrier in heart are discussed.  相似文献   

11.
We investigated the total conversion of racemic lactate, L-lactate, and pyruvate into D-lactate, which is very useful as a starting material for the synthesis of chiral compounds and much more valuable than the L-enantiomer by means of coupling of L-specific oxidation of the racemate with L-lactate oxidase and non-enantiospecific reduction of pyruvate to DL-lactate with sodium borohydride. In this one-pot system, L-lactate was enantiospecifically oxidized to an achiral product, pyruvate, which was chemically reduced to DL-lactate leading to a turnover. Consequently, either DL-lactate, L-lactate, or pyruvate was fully converted to the D-enantiomer. We optimized the reaction conditions: DL-lactate was converted to D-lactate in 99% of the theoretical yield and with more than 99% enantiomeric excess. DL-alpha-Hydroxybutyrate and alpha-ketobutyrate were converted also to D-alpha-hydroxybutyrate in the same way, though slowly.  相似文献   

12.
D- and L-lactate catabolism to CO2 in rat tissues   总被引:1,自引:0,他引:1  
The current study was initiated in order to compare the rates of oxidative catabolism of D- and L-lactate in various rat tissues. Uniformly labeled D- or L-[14C]lactate was incubated at 37 degrees C in a closed system with tissue homogenates in Krebs-Ringer phosphate buffer. Evolved 14CO2 was trapped in a center well containing a fluted filter paper saturated with strong base and the radioactivity determined. The ratio of L-lactate to D-lactate oxidation was greatest in brain, followed by kidney, heart, and liver. In liver the rate of oxidation of D-lactate exceeded that of L-lactate, in heart the rates were not significantly different and in the other two tissues L-lactate was oxidized more rapidly than D-lactate. These results indicate that the rate of D-lactate catabolism is considerable and is relatively greater than had been reported previously.  相似文献   

13.
Metabolism of D-glyceraldehyde in human erythrocytes in comparison with that of glucose and dihydroxyacetone was studied. Both trioses were metabolized to produce L-lactate at rates comparable to that of L-lactate formation from glucose. Almost complete inactivation of glyceraldehyde-3-phosphate dehydrogenase by treatment of cells with iodoacetate resulted in a 95% decrease in L-lactate formation from the ketotriose as well as from glucose, whereas L-lactate formation from the aldotriose was only partially reduced (60%). D-Lactate was produced faster from either the aldotriose or the ketotriose than from glucose, but the ability of the two trioses to produce D-lactate was far lower than that to produce L-lactate. Almost complete inhibition of aldehyde dehydrogenase by disulfiram and of both aldose reductase and aldehyde reductase II by sorbinil, had no effect on L-lactate formation from D-glyceraldehyde. The present study suggests that D-glyceraldehyde is metabolized via two or more pathways including the glycolytic pathway after its phosphorylation by triokinase, and that neither oxidation to D-glyceric acid nor reduction to glycerol is a prerequisite for D-glyceraldehyde metabolism.  相似文献   

14.
Bead discrimination learning in day-old chicken was inhibited by bilateral injection into the intermediate medial mesopallium (IMM), a homolog of the mammalian brain cortex, of the poorly metabolized enantiomer of L-lactate, D-lactate. The window of vulnerability extended from 10 min before training to 20 min after training. Unilateral injection 10 min before training inhibited only in the left IMM, whereas 10 min after training injection was only inhibitory if made into the right hemisphere. The pre-training administration caused memory loss from the earliest time tested whereas memory was maintained for another 20 min when D-lactate was injected 10 min post-training. The ability of acetate, an astrocyte-specific substrate, injected into the IMM to counteract the inhibitory effect was tested. Following D-lactate injection 10 min before training, rescue of memory immediately after training was achieved by acetate as long as aspartate, an oxaloacetate precursor, was also present. This suggests that pyruvate carboxylation is necessary for net synthesis of glutamate, which is known to occur at this time [Gibbs, M.E., Lloyd, H.G.E., Santa, T., Hertz, L., 2007. Glycogen is a preferred glutamate precursor during learning in 1-day-old chick: biochemical and behavioral evidence. J. Neurosci. Res., 85, 3326-3333]. However, acetate alone rescued memory 20 min post-training (following d-lactate injection 10 min after training), indicating that pyruvate at this time is used for energy production, consistent with memory inhibition by dinitrophenol. These findings suggest that D-lactate acts by inhibiting uptake of L-lactate into astrocytes (an extracellular effect) or metabolism of pyruvate in astrocytic mitochondria (an intracellular effect). An apparent lag phase between the administration of d-lactate and its inhibition of learning favors the latter possibility. Thus, under the present experimental conditions D-lactate acts as an astrocytic metabolic inhibitor rather than as an inhibitor of neuronal L-lactate uptake, as has occasionally been suggested. Analogously, a rare reversible neurological syndrome with memory deficits, D-lactate encephalopathy, may mainly or exclusively be due to astrocytic malfunction.  相似文献   

15.
Extracellular lactic acid is a major fuel for the mammalian medullary thick ascending limb (MTAL), whereas under anoxic conditions, this nephron segment generates a large amount of lactic acid, which needs to be excreted. We therefore evaluated, at both the functional and molecular levels, the possible presence of monocarboxylate transporters in basolateral (BLMVs) and luminal (LMVs) membrane vesicles isolated from rat MTALs. Imposing an inward H(+) gradient induced the transient uphill accumulation of L-[(14)C]lactate in both types of vesicles. However, whereas the pH gradient-stimulated uptake of L-[(14)C]lactate in BLMVs was inhibited by anion transport blockers such as alpha-cyano-4-hydroxycinnamate, 4,4'-diisothiocyanatostilbene-2, 2'-disulfonic acid (DIDS), and furosemide, it was unaffected by these agents in LMVs, indicating the presence of a L-lactate/H(+) cotransporter in BLMVs, but not in LMVs. Under non-pH gradient conditions, however, the uptake of L-[(14)C]lactate in LMVs was transstimulated 100% by L-lactate, but by only 30% by D-lactate. Furthermore, this L-lactate self-exchange was markedly inhibited by alpha-cyano-4-hydroxycinnamate and DIDS and almost completely by 1 mM furosemide, findings consistent with the existence of a stereospecific carrier-mediated lactate transport system in LMVs. Using immunofluorescence confocal microscopy and immunoblotting, the monocarboxylate transporter (MCT)-2 isoform was shown to be specifically expressed on the basolateral domain of the rat MTAL, whereas the MCT1 isoform could not be detected in this nephron segment. This study thus demonstrates the presence of different monocarboxylate transporters in rat MTALs; the basolateral H(+)/L-lactate cotransporter (MCT2) and the luminal H(+)-independent organic anion exchanger are adapted to play distinct roles in the transport of monocarboxylates in MTALs.  相似文献   

16.
The gene encoding D-lactate dehydrogenase (D-lactate: NAD+ oxidoreductase, EC 1.1.1.28) of Lactobacillus plantarum has been sequenced, and expressed in Escherichia coli cells with an inducible expression plasmid, in which the 5'-noncoding region of the gene was replaced with the tac promoter. Comparison of the sequence of D-lactate dehydrogenase with L-lactate dehydrogenases, including the L. plantarum L-lactate dehydrogenase, showed no significant homology. In contrast, the D-lactate dehydrogenase is homologous to E. coli D-3-phosphoglycerate dehydrogenase and Lactobacillus casei D-2-hydroxyisocaproate dehydrogenase. This indicates that D-lactate dehydrogenase is a member of a new family of 2-hydroxyacid dehydrogenases recently proposed, being distinct from L-lactate dehydrogenase and L-malate dehydrogenase, and strongly suggests that the new family consists of D-isomer-stereospecific enzymes. In the reductive reaction, the enzyme showed a broad substrate specificity, although pyruvate was the most favorable of all 2-ketocarboxylic acids tested. In particular, hydroxypyruvate is effectively reduced by the enzyme, the reaction rate, and Km value being comparable to those in the case of pyruvate, indicating that the enzyme has not only D-lactate dehydrogenase activity but also D-glycerate dehydrogenase activity. The conserved residues in this family appear to be the residues involved in the substrate binding and the catalytic reaction, and thus to be targets for site-directed mutagenesis.  相似文献   

17.
The purpose of this study was to investigate changes in the concentrations of D-lactate, L-lactate, pyruvate and methylglyoxal (MG) in body fluids after exercise. Eight untrained male students and five male students who were boat club members engaged in the exercise. Each subject performed runs of short and long duration. Compared to pre-exercise values plasma concentrations of D-lactate, L-lactate and pyruvate increased after running; in trained men by 3.6, 5.0, 3.4 times after short runs and by 1.5, 4.6, 2.0 times after long runs, and in untrained men by 3.0, 12.0, 1.6 times after short runs and 2.5, 5.6, 1.6 times after long runs, respectively. In all cases, the increase of L-lactate was always higher than that of D-lactate after running. The MG contents in red blood cells decreased markedly after running, especially in the untrained students. After short runs the MG concentration had decreased to 13% in the untrained men and 30% in the trained men, and after long runs the concentration had decreased to 41% in the untrained and 60% in the trained men. The MG in plasma and red blood cells appeared to have been utilized during relatively anaerobic exercise, especially by the untrained subjects. The D-lactate and related substances were also determined in urine, but the concentration of these substances showed no relationship to exercise. The D-lactate concentration in sweat samples tripled after short periods of running but the relative concentration to sodium ion concentration was not altered.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The biosynthesis of L-lactate oxidase in the Yarrowia lipolytica yeast during submerged cultivation in laboratory bioreactors ANKUM-2M has been studied. It has been shown under optimal conditions of yeast cultivation with L-lactate that 24.5 U/L enzyme accumulated in the medium and the yield was 2.0 U/(L h). An increase in the biosynthesis of L-lactate oxidase to 75 U/L and the yield to 3.2 U/(L h) was achieved in the medium with L-lactate (1%) and glucose (2%). The enzyme was purified 251 times to homogeneity by hydrophobic and ion exchange chromatography state with a yield of 45% and a specific activity of 55.3 U/mg. Techniques of gel filtration and denaturing electrophoresis showed that L-lactate oxidase from Y. lipolytica is a tetramer with a molecular mass of 200–230 kDa. The enzyme showed a strict specificity to L-lactate and did not oxidize fumarate, pyruvate, succinate, ascorbate, dihydroxyacetone, glycolate, D-lactate, D, L-2-hydroxybutyrate and D, L-alanine or D-serine.  相似文献   

19.
Slices of bovine kidney cortex, liver, heart and sternomandibularis muscle actively metabolized D- and L-lactate. Rates of D-lactate oxidation were greatest in kidney cortex followed by heart and liver with muscle exhibiting the lowest rates. L-lactate oxidation was greatest in kidney cortex followed by heart with liver and muscle exhibiting similar rates. Rates of oxidation of gluconeogenesis were similar for D- and L-lactate at 0.1 mm lactate but D utilization, as a percent of L, decreased as substrate concentrations increased to 50 mM. Bovine tissues appear to possess significant potential for D(-)lactate utilization. Estimates of this and possible interactions are discussed.  相似文献   

20.
A method is described for the quantitative determination of d- and L-lactate in 10 microl of rat serum, which includes fluorescence derivatization of D- and L-lactate with 4-(N, N-dimethylaminosulfonyl)-7-piperazino-2,1,3- benzoxadiazole (DBD-PZ) followed by O-acetylation. The derivatives are separated by HPLC on an octadecylsilica, and, via column switching, on a cellulose-type chiral column. Levulinic acid was used as the internal standard. The enantiomers of lactate were separated with the separation factor (alpha) of 1.27 and the resolution (Rs) of 2.72, while the linearity for the detection was over the range of 10 nmol/ml to 20 micromol/ml (r = 0.999). Interday precision values for D-lactate in rat serum were 5.8, 5.3, and 4.1% for 10, 100, and 1000 nmol/ml, and accuracy values were 109.6, 98.2, and 103.1%, respectively (n = 5). The reduction of d-lactate concentration in rat serum by fasting was observed with the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号