首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Candida apicola belongs to a group of yeasts producing surface-active glycolipids consisting of sophorose and long-chain (ω)- or (ω-1)-hydroxy fatty acids. Hydroxylation of the fatty acids in this strain is likely catalyzed by cytochrome P450 monooxygenases (P450), which require reducing equivalents delivered via a cytochrome P450-diflavin reductase (CPR). We herein report cloning and characterization of the cpr gene from C. apicola ATCC 96134. The gene encoding a protein of 687 amino acids was cloned in Escherichia coli and the enzyme was expressed in functional form after truncation of its N-terminal putative membrane anchor. The truncated recombinant protein showed cytochrome c reducing activity (K M of 13.8 μM and k cat of 1,915 per minute). Furthermore, we herein demonstrate to our best knowledge for the first time the use of a eukaryotic CPR to transfer electrons to bacterial P450s (namely CYP109B1 and CYP154E1). Cloning and characterization of this CPR therefore is not only an important step in the study of the P450 systems of C. apicola, but also provides a versatile redox partner for the characterization of other bacterial P450s with appealing biotechnological potential. The GenBank accession number of the sequence described in this article is JQ015264.  相似文献   

2.
3.
旨在对鸡细胞色素P450 1A5(CYP1A5)蛋白进行体外功能研究,采用大肠杆菌系统进行CYP1A5的异源表达。以鸡的cDNA为模板,扩增出CYP1A5基因,将该基因的N端编码区进行修饰,并连接到pCW载体中构建His-CYP1A5,经IPTG诱导在大肠杆菌中表达。经CO-差示光谱检测,所获得的His-CYP1A5具有典型的P450吸收峰。该蛋白与细胞色素P450还原酶(CPR)进行体外重组,构成的重组酶系表现出乙氧基试卤灵-O-脱乙基酶活性。结果表明,所采用的表达策略可以成功产生出具有催化活性的鸡细胞色素P450 1A5(CYP1A5)蛋白。  相似文献   

4.
Kenaan C  Zhang H  Shea EV  Hollenberg PF 《Biochemistry》2011,50(19):3957-3967
Cytochrome P450 (CYP or P450)-mediated drug metabolism requires the interaction of P450s with their redox partner, cytochrome P450 reductase (CPR). In this work, we have investigated the role of P450 hydrophobic residues in complex formation with CPR and uncovered novel roles for the surface-exposed residues V267 and L270 of CYP2B4 in mediating CYP2B4--CPR interactions. Using a combination of fluorescence labeling and stopped-flow spectroscopy, we have investigated the basis for these interactions. Specifically, in order to study P450--CPR interactions, a single reactive cysteine was introduced in to a genetically engineered variant of CYP2B4 (C79SC152S) at each of seven strategically selected surface-exposed positions. Each of these cysteine residues was modified by reaction with fluorescein-5-maleimide (FM), and the CYP2B4-FM variants were then used to determine the K(d) of the complex by monitoring fluorescence enhancement in the presence of CPR. Furthermore, the intrinsic K(m) values of the CYP2B4 variants for CPR were measured, and stopped-flow spectroscopy was used to determine the intrinsic kinetics and the extent of reduction of the ferric P450 mutants to the ferrous P450--CO adduct by CPR. A comparison of the results from these three approaches reveals that the sites on P450 exhibiting the greatest changes in fluorescence intensity upon binding CPR are associated with the greatest increases in the K(m) values of the P450 variants for CPR and with the greatest decreases in the rates and extents of reduced P450--CO formation.  相似文献   

5.
A recombinant cDNA of rat liver NADPH-cytochrome P-450 reductase (CPR), which lacks the N-terminal hydrophobic region, was amplified by PCR and cloned. The N-truncated cDNA named tCPR was ligated into a pBAce vector and expressed. The tCPR protein expressed in Escherichia coli was recovered into the soluble fraction of the cell lysate and purified to homogeneity by three sequential purification procedures; (I) anion-exchange chromatography on a DEAE-cellulose (DE-52) column, (II) affinity chromatography on 2('),5(')-ADP Sepharose 4B, and (III) chromatography on a hydroxyapatite column. The average yield was 47mg per liter of culture medium. The absorption spectrum of the purified tCPR protein was identical to that of a native full-length CPR purified from rat liver, indicating that tCPR also possesses one molecule each of FAD and FMN. The tCPR protein was able to reduce cytochrome c and was also able to assist heme degradation by a soluble form of rat heme oxygenase-1. However, it failed to support the O-deethylation of 7-ethoxycoumarin by cytochrome P-450 1A1, indicating that the presence of the N-terminal hydrophobic domain is necessary for CPR to interact with cytochrome P-450. Previously, to prepare a soluble form of CPR, full-length CPR was treated with proteinases that selectively removed the N-terminal domain. With the expression system established in this study, however, the soluble and biologically active tCPR protein can be readily prepared in large amounts. This expression system will be useful for mechanistic as well as structural studies of CPR.  相似文献   

6.
The kinetics of product formation by cytochrome P450 2B4 were compared in the presence of cytochrome b(5) (cyt b(5)) and NADPH-cyt P450 reductase (CPR) under conditions in which cytochrome P450 (cyt P450) underwent a single catalytic cycle with two substrates, benzphetamine and cyclohexane. At a cyt P450:cyt b(5) molar ratio of 1:1 under single turnover conditions, cyt P450 2B4 catalyzes the oxidation of the substrates, benzphetamine and cyclohexane, with rate constants of 18 +/- 2 and 29 +/- 4.5 s(-1), respectively. Approximately 500 pmol of norbenzphetamine and 58 pmol of cyclohexanol were formed per nmol of cyt P450. In marked contrast, at a cyt P450:CPR molar ratio of 1:1, cyt P450 2B4 catalyzes the oxidation of benzphetamine congruent with100-fold (k = 0.15 +/- 0.05 s(-1)) and cyclohexane congruent with10-fold (k = 2.5 +/- 0.35 s(-1)) more slowly. Four hundred picomoles of norbenzphetamine and 21 pmol of cyclohexanol were formed per nmol of cyt P450. In the presence of equimolar concentrations of cyt P450, cyt b(5), and CPR, product formation is biphasic and occurs with fast and slow rate constants characteristic of catalysis by cyt b(5) and CPR. Increasing the concentration of cyt b(5) enhanced the amount of product formed by cyt b(5) while decreasing the amount of product generated by CPR. Under steady-state conditions at all cyt b(5):cyt P450 molar ratios examined, cyt b(5) inhibits the rate of NADPH consumption. Nevertheless, at low cyt b(5):cyt P450 molar ratios 相似文献   

7.
Previous studies have shown that the combined presence of two cytochrome P450 enzymes (P450s) can affect the function of both enzymes, results that are consistent with the formation of heteromeric P450·P450 complexes. The goal of this study was to provide direct evidence for a physical interaction between P450 1A2 (CYP1A2) and P450 2B4 (CYP2B4), by determining if the interactions required both enzymes to reside in the same lipid vesicles. When NADPH-cytochrome P450 reductase (CPR) and a single P450 were incorporated into separate vesicles, extremely slow reduction rates were observed, demonstrating that the enzymes were anchored in the vesicles. Next, several reconstituted systems were prepared: 1) CPR·CYP1A2, 2) CPR·CYP2B4, 3) a mixture of CPR·CYP1A2 vesicles with CPR·CYP2B4 vesicles, and 4) CPR·CYP1A2·CYP2B4 in the same vesicles (ternary system). When in the ternary system, CYP2B4-mediated metabolism was significantly inhibited, and CYP1A2 activities were stimulated by the presence of the alternate P450. In contrast, P450s in separate vesicles were unable to interact. These data demonstrate that P450s must be in the same vesicles to alter metabolism. Additional evidence for a physical interaction among CPR, CYP1A2, and CYP2B4 was provided by cross-linking with bis(sulfosuccinimidyl) suberate. The results showed that after cross-linking, antibody to CYP1A2 was able to co-immunoprecipitate CYP2B4 but only when both proteins were in the same phospholipid vesicles. These results clearly demonstrate that the alterations in P450 function require both P450s to be present in the same vesicles and support a mechanism whereby P450s form a physical complex in the membrane.  相似文献   

8.
9.
Kim DH  Kim BG  Lee HJ  Lim Y  Hur HG  Ahn JH 《Biotechnology letters》2005,27(17):1291-1294
Plant cytochrome P450s interact with a flavoprotein, NADPH-cytochrome P450 reductase (CPR), to transfer electrons from NADPH. The gene for rice P450 reductase (RCPR) was cloned and expressed in Saccaromyces cerevisiae, where the specific activity of the expressed RPCR was 0.91 U/mg protein. When isoflavone synthase gene (IFS) from red clover, used as a model system of plant cytochrome P450, was co-expressed with RCPR in yeast, the production of genistein from naringein increased about 4.3-fold, indicating that the RCPR efficiently interacts with cytochrome P450 to transfer electrons from NADPH.  相似文献   

10.
The microsomal flavoprotein NADPH-cytochrome P450 reductase (CPR) contains an N-terminal hydrophobic membrane-binding domain required for reconstitution of hydroxylation activities with cytochrome P450s. In contrast, cytochrome b5 (b5) contains a C-terminal hydrophobic membrane-binding domain required for interaction with P450s. We have constructed, expressed and purified a chimeric flavoprotein (hdb5-CPR) where the C-terminal 45 amino acid residues of b5 have replaced the N-terminal 56 amino acid domain of CPR. This hybrid flavoprotein retains the catalytic properties of the native CPR and is able to reconstitute fatty acid and steroid hydroxylation activities with CYP4A1 and CYP17A. However hdb5-CPR is much less effective than CPR for reconstituting activity with CYP3A4. We conclude that differences on the surface of the P450s reflect unique and specific information essential for the recognition needed to establish reactions of intermolecular electron transfer from the flavoprotein CPR.  相似文献   

11.
NADPH-cytochrome P450 reductase (CPR) transfers electrons from NADPH to cytochrome P450 and also catalyzes the one-electron reduction of many drugs and foreign compounds. Various spectrophotometric assays have been performed to examine electron-accepting properties of CPR and its ability to reduce cytochrome b5, cytochrome c, and ferricyanide. In this report, reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) by CPR has been assessed as a method for monitoring CPR activity. The principle advantage of this substance is that the reduction of MTT can be assayed directly in the reaction medium by a continuous spectrophotometric method. The electrons released from NADPH by CPR were transferred to MTT. MTT reduction activity was then assessed spectrophotometrically by measuring the increase of A610. MTT reduction followed classical Michaelis-Menten kinetics (K(m)= 20 microM, k(cat)= 1,910 min(-1)). This method offers the advantages of a commercially available substrate and short analysis time by a simple measurement of enzymatic activity of CPR.  相似文献   

12.
Ruan RY  Kong JQ  Zheng XD  Zhang SX  Qin XY  Cheng KD  Wang JM  Wang W 《遗传》2010,32(11):1187-1194
细胞色素P450还原酶(Cytochrome P450 reductase,CPR)是细胞色素P450羟基化酶电子传递链的组成部分,在生物体内起着重要的电子传递作用。文章从中国红豆杉(Taxuswallichiana var. Chinensis)愈伤组织细胞中克隆CPR基因(TchCPR),TchCPR含有一个2154bp碱基的阅读框,编码717个氨基酸残基;在氨基酸水平上它与裸子植物细胞色素P450还原酶的同源性(82%)高于其他被子植物的细胞色素P450还原酶(74%)。在大肠杆菌BL21(DE3)中诱导表达了全长和从N-端截短不同数目氨基酸残基的6个融合肽段,经亲和层析纯化,分析了表达的不同长度融合蛋白的电子传递效率。结果表明截短长度大于61个氨基酸残基肽段的胞色素P450还原酶都能够诱导表达,在表达水平上无显著差异,而截短61个氨基酸的CPR融合蛋白电子传递的催化活性(1.6057nmol Cyt Cred/min/μg TchCPR融合蛋白)高于其他4个融合蛋白。  相似文献   

13.
The recently completed genome of the basidiomycete, Phanerochaete chrysosporium, revealed the presence of one NADPH-cytochrome P450 oxidoreductase (CPR; EC 1.6.2.4) gene and >123 cytochrome P450 (CYP) genes. How a single CPR can drive many CYPs is an important area of study. We have investigated this CPR to gain insight into the mechanistic and structural biodiversity of the cytochrome P450 catalytic system. Native CPR and a NH(2)-terminally truncated derivative lacking 23 amino acids have been overexpressed in Escherichia coli and purified to electrophoretic homogeneity. Steady-state kinetics of cytochrome c reductase activity revealed a random sequential bireactant kinetic mechanism in which both products form dead-end complexes reflecting differences in CPR kinetic mechanisms even within a single kingdom of life. Removal of the N-terminal anchor of P. chrysosporium CPR did not alter the kinetic properties displayed by the enzyme in vitro, indicating it was a useful modification for structural studies.  相似文献   

14.
A mammalian cell expression plasmid containing cytochrome P450IIIA7 complementary DNA was constructed. Breast cancer cells (MCF-7) were transfected with the plasmid and neomycin-resistant selection marker plasmid. We established three cell lines, termed M13, M21, and M27, which expressed the cytochrome P450IIIA7 as examined by RNA blot and immunoblot analyses. These cell lines showed 8- to 10-fold higher sensitivity against aflatoxin B1 compared to parental MCF-7 cells, suggesting that cytochromes P450IIIA7 expressed in the cells were responsible for the production of the cytotoxic metabolite of aflatoxin B1.  相似文献   

15.
10-羟基-2-癸烯酸(10-HDA)是蜂王浆中的主要脂肪酸成分,具有抗菌、抗癌、延缓衰老等多种生理活性,但目前关于10-HDA生物合成的分子机制还不清楚。通过克隆蜜蜂NADPH-细胞色素P450还原酶(EC 1.6.2.4,NADPH-cytochrome P450 reductase,CPR),在大肠杆菌中异源表达,并对其酶学特性进行分析。结果表明重组菌经IPTG诱导后表达蛋白的分子量与预期一致,为86.29 kDa,Ni-NTA亲和纯化后测得其比活性为77.33(EU of CPR)/μg。酶学性质分析结果表明蜜蜂CPR酶最适温度与pH分别为40℃和8.0,并对一些金属离子及有机溶剂具有不同程度的耐受性。其对底物细胞色素C的动力学参数Km和kcat分别为76 μM和268/min。以上研究为探究CPR在10-HDA生物合成途径中的功能奠定理论基础。  相似文献   

16.
The multifunctional cytochrome P450 monooxygenases P450-1 and P450-2 from Fusarium fujikuroi catalyze the formation of GA14 and GA4, respectively, in the gibberellin (GA)-biosynthetic pathway. However, the activity of these enzymes is qualitatively and quantitatively different in mutants lacking the NADPH:cytochrome P450 oxidoreductase (CPR) compared to CPR-containing strains. 3beta-Hydroxylation, a major P450-1 activity in wild-type strains, was strongly decreased in the mutants relative to oxidation at C-6 and C-7, while synthesis of C19-GAs as a result of oxidative cleavage of C-20 by P450-2 was almost absent whereas the C-20 alcohol, aldehyde and carboxylic acid derivatives accumulated. Interaction of the monooxygenases with alternative electron transport proteins could account for these different product distributions. In the absence of CPR, P450-1 activities were NADH-dependent, and stimulated by cytochrome b5 or by added FAD. These properties as well as the decreased efficiency of P450-1 and P450-2 in the mutants are consistent with the participation of cytochrome b5:NADH cytochrome b5 reductase as redox partner of the gibberellin monooxygenases in the absence of CPR. We provide evidence, from either incubations of GA12 (C-20 methyl) with cultures of the mutant suspended in [18O]H2O or maintained under an atmosphere of [18O]O2:N2 (20:80), that GA15 (C-20 alcohol) and GA24 (C-20 aldehyde) are formed directly from dioxygen and not from hydrolysis of covalently enzyme-bound intermediates. Thus these partially oxidized GAs correspond to intermediates of the sequential oxidation of C-20 catalyzed by P450-2.  相似文献   

17.
Degradation of small, acid-soluble spore proteins during germination of Bacillus subtilis spores is initiated by a sequence-specific protease called GPR. Western blot (immunoblot) analysis of either Bacillus megaterium or B. subtilis GPR expressed in B. subtilis showed that GPR is synthesized at about the third hour of sporulation in a precursor form and is processed to an approximately 2- to 5-kDa-smaller species 2 to 3 h later, at or slightly before the time of accumulation of dipicolinic acid by the forespore. This was found with both normal levels of expression of B. subtilis and B. megaterium GPR in B. subtilis, as well as when either protein was overexpressed up to 100-fold. The sporulation-specific processing of GPR was blocked in all spoIII, -IV, and -V mutants tested (none of which accumulated dipicolinic acid), but not in a spoVI mutant which accumulated dipicolinic acid. The amino-terminal sequences of the B. megaterium and B. subtilis GPR initially synthesized in sporulation were identical to those predicted from the coding genes' sequences. However, the processed form generated in sporulation lacked 15 (B. megaterium) or 16 (B. subtilis) amino-terminal residues. The amino acid sequence surrounding this proteolytic cleavage site was very homologous to the consensus sequence recognized and cleaved by GPR in its small, acid-soluble spore protein substrates. This observation, plus the efficient processing of overproduced GPR during sporulation, suggests that the GPR precursor may autoproteolyze itself during sporulation. During spore germination, the GPR from either species expressed in B. subtilis was further processed by removal of one additional amino-terminal amino acid (leucine), generating the mature protease which acts during spore germination.  相似文献   

18.
Although a single binary functional complex between cytochrome P450 (P450 or CYP for a specific isoform) and cytochrome P450 reductase (CPR) has been generally accepted in the literature, this simple model failed to explain the experimentally observed catalytic activity of recombinant CYP2E1 in dependence on the total concentration of the added CPR-K56Q mutant. Our rejection of the simplest 1:1 binding model was based on two independent lines of experimental evidence. First, under the assumption of the 1:1 binding model, separate analyses of titration curves obtained while varying either P450 or CPR concentrations individually produced contradictory results. Second, an asymmetric Job plot suggested the existence of higher order molecular complexes. To identify the most probable complexation mechanism, we generated a comprehensive data set where the concentrations of both P450 and P450 were varied simultaneously, rather than one at a time. The resulting two-dimensional data were globally fit to 32 candidate mechanistic models, involving the formation of binary, ternary, and quaternary P450.CPR complexes, in the absence or presence or P450 and CPR homodimers. Of the 32 candidate models (mechanisms), two models were approximately equally successful in explaining our experimental data. The first plausible model involves the binary complex P450.CPR, the quaternary complex (P450)2.(CPR)2, and the homodimer (P450)2. The second plausible model additionally involves a weakly bound ternary complex (P450)2.CPR. Importantly, only the binary complex P450.CPR seems catalytically active in either of the two most probable mechanisms.  相似文献   

19.
20.
NADPH-cytochrome P450 reductase (CPR) transfers electrons from NADPH to cytochrome P450, and catalyzes the one-electron reduction of many drugs and foreign compounds. Various forms of spectrophotometric titration have been performed to investigate the electron-accepting properties of CPR, particularly, to examine its ability to reduce cytochrome c and ferricyanide. In this study, the reduction of 1,1-diphenyl-2-picrylhydrazyl (DPPH) by CPR was assessed as a means of monitoring CPR activity. The principle advantage of DPPH is that its reduction can be assayed directly in the reaction medium by a continuous spectrophotometry. Thus, electrons released from NADPH by CPR were transferred to DPPH, and DPPH reduction was then followed spectrophotometrically by measuring A(520) reduction. Optimal assay concentrations of DPPH, CPR, potassium phosphate buffer, and NADPH were first established. DPPH reduction activity was found to depend upon the strength of the buffer used, which was optimal at 100 mM potassium phosphate and pH 7.6. The extinction coefficient of DPPH was 4.09mM(-1) cm(-1). DPPH reduction followed classical Michaelis-Menten kinetics (K(m) = 28 microM, k(cat) = 1690 min(-1)). This method uses readily available materials, and has the additional advantages of being rapid and inexpensive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号