首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
In this experiment, the photosynthetic acclimation of successive needle cohorts of Scots pine were studied during 3 years of growth at elevated CO2 and temperature. Naturally regenerated Scots pine (Pinus sylvestris L.) trees were subjected to elevated CO2 concentration (+CO2, 700 p.p.m), elevated temperature (+T, ambient +2 to +6 °C) and to a combination of elevated CO2 and temperature (+CO2 + T) in closed‐top chambers, starting in August 1996. Trees growing in chambers with ambient CO2 and ambient temperature served as controls (AmbC). Elevated CO2 influenced the dark reactions more than the light reactions of photosynthesis, as in the 1996 and 1997 cohorts the carboxylation capacity of Rubisco was reduced in the first and second year of exposure, but there was no consistent change in chlorophyll fluorescence. Net photosynthesis measured at growth concentration of CO2 was higher at +CO2 than at AmbC on only one measuring occasion, was generally lower at +T and was not changed at +CO2 + T. However, trees grown at +T tended to invest more nitrogen (N) in Rubisco, as Rubisco/chlorophyll and the proportion of the total needle N bound to Rubisco occasionally increased. The interaction of +CO2 and +T on Rubisco was mostly negative; consequently, in the second and third year of the experiment the carboxylation capacity decreased at +CO2 + T. In the 1996, 1997 and 1998 cohorts, the structural N concentration of needles was lower at +CO2 than at AmbC. Elevated CO2 and elevated temperature generally had a positive interaction on N concentration; consequently, N concentration in needles decreased less at +CO2 + T than at +CO2. At +CO2 + T, the acclimation response of needles varied between years and was more pronounced in the 1‐year‐old needles of the 1997 cohort than in those of the 1998 cohort. Thus, acclimation was not always greater in 1‐year‐old needles than in current‐year needles. In the +CO2 + T treatment, elevated temperature had a greater effect on acclimation of needles than elevated CO2.  相似文献   

2.
With a new approach we assessed the relative contribution of stored and current carbon compounds to new shoot growth in alpine treeline conifers. Within a free air CO2 enrichment experiment at the alpine treeline in Switzerland, 13C-depleted fossil CO2 was used to trace new carbon in the two tree species Larix decidua L. and Pinus uncinata Ramond over two subsequent years. The deciduous L. decidua was found to supply new shoot growth (structural woody part) by 46% from storage. Surprisingly, the evergreen P. uncinata, assumed to use current-year photosynthates, also utilized a considerable fraction of storage (42%) for new wood growth. In contrast, the needles of P. uncinata were built up almost completely from current-year photosynthates. The isotopic composition of different wood carbon fractions revealed a similar relative allocation of current and stored assimilates to various carbon fractions. Elevated CO2 influenced the composition of woody tissue in a species-specific way, e.g. the water soluble fraction decreased in pine in 2001 but increased in larch in 2002 compared to ambient CO2. Heavy defoliation applied as an additional treatment factor in the second year of the experiment decreased the lipophilic fraction in current-year wood in both species compared to undefoliated trees. We conclude that storage may play an important role for new shoot growth in these treeline conifers and that altered carbon availability (elevated CO2, defoliation) results in significant changes in the relative amount of mobile carbon fractions in woody tissue. In particular, stored carbon seems to be of greater importance in the evergreen P. uncinata than has been previously thought.  相似文献   

3.
The potential of insects to cause temporary spatial shifts of the forest-steppe borderline was investigated in a case study in the northern Mongolian mountain taiga, where Larix sibirica forests border on montane meadow steppe. Insect herbivores of L. sibirica in northern Mongolia include gypsy moth (Lymantria dispar) and grasshoppers, which defoliate trees. Grasshoppers have (like mice) an additional detrimental effect by decorticating stems of tree seedlings. The hypothesis was tested that insect herbivores cause spatial shifts of the forest-steppe borderline by, first, increasing the mortality of mature trees and, secondly, inhibiting rejuvenation.The first hypothesis was tested by investigating a L. sibirica-meadow steppe ecotone, which was heavily defoliated by gypsy moth in early summer 2005. Defoliation was more severe at the forest edge than in the forest interior. Though only 10% of the larch needles at the forest edge endured the gypsy moth invasion without feeding damage, trees were not sustainably affected, as trees were fully foliated in the subsequent year. This suggests that single gypsy moth invasions, which are frequent in Mongolia's forest-steppe ecotone, do not necessarily result in permanent damage of L. sibirica and, with it, not necessarily lead to local shifts of the treeline, though entire forest edges are often completely defoliated.The second hypothesis was tested by planting 2-year-old seedlings of L. sibirica along the treeline towards the meadow steppe and in the interior of the adjacent light taiga forest. Seedling mortality within 3 months was significantly higher at the forest edge (87%) than in the forest interior (40%). Seedlings at the forest edge died either due to insect and small mammal herbivory (65%) or due to drought (25%). Herbivore damage in the seedlings included defoliation by gypsy moth and grasshoppers as well as decortication by grasshoppers and mice. The high feeding pressure for seedlings at the forest edge suggests that insects and mice inhibit or at least retard forest regeneration at the treeline and can thereby lead to temporary spatial shifts of the treeline towards the steppe, after trees have died, e.g., due to fire or logging.  相似文献   

4.
Northern latitude and upper altitude climatic treelines have received increasing attention given their potential sensitivity to atmospheric and climate change. While greater radial stem growth at treeline sites in recent decades has been attributed largely to increasing temperature, rising atmospheric CO2 concentration may also be contributing to this growth stimulation. Tree ring increments of mature Larix decidua and Pinus uncinata were measured over 4 years in a free air CO2 enrichment experiment at treeline in the Swiss Central Alps (2180 m a.s.l.). In addition, a one‐time defoliation treatment in the second year (2002) of the experiment was used to simulate one of the common natural insect outbreak events. In response to elevated atmospheric CO2, Larix showed a cumulative 4‐year growth response of+41%, with particularly strong responses in the third and fourth year. This increase in radial stem wood growth was the result of more latewood production, in particular, the formation of larger tracheids, rather than a greater number of cells. In contrast, Pinus showed no change in ring width to elevated [CO2], neither in each of the treatment years, nor in the cumulative response over 4 years, although an increase in tracheid size was observed in the third year. Defoliation led to a pronounced decrease in annual ring width of both species, marked in particular by less latewood production, in the treatment, as well as subsequent years. There was no significant interaction between defoliation and CO2 enrichment. Although Pinus showed no growth response to CO2, the positive growth response observed in Larix after 4 years of CO2 enrichment implies that the sensitivity of treeline trees to global change may not be purely temperature driven. We conclude that the open sparse canopy in the treeline ecotone favours the indeterminate growth strategy of the early successional Larix when neither weather nor carbon are limiting, whereas the later successional Pinus does not show any indication of more vigorous growth under future higher atmospheric CO2 concentrations.  相似文献   

5.
After defoliation by herbivores, some plants exhibit enhanced rates of photosynthesis and growth that enable them to compensate for lost tissue, thus maintaining their fitness relative to competing, undefoliated plants. Our aim was to determine whether compensatory photosynthesis and growth would be altered by increasing concentrations of atmospheric CO2. Defoliation of developing leaflets on seedlings of a tropical tree, Copaifera aromatica, caused increases in photosynthesis under ambient CO2, but not under elevated CO2. An enhancement in the development of buds in the leaf axils followed defoliation at ambient levels of CO2. In contrast, under elevated CO2, enhanced development of buds occurred in undefoliated plants with no further enhancement in bud development due to exposure to elevated CO2. Growth of leaf area after defoliation was increased, particularly under elevated CO2. Despite this increase, defoliated plants grown under elevated CO2 were further from compensating for tissue lost during defoliation after 51/2 weeks than those grown under ambient CO2 concentrations.  相似文献   

6.
Elevated atmospheric carbon dioxide (CO2) and ozone (O3) concentrations have both been shown to affect plant tissue quality, which in turn could affect litter decomposition and carbon (C) and nutrient cycling. In order to evaluate effects of climate change on litter chemistry, needle litter was collected from Scots pine (Pinus sylvestris L.) saplings exposed to elevated CO2 or O3 concentration and their combination over three growing seasons in open‐top chambers. The decomposition of needle litter was followed for 19 months in a pine forest. During decomposition, needle samples for secondary compound analysis were collected and the mass loss of needles was followed. Main nutrients and total phenolics were analysed from litter in the beginning and at the end of the experiment. After 19‐month decomposition, the accumulated mass loss was about 34%; however, no significant differences were found in decomposition rates of needle litter between various treatments. Concentrations of total monoterpenes were about 4%, total resin acids 21% and total phenolics 14% of the initial concentrations in litter after 19‐month decomposition. In the beginning of litter decomposition, concentrations of individual monoterpenes –α‐pinene and β‐pinene – were significantly higher in needle litter grown under elevated CO2. However, concentrations of total monoterpenes during the whole decomposition period were not significantly affected by CO2 or O3 treatments. Concentrations of some individual and total resin acids were higher in needle litter grown under elevated CO2 or O3 than under ambient air. There were no significant differences in concentrations of total phenolics as well as nitrogen (N) and the main nutrient concentrations between treatments during decomposition. High concentrations of monoterpenes and resin acids in needles might slightly delay C recycling in forest soils. It is concluded that elevated CO2 and O3 concentrations do not have remarkable impacts on litter decomposition processes in Scots pine forests.  相似文献   

7.
We examined the effects of CO2 and defoliation on tree chemistry and performance of the forest tent caterpillar, Malacosoma disstria. Quaking aspen (Populus tremuloides) and sugar maple (Acer saccharum) trees were grown in open-top chambers under ambient or elevated concentrations of CO2. During the second year of growth, half of the trees were exposed to free-feeding forest tent caterpillars, while the remaining trees served as nondefoliated controls. Foliage was collected weekly for phytochemical analysis. Insect performance was evaluated on foliage from each of the treatments. At the sampling date coincident with insect bioassays, levels of foliar nitrogen and starch were lower and higher, respectively, in high CO2 foliage, and this trend persisted throughout the study. CO2-mediated increases in secondary compounds were observed for condensed tannins in aspen and gallotannins in maple. Defoliation reduced levels of water and nitrogen in aspen but had no effect on primary metabolites in maple. Similarly, defoliation induced accumulations of secondary compounds in aspen but not in maple. Larvae fed foliage from the enriched CO2 or defoliated treatments exhibited reduced growth and food processing efficiencies, relative to larvae on ambient CO2 or nondefoliated diets, but the patterns were host species-specific. Overall, CO2 and defoliation appeared to exert independent effects on foliar chemistry and forest tent caterpillar performance.  相似文献   

8.
 Deciduous larches, Larix spp., and evergreen pines, Pinus spp., are sympatric Pinaceae conifers. Adjacent monocultures of 10-year-old Larix decidua Mill. and Pinus resinosa Ait. were subjected to single-season artificial defoliation by clipping from 0% to 99% of each needle. Survival, above-ground productivity, and architecture were measured for 36 months. P. resinosa and L. decidua exhibited differential relationships with defoliation intensity and recovery time. Two months after treatment, defoliation reduced larch height growth but had no effect on radial growth. By contrast, P. resinosa stem radial growth was reduced immediately, but height growth was not decreased until the following year. Pine leader growth and above-ground biomass following 66% defoliation never recovered to control values or 33% defoliated pines. Conversely, defoliated larch quickly recovered from an initial growth loss to eliminate all treatment effects on biomass. The plasticity in architectural response found in larch, but not pine, might partially account for defoliation tolerance. Both P. resinosa and L. decidua exhibited non-linear responses to defoliation. These patterns may be caused partially by the uneven distribution of nutrients within needles, rather than a simple function of leaf area lost to defoliators. Concentrations of 13 nutrients in P. resinosa were highest either in the mid- (Ca, Mg, S, Zn, B, Mn, Fe, Al and Na) or basal- (N, P, K, and Cu) section. The relatively low nutrient content in needle tips may contribute to similar biomass productivity between trees defoliated 33% and controls. Removal of needle mid-sections significantly reduced whole-plant productivity. In contrast, L. decidua nutrients are concentrated in the distal sections. Nutrient concentrations were generally highest in larch. Our results agree with an emergent prediction of the carbon/nutrient balance theory that defoliation more severely reduces growth of evergreen than deciduous species. These results are discussed within the physiological, ecological and evolutionary context of allocation theory, with implications for natural resource management and plant-insect interaction theory. Received: 6 April 1995 / Accepted: 29 August 1995  相似文献   

9.
Abstract 1 During 1968–74, an outbreak of the European spruce sawfly Gilpinia hercyniae, defoliated many stands of Sitka spruce in commercial forests in mid‐Wales. The needle trace method was used to determine retrospectively the temporal pattern and intensity of defoliation in a stand of Sitka spruce in Hafren Forest that had been damaged severely at the time of the sawfly outbreak. 2 An initial calibration experiment, designed to test the reliability of the needle trace method when applied to Sitka spruce, indicated that artificially induced defoliation of up to 75% was detected by the technique with an accuracy of ±7%. Higher rates of defoliation were underestimated by up to 17%. 3 For the main sample of trees, the needle trace method demonstrated that retention of needle sets (average needle retention) was reduced by up to 33–38% over a 10‐year period coincident with the G. hercyniae outbreak and the years immediately afterward when the canopy was recovering. 4 Analysis of needle loss within separate needle cohorts and age‐classes revealed that 1‐year‐old needles were the most severely defoliated. The density of 1‐year‐old needles was reduced by 51–78% in 1970–73. 5 Defoliation at the time of the G. hercyniae outbreak was associated with reductions in annual height, radial, and volume increments of 24–49%, 30–59% and 32–56%, respectively. Radial and volume increments suffered their greatest reductions 1 year later than height increments. 6 The study demonstrates that the needle trace method can be applied successfully to Sitka spruce to quantify defoliation caused by an insect outbreak occurring many years previously, and that the technique can provide data on needle loss that is valuable for interpreting reductions in tree growth.  相似文献   

10.
Models of photosynthesis, respiration, and export predict that foliar labile carbon (C) should increase with elevated CO2 but decrease with elevated temperature. Sugars, starch, and protein can be compared between treatments, but these compounds make up only a fraction of the total labile pool. Moreover, it is difficult to assess the turnover of labile carbon between years for evergreen foliage. Here, we combined changes in foliar Carea (C concentration on an areal basis) as needles aged with changes in foliar isotopic composition (δ13C) caused by inputs of 13C‐depleted CO2 to estimate labile and structural C in needles of different ages in a four‐year, closed‐chamber mesocosm experiment in which Douglas‐fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings were exposed to elevated temperature (ambient + 3.5 °C) and CO2 (ambient + 179 ppm). Declines in δ 13C of needle cohorts as they aged indicated incorporation of newly fixed labile or structural carbon. The δ 13C calculations showed that new C was 41 ± 2% and 28 ± 3% of total needle carbon in second‐ and third‐year needles, respectively, with higher proportions of new C in elevated than ambient CO2 chambers (e.g. 42 ± 2% vs. 37 ± 6%, respectively, for second‐year needles). Relative to ambient CO2, elevated CO2 increased labile C in both first‐ and second‐year needles. Relative to ambient temperature, elevated temperature diminished labile C in second‐year needles but not in first‐year needles, perhaps because of differences in sink strength between the two needle age classes. We hypothesize that plant‐soil feedbacks on nitrogen supply contributed to higher photosynthetic rates under elevated temperatures that partly compensated for higher turnover rates of labile C. Strong positive correlations between labile C and sugar concentrations suggested that labile C was primarily determined by carbohydrates. Labile C was negatively correlated with concentrations of cellulose and protein. Elevated temperature increased foliar %C, possibly due to a shift of labile constituents from low %C carbohydrates to relatively high %C protein. Decreased sugar concentrations and increased nitrogen concentrations with elevated temperature were consistent with this explanation. Because foliar constituents that vary in isotopic signature also vary in concentrations with leaf age or environmental conditions, inferences of ci/ca values from δ 13C of bulk leaf tissue should be done cautiously. Tracing of 13C through foliar carbon pools may provide new insight into foliar C constituents and turnover.  相似文献   

11.
Terpene, resin acid and total phenolic concentrations in five‐year‐old Scots pine (Pinus sylvestris L.) seedlings were analysed after exposure to ambient and realistically elevated (2 × ambient) O3 and CO2 concentrations and their combination in open‐top chambers during two growing seasons. Under O3 exposure, limonene concentration in needles and isopimaric concentration in stems decreased significantly. As a response to elevated CO2, α‐pinene and total phenolic concentrations in needles increased significantly, while bornyl acetate concentration in needles and palustric + levopimaric and neoabietic acid concentrations in stems decreased significantly. Some terpenes and resin acids were found at lower concentrations in the combined O3 and CO2 treatment than in O3 exposure or elevated CO2. A negative chamber effect was found: seedlings growing inside the chambers with ambient air had significantly lower concentrations of some terpenes and resin acids than seedlings growing outside the chambers. There was a lot of between‐tree variation in terpene and resin acid concentrations, which is typical of open‐pollinated populations. The results of this study suggest that, at least in short‐term experiments, Scots pine secondary metabolites are relatively insensitive to climate change factors. Total phenolics in the needles were the most responsive group showing about 25% increase in elevated CO2, and O3 exposure did not mitigate this CO2 effect. Terpenes and resin acids were less responsive, although some individual compounds showed notable responses, e.g. α‐pinene in needles, which increased about 50% in response to elevated CO2. As a consequence, although there were only slight effects on total pools of needle secondary metabolites, considerable O3 and CO2 effects on certain individual compounds might have ecological significance via trophic amplification, e.g. in decomposing processes of needle litter.  相似文献   

12.
To understand the responses to external disturbance such as defoliation and possible feedback mechanisms at global change in terrestrial ecosystems, it is necessary to examine the extent and nature of effects on aboveground–belowground interactions. We studied a temperate heathland system subjected to experimental climate and atmospheric factors based on prognoses for year 2075 and further exposed to defoliation. By defoliating plants, we were able to study how global change modifies the interactions of the plant–soil system. Shoot production, root biomass, microbial biomass, and nematode abundance were assessed in the rhizosphere of manually defoliated patches of Deschampsia flexuosa in June in a full‐factorial FACE experiment with the treatments: increased atmospheric CO2, increased nighttime temperatures, summer droughts, and all of their combinations. We found a negative effect of defoliation on microbial biomass that was not apparently affected by global change. The negative effect of defoliation cascades through to soil nematodes as dependent on CO2 and drought. At ambient CO2, drought and defoliation each reduced nematodes. In contrast, at elevated CO2, a combination of drought and defoliation was needed to reduce nematodes. We found positive effects of CO2 on root density and microbial biomass. Defoliation affected soil biota negatively, whereas elevated CO2 stimulated the plant–soil system. This effect seen in June is contrasted by the effects seen in September at the same site. Late season defoliation increased activity and biomass of soil biota and more so at elevated CO2. Based on soil biota responses, plants defoliated in active growth therefore conserve resources, whereas defoliation after termination of growth results in release of resources. This result challenges the idea that plants via exudation of organic carbon stimulate their rhizosphere biota when in apparent need of nutrients for growth.  相似文献   

13.
Rising atmospheric carbon dioxide (CO2) concentration is expected to change plant tissue quality with important implications for plant–insect interactions. Taking advantage of canopy access by a crane and long‐term CO2 enrichment (530 μ mol mol?1) of a natural old‐growth forest (web‐free air carbon dioxide enrichment), we studied the responses of a generalist insect herbivore feeding in the canopy of tall trees. We found that relative growth rates (RGR) of gypsy moth (Lymantria dispar) were reduced by 30% in larvae fed on high CO2‐exposed Quercus petraea, but increased by 29% when fed on high CO2‐grown Carpinus betulus compared with control trees at ambient CO2 (370 μ mol mol?1). In Fagus sylvatica, there was a nonsignificant trend for reduced RGR under elevated CO2. Tree species‐specific changes in starch to nitrogen ratio, water, and the concentrations of proteins, condensed and hydrolyzable tannins in response to elevated CO2 were identified to correlate with altered RGR of gypsy moth larvae. Our data suggest that rising atmospheric CO2 will have strong species‐specific effects on leaf chemical composition of canopy trees in natural forests leading to contrasting responses of herbivores such as those reported here. A future change in host tree preference seems likely with far‐ranging consequences for forest community dynamics.  相似文献   

14.
Six open‐top chambers were installed on the shortgrass steppe in north‐eastern Colorado, USA from late March until mid‐October in 1997 and 1998 to evaluate how this grassland will be affected by rising atmospheric CO2. Three chambers were maintained at current CO2 concentration (ambient treatment), three at twice ambient CO2, or approximately 720 μmol mol?1 (elevated treatment), and three nonchambered plots served as controls. Above‐ground phytomass was measured in summer and autumn during each growing season, soil water was monitored weekly, and leaf photosynthesis, conductance and water potential were measured periodically on important C3 and C4 grasses. Mid‐season and seasonal above‐ground productivity were enhanced from 26 to 47% at elevated CO2, with no differences in the relative responses of C3/C4 grasses or forbs. Annual above‐ground phytomass accrual was greater on plots which were defoliated once in mid‐summer compared to plots which were not defoliated during the growing season, but there was no interactive effect of defoliation and CO2 on growth. Leaf photosynthesis was often greater in Pascopyrum smithii (C3) and Bouteloua gracilis (C4) plants in the elevated chambers, due in large part to higher soil water contents and leaf water potentials. Persistent downward photosynthetic acclimation in P. smithii leaves prevented large photosynthetic enhancement for elevated CO2‐grown plants. Shoot N concentrations tended to be lower in grasses under elevated CO2, but only Stipa comata (C3) plants exhibited significant reductions in N under elevated compared to ambient CO2 chambers. Despite chamber warming of 2.6 °C and apparent drier chamber conditions compared to unchambered controls, above‐ground production in all chambers was always greater than in unchambered plots. Collectively, these results suggest increased productivity of the shortgrass steppe in future warmer, CO2 enriched environments.  相似文献   

15.
The effects of partial defoliation on photosynthesis, whole-seedling carbon allocation, partitioning and growth were studied for two species with contrasting foliar traits. Field-grown seedlings of deciduous Japanese larch ( Larix leptolepis ) and evergreen red pine ( Pinus resinosa ) were defoliated by hand in early summer for 2 consecutive years. In the first year (1990), seedlings were defoliated by removing the distal 0, 25, 50 or 75% of each needle. In the second year (1991), seedlings were defoliated either 0 or 50%, regardless of previous defoliation treatments. Defoliation had little effect on photosynthesis and starch concentration in whole seedlings of either species in the first year. In the second year, photosynthesis increased in both species in response to the 1991 defoliation treatment, and in red pine also increased in response to the 1990 defoliation treatment. Further, in 1991 both larch and pine had decreased whole-seedling total non-structural carbohydrate concentrations in all seedlings that were defoliated at least once over the 2-yr period. This decrease was noted mostly in the starch component of the non-structural carbohydrates, and was similar in both species. In 1991, biomass was similarly decreased in both species in response to 1991 defoliation. Both species showed overcompensation in total and component biomass in seedlings defoliated by 25% in 1990. Overall, the results do not support the widely held belief that evergreen trees are substantially more affected than deciduous trees by defoliation.  相似文献   

16.
Abstract 1 The green spruce aphid, Elatobium abietinum, is an important defoliator of Sitka spruce in the U.K. However, it is usual for years in which high E. abietinum populations occur to be followed by a year with low aphid densities. The possibility that the performance of E. abietinum is reduced on previously infested Sitka spruce, and that this is the cause of year‐to‐year fluctuations in population density, was investigated by comparing population development and the growth rate of individual aphids on experimentally defoliated trees. 2 Separate experiments were performed to determine whether aphid performance was reduced either in the autumn immediately after defoliation in the spring, or was reduced in the spring of the next year. Different rates of initial defoliation on trees used to test aphid performance were created by artificially infesting the trees with aphids in the spring before the experiments, and varying the time of infestation. 3 Population development and the mean relative growth rate (MRGR) of individual aphids on previously defoliated and undefoliated Sitka spruce did not differ significantly in the spring of the next year. No differences were observed in the nutrient content of the 1‐year‐old needles of previously defoliated or undefoliated trees at this time. 4 In the autumn and winter immediately after spring defoliation, aphid MRGR was significantly higher on trees that had been heavily defoliated earlier in the season compared with trees that had been lightly defoliated. However, the difference in MRGR decreased over the winter period. Nitrogen, phosphorous and potassium concentrations were 9.4–12.2% higher, at the beginning of the autumn, in the current year needles of heavily defoliated trees than in the current year needles of lightly defoliated trees. 5 The experiments indicate that high populations of E. abietinum in the spring do not induce any defensive mechanisms in Sitka spruce that adversely affect subsequent generations of the aphid. By contrast, the results suggest that high spring densities of the aphid improve the nutritional quality of the current year's foliage for autumn generations.  相似文献   

17.
Elevated CO2 and temperature alter nitrogen allocation in Douglas-fir   总被引:2,自引:0,他引:2  
The effects of elevated CO2 and temperature on principal carbon constituents (PCC) and C and N allocation between needle, woody (stem and branches) and root tissue of Pseudotsuga menziesii Mirb. Franco seedlings were determined. The seedlings were grown in sun‐lit controlled‐environment chambers that contained a native soil. Chambers were controlled to reproduce ambient or ambient +180 ppm CO2 and either ambient temperature or ambient +3.5 °C for 4 years. There were no significant CO2 × temperature interactions; consequently the data are presented for the CO2 and temperature effects. At the final harvest, elevated CO2 decreased the nonpolar fraction of the PCC and increased the polar fraction and amount of sugars in the needles. In contrast, elevated temperature increased the nonpolar fraction of the PCC and decreased sugars in needles. There were no CO2 or temperature effects on the PCC fractions in the woody tissue or root tissue. Elevated CO2 and temperature had no significant effects on the C content of any of the plant tissues or fractions. In contrast, the foliar N content declined under elevated CO2 and increased under elevated temperature; there were no significant effects in other tissues. The changes in the foliar N concentrations were in the cellulose and lignin fractions, the fractions, which contain protein, and are the consequences of changes in N allocation under the treatments. These results indicate reallocation of N among plant organs to optimize C assimilation, which is mediated via changes in the selectivity of Rubisco and carbohydrate modulation of gene expression.  相似文献   

18.
It was hypothesized that high CO2 availability would increase monoterpene emission to the atmosphere. This hypothesis was based on resource allocation theory which predicts increased production of plant secondary compounds when carbon is in excess of that required for growth. Monoterpene emission rates were measured from needles of (a) Ponderosa pine grown at different CO2 concentrations and soil nitrogen levels, and (b) Douglas fir grown at different CO2 concentrations. Ponderosa pine grown at 700 μmol mol–1 CO2 exhibited increased photosynthetic rates and needle starch to nitrogen (N) ratios when compared to trees grown at 350 μmol mol–1 CO2. Nitrogen availability had no consistent effect on photosynthesis. Douglas fir grown at 550 μmol mol–1 CO2 exhibited increased photosynthetic rates as compared to growth at 350 μmol mol–1 CO2 in old, but not young needles, and there was no influence on the starch/N ratio. In neither species was there a significant effect of elevated growth CO2 on needle monoterpene concentration or emission rate. The influence of climate warming and leaf area index (LAI) on monoterpene emission were also investigated. Douglas fir grown at elevated CO2 plus a 4 °C increase in growth temperature exhibited no change in needle monoterpene concentration, despite a predicted 50% increase in emission rate. At elevated CO2 concentration the LAI increased in Ponderosa pine, but not Douglas fir. The combination of increased LAI and climate warming are predicted to cause an 80% increase in monoterpene emissions from Ponderosa pine forests and a 50% increase in emissions from Douglas fir forests. This study demonstrates that although growth at elevated CO2 may not affect the rate of monoterpene emission per unit biomass, the effect of elevated CO2 on LAI, and the effect of climate warming on monoterpene biosynthesis and volatilization, could increase canopy monoterpene emission rate.  相似文献   

19.
Invasive insects impact forest carbon dynamics   总被引:3,自引:0,他引:3  
Invasive insects can impact ecosystem functioning by altering carbon, nutrient, and hydrologic cycles. In this study, we used eddy covariance to measure net CO2 exchange with the atmosphere (NEE), and biometric measurements to characterize net ecosystem productivity (NEP) in oak‐ and pine‐dominated forests that were defoliated by Gypsy moth (Lymantria dispar L.) in the New Jersey Pine Barrens. Three years of data were used to compare C dynamics; 2005 with minimal defoliation, 2006 with partial defoliation of the canopy and understory in a mixed stand, and 2007 with complete defoliation of an oak‐dominated stand, and partial defoliation of the mixed and pine‐dominated stands. Previous to defoliation in 2005, annual net CO2 exchange (NEEyr) was estimated at ?187, ?137 and ?204 g C m?2 yr?1 at the oak‐, mixed‐, and pine‐dominated stands, respectively. Annual NEP estimated from biometric measurements was 108%, 100%, and 98% of NEEyr in 2005 for the oak‐, mixed‐, and pine‐dominated stands, respectively. Gypsy moth defoliation strongly reduced fluxes in 2006 and 2007 compared with 2005; NEEyr was ?122, +103, and ?161 g C m?2 yr?1 in 2006, and +293, +129, and ?17 g C m?2 yr?1 in 2007 at the oak‐, mixed‐, and pine‐dominated stands, respectively. At the landscape scale, Gypsy moths defoliated 20.2% of upland forests in 2007. We calculated that defoliation in these upland forests reduced NEEyr by 41%, with a 55% reduction in the heavily impacted oak‐dominated stands. ‘Transient’ disturbances such as insect defoliation, nonstand replacing wildfires, and prescribed burns are major factors controlling NEE across this landscape, and when integrated over time, may explain much of the patterning of aboveground biomass and forest floor mass in these upland forests.  相似文献   

20.
This study analyses the consequences of previous defoliation on the survival of the larvae of the pine processionary moth Thaumetopoea pityocampa (Denis and Schiffermüller) feeding on relict Scots pine Pinus sylvestris (L.) ssp. nevadensis Christ in the Sierra Nevada mountains (SE Spain). Egg batches of the pine processionary moth were placed on four groups of Scots pines that underwent different periods of herbivory. The larval survival was related to the nitrogen content, fibre, phenolics and terpenes in the needles. Larval survival was higher in undefoliated pines, lower in pines defoliated two consecutive years, and intermediate in pines defoliated only one year, suggesting a direct relationship between previous defoliation and larval survival. In contrast, none of the characteristics of the needles showed a clear relationship with larval survival. The resulting reduction in larval number also affects the capacity of the larvae to develop during winter, because it hampered nest warming. Thus, previous defoliation limits, although it does not impede, the possibility of repeated defoliation on Scots pine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号