首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Knowledge of the events underlying satellite cell activation and the counterpart maintenance of quiescence is essential for planning therapies that will promote the growth and regeneration of skeletal muscle in healthy, disease and aging. By modeling those events of satellite cell activation in studies of single muscle fibers or muscles in culture, the roles of mechanical stretching and nitric oxide are becoming understood. Recent studies demonstrated that stretch-induced activation is very rapid and exhibits some features of satellite cell heterogeneity. As well, gene expression studies showed that expression of the c-met receptor gene rises rapidly after stretching muscles in culture compared to those without stretch. This change in gene expression during activation, and the maintenance of quiescence in both normal and dystrophic muscles are dependent on NO, as they are blocked by inhibition of nitric oxide synthase (NOS). Mechanical, contractile activity is the defining feature of muscle function. Therefore, ongoing studies of stretch effects in satellite cell activation and quiescence in quiescent fiber and muscle cultures provides appropriate models by which to explore the regulatory steps in muscle in vivo under many conditions related to disease, repair, rehabilitation, growth and the prevention or treatment of atrophy.  相似文献   

2.
When skeletal muscle is stretched or injured, myogenic satellite cells are activated to enter the cell cycle. This process depends on nitric oxide (NO) production, release of hepatocyte growth factor (HGF) from the extracellular matrix, and presentation of HGF to the c-met receptor. Matrix metalloproteinases (MMPs), a large family of zinc-dependent endopeptidases, mediate HGF release from the matrix and this step in the pathway is downstream from NO synthesis [Yamada, M., Tatsumi, R., Kikuiri, T., Okamoto, S., Nonoshita, S., Mizunoya, W., et al. (2006). Matrix metalloproteinases are involved in mechanical stretch-induced activation of skeletal muscle satellite cells. Muscle Nerve, 34, 313-319]. Experiments reported herein provide evidence that MMP2 may be involved in the NO-dependent release of HGF in vitro. Whole lysate analyses of satellite cells demonstrated the presence of MMP2 mRNA and the protein. When rat satellite cells were treated with 30 microM sodium nitroprusside a NO donor or mechanical cyclic stretch for 2h period, inactive proMMP2 (72 kDa) was converted into 52-kDa form and this processing was abolished by adding a NO synthase inhibitor l-NAME (10 microM) to the stretch culture. The 52-kDa species was also generated by treatment of the recombinant MMP2 protein with 1 microM NOC-7 that can spontaneously release NO under physiological conditions without any cofactor, and its activating activity was demonstrated by applying the NOC-7-treated MMP2 to satellite cell culture. HGF release was detected in NOC-7-MMP2-conditioned media by western blotting; very little HGF was found in media that were generated from cultures receiving NOC-7-treated MMP2 (10 ng/ml) plus 250 ng/ml tissue inhibitor-1 of metalloproteinases. Therefore, results from these experiments provide evidence that NO-activated MMP2 may cause release of HGF from the extracellular matrix of satellite cells and contribute to satellite cell activation.  相似文献   

3.
Single-fiber cultures can be used to model satellite cell activation in vivo. Although technical deficiencies previously prevented study of stretch-induced events, here we describe a method developed to study satellite cell gene expression by in situ hybridization (ISH) using protocol modifications for fiber adhesion and fixation. The hypothesis that mechanical stretching activates satellite cells was tested. Fiber cultures were established from normal flexor digitorum brevis muscles and plated on FlexCell dishes with a layer of Vitrogen. After 2 hr of stretch in the presence of BrdU, satellite cells on fibers attached to Vitrogen were activated above control levels. In the absence of activating treatments or mechanical stretch, ISH studies showed 0-6 c-Met+ satellite cells per fiber. Time course experiments demonstrated stable quiescence in the absence of stretch and significant peaks in activation after 30 min and 2 hr of stretch. Frequency distributions for unstretched fiber cultures showed a significantly greater number of quiescent c-Met+ satellite cells than were activated by stretching, suggesting that typical activation stimuli did not trigger cycling in the entire c-Met+ population of satellite cells. These methods have a strong potential to further dissect the nature of stretch-induced activation and gene expression among characterized populations of individual quiescent and activated satellite cells.  相似文献   

4.
VEGF and MMP protein production are both required for exercise-induced capillary growth in skeletal muscle. The underlying process by which muscle activity initiates an angiogenic response is not established, but it is known that mechanical forces such as muscle stretch are involved. We hypothesized that stretch of skeletal muscle microvascular endothelial cells induces production of MMP-2 and VEGF through a common signal pathway. Endothelial cells were grown on Bioflex plates and exposed to 10% static stretch for up to 24 h. MMP-2 protein level was measured by gelatin zymography and VEGF, MMP-2, and MT1-MMP mRNA levels were quantified by real-time quantitative PCR. ERK1/2 and JNK phosphorylation and VEGF protein levels were assessed by Western blotting. Effects of mitogen-activated protein kinases (MAPKs) (ERK1/2, JNK) and reactive oxygen species (ROS) on stretch-induced expression of MMP-2 and VEGF were tested using pharmacological inhibitors. Stretching of endothelial cells for 24 h caused significant increases in MMP-2 protein and mRNA level, but no change in MT1-MMP mRNA. While MMP-2 protein production was enhanced by H(2)O(2) in unstretched cells, ROS inhibition during stretch did not diminish MMP-2 mRNA or protein production. Inhibition of JNK suppressed stretch-induced MMP-2 protein and mRNA, but inhibition of ERK had no effect. In contrast, inhibition of ERK but not JNK attenuated the stretch-induced increase in VEGF mRNA. Our results demonstrate that differential regulation of MMP-2 and VEGF by MAPK signal pathways contribute to stretch-induced activation of microvascular endothelial cells.  相似文献   

5.
6.
In the present study, we examined the roles of hepatocyte growth factor (HGF) and nitric oxide (NO) in the activation of satellite cells in passively stretched rat skeletal muscle. A hindlimb suspension model was developed in which the vastus, adductor, and gracilis muscles were subjected to stretch for 1 h. Satellite cells were activated by stretch determined on the basis of 5-bromo-2'-deoxyuridine (BrdU) incorporation in vivo. Extracts from stretched muscles stimulated BrdU incorporation in freshly isolated control rat satellite cells in a concentration-dependent manner. Extracts from stretched muscles contained the active form of HGF, and the satellite cell-activating activity could be neutralized by incubation with anti-HGF antibody. The involvement of NO was investigated by administering nitro-L-arginine methyl ester (L-NAME) or the inactive enantiomer NG-nitro-D-arginine methyl ester HCl (D-NAME) before stretch treatment. In vivo activation of satellite cells in stretched muscle was not inhibited by D-NAME but was inhibited by L-NAME. The activity of stretched muscle extract was abolished by L-NAME treatment but could be restored by the addition of HGF, indicating that the extract was not inhibitory. Finally, NO synthase activity in stretched and unstretched muscles was assayed in muscle extracts immediately after 2-h stretch treatment and was found to be elevated in stretched muscle but not in stretched muscle from L-NAME-treated rats. The results of these experiments demonstrate that stretching muscle liberates HGF in a NO-dependent manner, which can activate satellite cells. muscle regeneration  相似文献   

7.
Increased mechanical stress induced by stretch is an important growth stimulus in skeletal muscle. Heat shock proteins (HSPs) are an important family of endogenous, protective proteins. HSP90 and HSP70 families show elevated levels under beat stress. Mechanical stress, such as physical exercise, is known to induce not only muscular hypertrophy but also the elevation of HSPs expression in skeletal muscle. The purpose of this study was to determine whether heat stress facilitates the stretch-induced hypertrophy of skeletal muscle cells. Cultured rat myotubes (L6) were plated on collagenized Silastic membranes and incubated at 41 degrees C for 60 and 75 minutes (heat shock). Following the incubation, the cells were subjected two-second stretching and four-second releasing for 4 days at 37 degrees C. Protein concentrations in the homogenates and pellets of the cultured skeletal muscle cells increased under heat shock and/or mechanical stretching. The protein concentration of cells following mechanical stretching following heat shock was significantly higher than that following either heat shock or mechanical stretching alone. HSP72 in supernatants and HSP90 in pellets increased under heat shock and/or mechanical stretching. HSP90 in supernatants decreased following heat shock and/or mechanical stretching. Changes in HSPs and cellular protein concentrations in stressed cells suggest that the expression of HSPs may be closely related with muscular hypertrophy.  相似文献   

8.
In the vasculature, physiological levels of nitric oxide (NO) protect against various stressors, including mechanical stretch. While endothelial NO production in response to various stimuli has been studied extensively, the precise mechanism underlying stretch-induced NO production in venous endothelial cells remains incompletely understood. Using a model of continuous cellular stretch, we found that stretch promoted phosphorylation of endothelial NO synthase (eNOS) at Ser1177, Ser633 and Ser615 and NO production in human umbilical vein endothelial cells. Although stretch activated the kinases AMPKα, PKA, Akt, and ERK1/2, stretch-induced eNOS activation was only inhibited by kinase-specific inhibitors of PKA and PI3K/Akt, but not of AMPKα and Erk1/2. Similar results were obtained with knockdown by shRNAs targeting the PKA and Akt genes. Furthermore, inhibition of PKA preferentially attenuated eNOS activation in the early phase, while inhibition of the PI3K/Akt pathway reduced eNOS activation in the late phase, suggesting that the PKA and PI3K/Akt pathways play distinct roles in a time-dependent manner. Finally, we investigated the role of these pathways in stretch-induced endothelial exocytosis and leukocyte adhesion. Interestingly, we found that inhibition of the PI3K/Akt pathway increased stretch-induced Weibel-Palade body exocytosis and leukocyte adhesion, while inhibition of the PKA pathway had the opposite effects, suggesting that the exocytosis-promoting effect of PKA overwhelms the inhibitory effect of PKA-mediated NO production. Taken together, the results suggest that PKA and Akt are important regulators of eNOS activation in venous endothelial cells under mechanical stretch, while playing different roles in the regulation of stretch-induced endothelial exocytosis and leukocyte adhesion.  相似文献   

9.
Age-related muscle atrophy or sarcopenia results in progressive loss of muscle function and satellite cells in aging muscle are increasingly refractory to activation that could mitigate atrophy. We know that nitric oxide release triggered by mechanical stretch of skeletal muscle, initiates satellite cell activation in vitro in single fiber, single cell and whole-muscle cultures, and in vivo in animals. This study examined muscle cell activation using tritiated-thymidine incorporation into the DNA of muscle cells in cultured muscles from female mice between 6 weeks and 18 months-of-age. Experiments examined age-related changes in activation by mechanical stretch and/or NO treatments (with the substrate of nitric oxide synthase (l-arginine), a nitric oxide donor (isosorbide dinitrate) and/or nitric oxide synthase inhibition). Activation without stretch was highest at 8 months. Stretching muscles by 10% more than doubled activation in muscles at 6 weeks of age and only a 20% stretch similarly activated cells in cultured 6-month-old muscles. Only treatment with ISDN in combination with a 20% stretch activated cell proliferation in muscles from 8-month-old mice. A nitric-oxide donor drug rescued muscle satellite cells in adult, 8-month-old mice from being refractory to mechanical stretch, apparently by overcoming an ineffective release of nitric oxide during stretch. Results suggest that treatment with nitric oxide has the potential to enhance the effectiveness of exercise in preventing the onset of age-related muscle atrophy in adult muscle.  相似文献   

10.
The majority of the skeletal muscle plasma membrane is internalized as part of the tubular (t-) system, forming a standing junction with the sarcoplasmic reticulum (SR) membrane throughout the muscle fiber. This arrangement facilitates not only a rapid and large release of Ca(2+) from the SR for contraction upon excitation of the fiber, but has also direct implications for other interdependent cellular regulators of Ca(2+). The t-system plasma membrane Ca-ATPase (PMCA) and store-operated Ca(2+) entry (SOCE) can also be activated upon release of SR Ca(2+). In muscle, the SR Ca(2+) sensor responsible for rapidly activated SOCE appears to be the stromal interacting molecule 1L (STIM1L) isoform of STIM1 protein, which directly interacts with the Orai1 Ca(2+) channel in the t-system. The common isoform of STIM1 is STIM1S, and it has been shown that STIM1 together with Orai1 in a complex with the partner protein of STIM (POST) reduces the activity of the PMCA. We have previously shown that Orai1 and STIM1 are upregulated in dystrophic mdx mouse muscle, and here we show that STIM1L and PMCA are also upregulated in mdx muscle. Moreover, we show that the ratios of STIM1L to STIM1S in wild-type (WT) and mdx muscle are not different. We also show a greater store-dependent Ca(2+) influx in mdx compared with WT muscle for similar levels of SR Ca(2+) release while normal activation and deactivation properties were maintained. Interestingly, the fiber-averaged ability of WT and mdx muscle to extrude Ca(2+) via PMCA was found to be the same despite differences in PMCA densities. This suggests that there is a close relationship among PMCA, STIM1L, STIM1S, Orai1, and also POST expression in mdx muscle to maintain the same Ca(2+) extrusion properties as in the WT muscle.  相似文献   

11.
We have previously shown that mechanical distortion or stretch of alveolar type II (ATII) cells induces both surfactant release and the induction of apoptosis. We hypothesize that nitric oxide (NO) secreted from alveolar macrophages (AMs) prevents cyclic stretch-induced apoptosis. We show that S-nitroso-N-acetyl-D, L-penicillamine (SNAP), a chemical donor of NO, protects cells against nuclear condensation and DNA fragmentation induced by stretch (30% at 60 cycles/min) as well as by sorbitol. SNAP depleted of NO had no protective effect, and the NO scavenger 2-phenyl-4,4,5, 5-tetramethylimidazoline-1-oxyl 3-oxide blocked the antiapoptotic effect of SNAP. We also show that AMs isolated from rat lung lavage fluid actively synthesize and secrete NO. Using a novel technique in which AMs were cocultured with ATII cells while adhered to floating membrane rafts, we found that NO released from AMs was effective in protecting ATII cells from undergoing apoptosis. We therefore propose that NO secreted by AMs may function as part of a physiological antiapoptotic mechanism that prevents ATII cells from undergoing stretch-induced cell death in the lung.  相似文献   

12.
We have studied whether activation of epidermal growth factor receptor (EGFR) is involved in stretch-induced extracellular signal-regulated kinase 1/2 (ERK1/2) activation and protein synthesis in cultured rat vascular smooth muscle cells (VSMC). Cyclic stretch (1 Hz) induced a rapid (within 5 min) phosphorylation of ERK1/2, an effect that was time and strength dependent and inhibited by an EGFR kinase inhibitor (AG-1478) but not by a platelet-derived growth factor receptor kinase inhibitor (AG-1296). The stretch rapidly (within 2 min) induced tyrosine phosphorylation of several proteins, among which 180-kDa protein was shown to be EGFR as revealed by blockade with AG-1478 as well as immunoprecipitation with anti-EGFR antibody coupled with immunoblotting with anti-phosphotyrosine antibody. The stretch rapidly (within 2 min) induced association of tyrosine-phosphorylated EGFR with adaptor proteins (Shc/Grb2) as revealed by coprecipitation with glutathione-S-transferase-Grb2 fusion protein coupled with immunoblotting with anti-phosphotyrosine, anti-EGFR, and anti-Shc antibodies. Transfection of a dominant-negative mutant of H-Ras also inhibited stretch-induced ERK1/2 activation. Treatment with a stretch-activated ion channel blocker (Gd(3+)) and an intracellular Ca(2+) antagonist (TMB-8) inhibited stretch-induced phosphorylation of EGFR and ERK1/2. Treatment with AG-1478 and a mitogen-activated protein kinase kinase inhibitor (PD-98059), but not AG-1296, blocked [(3)H]leucine uptake stimulated by a high level of stretch. These data suggest that ERK1/2 activation by mechanical stretch requires Ca(2+)-sensitive EGFR activation mainly via stretch-activated ion channels, thereby leading to VSMC growth.  相似文献   

13.
14.
Most excitable cells maintain tight control of intracellular Ca(2+) through coordinated interaction between plasma membrane and endoplasmic or sarcoplasmic reticulum. Quiescent sarcoplasmic reticulum Ca(2+) release machinery is essential for the survival and normal function of skeletal muscle. Here we show that subtle membrane deformations induce Ca(2+) sparks in intact mammalian skeletal muscle. Spontaneous Ca(2+) sparks can be reversibly induced by osmotic shock, and participate in a normal physiological response to exercise. In dystrophic muscle with fragile membrane integrity, stress-induced Ca(2+) sparks are essentially irreversible. Moreover, moderate exercise in mdx muscle alters the Ca(2+) spark response. Thus, membrane-deformation-induced Ca(2+) sparks have an important role in physiological and pathophysiological regulation of Ca(2+) signalling, and uncontrolled Ca(2+) spark activity in connection with chronic activation of store-operated Ca(2+) entry may function as a dystrophic signal in mammalian skeletal muscle.  相似文献   

15.
The Na+-K+-ATPase and its regulation is important for maintaining membrane potential and transmembrane Na(+) gradient in all skeletal muscle cells and thus is essential for cell survival and function. In our previous study, cyclic stretch activated the Na pump in cultured skeletal muscle cells. Presently, we investigated whether this stimulation was the result of translocation of Na+-K+-ATPase from endosomes to the plasma membrane, and also evaluated the role of phosphatidylinositol 3-kinase (PI 3-kinase), the activation of which initiated vesicular trafficking and targeting of proteins to specific cell compartments. Skeletal muscle cells were stretched at 25% elongation continuous for 24h using the Flexercell Strain Unit. The plasma membrane and endosome fractions were isolated and Western blotted to localize the Na+-K+-ATPase alpha1- and alpha2-subunit protein. The results showed stretch increased Na+-K+-ATPase alpha1- and alpha2-subunit protein expression in plasma membrane fractions and decreased it in endosomes. The alpha2-subunit had a more dynamic response to mechanical stretch. PI 3-kinase inhibitors (LY294002) blocked the stretch-induced translocation of the Na+-K+-ATPase alpha2-subunit, while LY294002 had no effect on the transfer of alpha1-subunit. We concluded that cyclic stretch mainly stimulated the translocation of the alpha2-subunit of Na+-K+-ATPase from endosomes to the plasma membrane via a PI 3-kinase-dependent mechanism in cultured skeletal muscle cells in vitro, which in turn increased the activity of the Na pump.  相似文献   

16.
17.
Mechanical strain of lung tissue is an important stimulus for the production of growth factors that are critical for lung growth and development. However, excessive mechanical strain, as may occur during mechanical ventilation, may produce an increase in growth factors that may contribute to lung injury. We hypothesized that mechanical strain of primary bronchial airway epithelial cells (BAEpCs) induced the production of placental growth factor (PlGF), a member of the VEGF family. BAEpCs were cultured on a deformable silicoelastic membrane and exposed to different magnitudes of stretch. Stretch induced PlGF and nitric oxide (NO) production that increased with increasing magnitude of stretch. Stretch also induced PlGF and inducible NO synthase (iNOS) gene expression. The stretch-induced PlGF production and NO synthesis were attenuated by PD98059, a specific mitogen-activated protein kinase kinase-1 and -2 inhibitor. Inhibition of NO generation by l-NAME or l-NMMA or scavenging NO by carboxy-PTIO prevented stretch-mediated erk1/2 activation. In addition, in unstretched BAEpCs, exogenous NO enhanced erk1/erk2 activation. Our data suggest that mechanical stretch of BAEpCs induces iNOS expression and induces PlGF release in an erk1/2 activation-dependent manner.  相似文献   

18.
Stretching of cardiac muscle modulates contraction through the enhancement of the Ca2+ transient, but how this occurs is still not known. We found that stretching of myocytes modulates the elementary Ca2+ release process from ryanodine-receptor Ca2+-release channels (RyRCs), Ca2+ sparks and the electrically stimulated Ca2+ transient. Stretching induces PtdIns-3-OH kinase (PI(3)K)-dependent phosphorylation of both Akt and the endothelial isoform of nitric oxide synthase (NOS), nitric oxide (NO) production, and a proportionate increase in Ca2+-spark frequency that is abolished by inhibiting NOS and PI(3)K. Exogenously generated NO reversibly increases Ca2+-spark frequency without cell stretching. We propose that myocyte NO produced by activation of the PI(3)K-Akt-endothelial NOS axis acts as a second messenger of stretch by enhancing RyRC activity, contributing to myocardial contractile activation.  相似文献   

19.
We investigated the effects of cyclic stretch on vascular smooth muscle cell (VSMC) alignment and potential overlap of signaling modalities with stretch-induced proliferation. VSMC were subjected to graded stretch (1 Hz at 100-124% of resting length) for 48 h. Graded stretch resulted in graded VSMC alignment from a minimum of completely random orientation to a maximum of ~80-85 degrees to the stretch vector. Alignment was reversible within 48 h of stretch cessation and independent of signaling modalities mediating stretch-induced proliferation: modulation of IGF-1, MAPK, phosphatidylinositol 3-kinase, tyrosine kinase, and stretch-activated calcium channels did not affect alignment. Nitric oxide (NO) synthase (NOS) blockade uncoupled alignment. Neither the NO donor, cytokine-induced NOS activity, nor L-citrulline affected alignment, but inhibited VSMC proliferation. Therefore, stretch-induced proliferation and alignment are differentially regulated, with NO a common signaling molecule for both. Targeting NOS in states such as restenosis and hypertension may prove to be beneficial.  相似文献   

20.
Mechanical stress leads to satellite cell activation, which is an important event in the development, growth, and remodeling of postnatal skeletal muscle. Although there is a considerable knowledge on the events involved in skeletal muscle regeneration and development, the precise role of mechanical stress on activation of satellite cells remains unclear. Previously, satellite cells were isolated from adult bovine muscle and it was shown that the cells are multipotent, i.e., capable of proliferating and to differentiating into both myoblasts and adipocytes. This study investigated the cellular mechanisms by which cyclic mechanical stretching modulates the proliferation and differentiation of adult bovine satellite cells. The application of cyclic stretch induced the proliferation of satellite cells and inhibited their differentiation into myotubes. This response is believed to be closely related to the stretch-mediated changes in the expression of myogenic and cell cycle regulatory factors. Cyclic stretching increased the level of extracellular signal-regulated kinase (ERK) phosphorylation, whereas a specific ERK inhibitor (PD98058) blocked the stretch-mediated inhibition of myogenesis in a dose-dependent manner. Overall, this study demonstrates for the first time that cyclic mechanical stretch induces the proliferation of bovine satellite cells and suppresses their myogenic differentiation through the activation of ERK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号