首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On the origins of dorsal root potentials   总被引:9,自引:8,他引:1  
  相似文献   

2.
This study describes the projection of cervical spinal afferent nerve fibers to the medulla in the brush-tailed possum, a marsupial mammal. After single dorsal roots (between C2 and T1) were cut in a series of animals, the Fink-Heimer method was used to demonstrate the projection fields of fibers entering the CNS via specific dorsal roots. In the high cervical spinal cord, afferent fibers from each dorsal root form a discrete layer in the dorsal funiculus. The flattened laminae from upper cervical levels are lateral and those from lower cervical levels are medial within the dorsal columns. All afferent fibers at this level are separated from gray matter by the corticospinal fibers in the dorsal funiculus. All cervical roots project throughout most of the length of the well-developed main cuneate nucleus in a loosely segmentotopic fashion. Fibers from rostral roots enter more lateral parts of the nucleus, and fibers from lower levels pass to more medial areas; but terminal projection fields are typically large and overlap extensively. At more rostral medullary levels, fibers from all cervical dorsal roots also reach the external cuneate nucleus. The spatial arrangement here is more complex and more extensively overlapped than in the cuneate nucleus. Rostral cervical root fibers reach ventral and ventrolateral areas of the external cuneate nucleus and continue to its rostral pole; more caudal root fibers project to more dorsal and medial regions within the nucleus. These results demonstrate that projection patterns of spinal afferents in this marsupial are similar to those seen in the few placental species for which detailed data concerning this system are available.  相似文献   

3.
The effects of electrically stimulating different groups of nerve fibers supplying the skin and muscle on evoked potentials in cat spinal cord dorsal columns were studied. Significant differences in the configuration of dorsal column potentials recorded in response to stimulation of these nerves were found. It was shown that cutaneous nerve unmyelinated fibres were connected to unmyelinated dorsal column fibers. In addition, excitation of cutaneous C-fibers lead to activation of dorsal column fibers with the maximum conduction velocity. The somatic nerve was only connected to myelinated dorsal column fibers, and excitation of its non-myelinated fibers did not cause other types of dorsal column fibers to be activated. It is suggested that the acceleration of cutaneous signal transmission in the dorsal column system may be brought about by the necessity for rapid warning of potentially harmful stimuli.Medical Institute, Russian Federation Ministry of Public Health, Nizhny Novgorod. Translated from Neirofiziologiya, Vol. 24, No. 5, pp. 625–635, September–October, 1992.  相似文献   

4.
The caudal peduncle and caudal fin of Carcharodon carcharias together form a dynamic locomotory structure. The caudal peduncle is a highly modified, dorsoventrally compressed and rigid structure that facilitates the oscillations of the caudal fin. Its stiffness appears to be principally achieved by a thick layer of adipose tissue ranging from 28-37% of its cross-sectional area, reinforced by cross-woven collagen fibers. Numerous overlying layers of collagen fibers of the stratum compactum, oriented in steep left- and right-handed helices (approximately 65 degrees to the shark's long axis), prevent bowstringing of the perimysial fibers, which lie just below the dermal layer. Perimysial fibers, muscles, and the notochord are restricted to the dorsal lobe of the caudal fin and comprise the bulk of its mass. Adipose tissue reinforces the leading edge of the dorsal lobe of the caudal fin and contributes to maintaining the ideal cross-sectional geometry required of an advanced hydrofoil. Most of the mass of the ventral lobe consists of the ceratotrichia or fin rays separated by thin partitions of connective tissue. Dermal fibers of the stratum compactum of the dorsal lobe occur in numerous distinct layers. The layers are more complex than in other sharks and appear to reflect a hierarchical development in C. carcharias. The fiber layer comprises a number of thick fiber bundles along the height of the layer and the layers get thicker deeper into the stratum compactum. Each of these layers alternates with a layer a single fiber-bundle deep, a formation thought to give stability to the stratum compactum and to enable freer movements of the fiber system. In tangential sections of the stratum compactum the fiber bundles in the dorsal lobe can be seen oriented with respect to the long axis of the shark at approximately 55-60 degrees in left- and right-handed helices. Because of the backward sweep of the dorsal lobe (approximately 55 degrees to the shark's long axis) the right-handed fibers also parallel the lobe's long axis. In the dorsal lobe, ceratotrichia are present only along the leading edge (embedded within connective tissue), apparently as reinforcement. Stratum compactum fiber bundles of the ventral lobe, viewed in transverse section, lack the well-ordered distinctive layers of the dorsal lobe, but rather occur as irregularly arranged masses of tightly compacted fiber bundles of various sizes. In tangential sections the fiber bundles are oriented at angles of approximately 60 degrees, generally in one direction, i.e., lacking the left- and right-handed helical pattern. Tensile load tests on the caudal fin indicate high passive resistance to bending by the skin. The shear modulus G showed that the skin's contribution to stiffness (average values from three specimens at radians 0.52 and 1.05) is 33.5% for the dorsal lobe and 41.8% for the ventral. The load tests also indicate greater bending stiffness of the ventral lobe compared to the dorsal. Overall, the anatomy and mechanics of the dorsal lobe of C. carcharias facilitate greater control of movement compared to the ventral lobe. The helical fiber architecture near the surface of the caudal fin is analogous to strengthening of a thin cylinder in engineering. High fiber angles along the span of the dorsal lobe are considered ideal for resisting the bending stresses that the lobe is subjected to during the locomotory beat cycle. They are also ideal for storing strain energy during bending of the lobe and consequently may be of value in facilitating the recovery stroke. The complex fiber architecture of the caudal fin and caudal peduncle of C. carcharias provides considerable potential for an elastic mechanism in the animal's swimming motions and consequently for energy conservation.  相似文献   

5.
Skin is a biological material the mechanical properties of which are dependent on the constituents from which it is assembled. Skin, the outer covering of animals is made up of collagen fibers arranged in more or less ordered arrays. Pufferfish skin provides a rigid framework to support the body contents and a flexible covering to allow whatever changes are necessary for the remarkable inflation mechanism. Here, we describe the structure and tensile properties of the dorsal and ventral skin of the pufferfish, Lagocephalus gloveri Abe and Tabeta, 1983. The ultimate tensile strength of ventral skin was found to be around two times higher than that of the dorsal skin. It was observed that the dorsal skin could resist more deformation than the ventral skin. The collagen fibers were arranged in different ordered arrays for ventral and dorsal skin and the concentration of fibers was found to be more in ventral than dorsal skin. This provides more stiffness to ventral skin. Scanning electron microscopy studies of the ventral skin showed a unidirectional arrangement of the collagen fibers, which provides more stretching capacity. Dorsal skin, on the other hand, has an orthogonal arrangement of fibers. The present study thus showed that the mechanical behavior of the skin of L. gloveri is strongly influenced by the concentration and arrangement of collagen fibers.  相似文献   

6.
S Neumann  C J Woolf 《Neuron》1999,23(1):83-91
Regeneration is abortive following adult mammalian CNS injury. We have investigated whether increasing the intrinsic growth state of primary sensory neurons by a conditioning peripheral nerve lesion increases regrowth of their central axons. After dorsal column lesions, all fibers stop at the injury site. Animals with a peripheral axotomy concomitant with the central lesion show axonal growth into the lesion but not into the spinal cord above the lesion. A preconditioning lesion 1 or 2 weeks prior to the dorsal column injury results in growth into the spinal cord above the lesion. In vitro, the growth capacity of DRG neurite is also increased following preconditioning lesions. The intrinsic growth state of injured neurons is, therefore, a key determinant for central regeneration.  相似文献   

7.
Somatosensory evoked potentials (SEPs) in the vicinity of the dorsal column nuclei in response to electrical stimulation of the median nerve (MN) and posterior tibial nerve (PTN) were studied by analyzing the wave forms, topographical distribution, effects of higher rates of stimulation and correlation with components of the scalp-recorded SEPs. Recordings were done on 4 patients with spasmodic torticollis during neurosurgical operations for microvascular decompression of the eleventh nerve. The dorsal column SEPs to MN stimulation (MN-SEPs) were characterized by a major negative wave (N1; 13 msec in mean latency), preceded by a small positivity (P1) and followed by a large positive wave (P2). Similar wave forms (P1′-N1′-P2′) were obtained with stimulation of PTN (PTN-SEPs), with a mean latency of N1′ being 28 msec. Maximal potentials of MN-SEPs and PTN-SEPs were located in the vicinity of the ipsilateral cuneate and gracile nuclei, respectively, at a level slightly caudal to the nuclei. The latencies of P1 and N1 increased progressively at more rostral cervical cord segments and medulla, but that of P2 did not. A higher rate of stimulation (16 Hz) caused no effects on P1 and N1, while it markedly attenuated the P2 component. These findings suggest that P1 and N1 of MN-SEPs, as well as P1′ and N1′ of PTN-SEPs, are generated by the dorsal column fibers, and P2 and P2′ are possibly of postsynaptic origin in the respective dorsal column nuclei.The peak latency of N1 recorded on the cuneate nucleus was identical with the scalp-recorded far-field potential of P13–14 in all patients, while no scalp components were found which corresponded to P2. These findings support the previous assumption that the scalp-recorded P13–14 is generated by the presynaptic activities of the dorsal column fibers at their terminals in the cuneate nucleus.  相似文献   

8.
The macromolecular composition and morphometry of the myotendineal junction (MTJ) of slow-twitch (type 1) and fast-twitch (type 2) muscle fibers were studied in gastrocnemius-soleus-Achilles unit of the rat. Proteoglycans and glycosaminoglycans, type III collagen, fibronectin and laminin could be detected at the myotendineal junction. Due to the membrane folding finger-like processes were seen at the MTJ. The processes of type 1 fibers were greater in size. However, due to the subdivisions the processes of type 2 muscle fibers had a significantly greater surface length per muscle cell diameter than type 1 fibers. The myotendineal endings of both fiber types had a characteristic basal lamina, which was about three times thicker than in the longitudinal site of the same muscle cells. The basal lamina of type 1 fibers at the MTJ was significantly thicker than that of type 2 fibers.  相似文献   

9.
In spite of the generally accepted opinion that long ascending proprioceptive and tactile fibers do not occur in the spinal dorsal columns of teleost fish, it was demonstrated with degeneration and axonal transport tracing methods that such dorsal column fibers exist in the teleost fish Gnathonemus petersii. These fibers are in fact common spinal afferent fibers originating in spinal ganglion cells. They connect the peripheral sense organs with the lateral funicular nuclei (Fl2) in which the dorsal column fibers terminate, directly through the dorsal columns. In contrast to the dorsal column nuclei of higher vertebrates, the Fl2 nuclei do not project to the diencephalic thalamus but to the caudal lobe and the second lobe (C2) of the corpus cerebelli. Thus, sense organs and cerebellum are connected by a disynaptic pathway. Since the caudal lobe projects directly to the electrosensory lobe, that is, to the target of electrosensory afferents, the presence of a disynaptic pathway in G. petersii suggests the existence of a proprioceptive control of the electrosensory input.  相似文献   

10.
Functional properties of the diaphragm are mediated by muscle structure. Modeling of force transmission necessitates a precise knowledge of muscle fiber architecture. Because the diaphragm experiences loads both along and transverse to the long axes of its muscle fibers in vivo, the mechanism of force transmission may be more complex than in other skeletal muscles that are loaded uniaxially along the muscle fibers. Using a combination of fiber microdissections and histological and morphological methods, we determined regional muscle fiber architecture and measured the shape of the cell membrane of single fibers isolated from diaphragm muscles from 11 mongrel dogs. We found that muscle fibers were either spanning fibers (SPF), running uninterrupted between central tendon (CT) and chest wall (CW), or were non-spanning fibers (NSF) that ended within the muscle fascicle. NSF accounted for the majority of fibers in the midcostal, dorsal costal, and lateral crural regions but were only 25-41% of fibers in the sternal region. In the midcostal and dorsal costal regions, only approximately 1% of the NSF terminated within the fascicle at both ends; the lateral crural region contained no such fibers. We measured fiber length, tapered length, fiber diameters along fiber length, and the taper angle for 271 fibers. The lateral crural region had the longest mean length of SPF, which is equivalent to the mean muscle length, followed by the costal and sternal regions. For the midcostal and crural regions, the percentage of tapered length of NSF was 45.9 +/- 5.3 and 40.6 +/- 7.5, respectively. The taper angle was approximately 0.15 degrees for both, and, therefore, the shear component of force was approximately 380 times greater than the tensile component. When the diaphragm is submaximally activated, as during normal breathing and maximal inspiratory efforts, muscle forces could be transmitted to the cell membrane and to the extracellular intramuscular connective tissue by shear linkage, presumably via structural transmembrane proteins.  相似文献   

11.
Spinal cord stimulation (SCS) is an alternative or adjunct therapy to treat chronic pain, a prevalent and clinically challenging condition. Although SCS has substantial clinical success, the therapy is still prone to failures, including lead breakage, lead migration, and poor pain relief. The goal of this study was to develop a computational model of SCS and use the model to compare activation of neural elements during intradural and extradural electrode placement. We constructed five patient-specific models of SCS. Stimulation thresholds predicted by the model were compared to stimulation thresholds measured intraoperatively, and we used these models to quantify the efficiency and selectivity of intradural and extradural SCS. Intradural placement dramatically increased stimulation efficiency and reduced the power required to stimulate the dorsal columns by more than 90%. Intradural placement also increased selectivity, allowing activation of a greater proportion of dorsal column fibers before spread of activation to dorsal root fibers, as well as more selective activation of individual dermatomes at different lateral deviations from the midline. Further, the results suggest that current electrode designs used for extradural SCS are not optimal for intradural SCS, and a novel azimuthal tripolar design increased stimulation selectivity, even beyond that achieved with an intradural paddle array. Increased stimulation efficiency is expected to increase the battery life of implantable pulse generators, increase the recharge interval of rechargeable implantable pulse generators, and potentially reduce stimulator volume. The greater selectivity of intradural stimulation may improve the success rate of SCS by mitigating the sensitivity of pain relief to malpositioning of the electrode. The outcome of this effort is a better quantitative understanding of how intradural electrode placement can potentially increase the selectivity and efficiency of SCS, which, in turn, provides predictions that can be tested in future clinical studies assessing the potential therapeutic benefits of intradural SCS.  相似文献   

12.
Despite the trauma of dissection and special metabolic requirements, the physiological properties of funiculi of the mammalian spinal cord can be studied in vitro. They are adequately oxygenated by diffusion at 0.88 atm. pO(2) and remain in a functionally normal state for over 12 hours. The internal consistency of several kinds of data presented in this and the foregoing papers (5, 38) serves to characterize certain properties of central myelinated axons whether excised or in situ. (1) Spinal tracts support a large spike potential in vitro whose form, duration, and velocity are comparable to those of alpha fibers in vitro and spinal tracts in vivo. (2) Properties consistent with a large L fraction are found in central axons whether excised or in situ. (3) Following conduction there has been identified post-spike supernormality with exponential time course (7.5 msecs. half-time) which is the result of activity intrinsic to parent fibers of dorsal columns. The supernormality is similar in form and magnitude both in excised and intact funiculi. (4) In excised funiculi the action potential of parent axons includes a large negative after-potential whose form and duration correspond satisfactorily with this supernormality. This potential appears not to result from activity arising in broken collaterals. (5) Central axons, excised or intact, fire spontaneously in the presence of citrate ion, and when synchronized by stimulation develop periodic oscillations at about 400 C.P.S. but show no such behavior in the presence of excess potassium ion. Certain characteristics peculiar to central axons indicate that they occupy an extreme position in the spectrum of properties encountered in conducting tissues. Dorsal column myelinated axons differ from their peripheral counterparts, even though they are parts of the same cell, in the following ways. The maintenance of the column spike potential is more critically dependent on CO(2) and the entire tissue mass has a higher oxygen consumption. The negative after-potential is much larger and the positive after-potential, non-existent following a single volley, is more difficult to develop by repetitive stimulation. Unlike peripheral nerve, central axons are not incited to spontaneous activity by manipulation of certain constituents normally present in their environment. However, when induced by the application of citrate the resulting rhythmic behavior has twice the frequency of that in peripheral nerve. In general, the recovery process in central axons is more invariant than that in peripheral axons when they are subjected to similar changes in their artificial environments.  相似文献   

13.
SUMMARY 1. The plasticity of sensory neurons following the injury to their axons is very important for prognosis of recovery of afferent fibers with different modality. It is evident that the response of dorsal root ganglion (DRG) neurons after peripheral axotomy is different depending on the deficiency in neurotrophic factors from peripheral region. The loss of cells appears earlier and is more severe in B-cells (small, dark cells with unmyelinated axons) than in A-cells (large, light cells with myelinated axons).2. We studied using immunohistochemical methods the response of DRG neurons to dorsal rhizotomy and combined injury of central and peripheral neuronal processes. A quantitative analysis of DRG neurons tagged by the selective markers isolectin B4 (IB4) and the heavy molecular component of the neurofilament triplet (NF200) antibody, selective for subpopulations of small and large/medium DRG neurons, respectively, was performed after dorsal rhizotomy, peripheral axotomy, and their combination.3. The number of NF200+-neurons is reduced substantially after both dorsal rhizotomy and peripheral axotomy, while the decrease of IB4+-neurons is observed only in combined injury, i.e., dorsal rhizotomy accompanied with sciatic nerve injury.4. Our results show that distinct subpopulations of DRG neurons respond differently to the injury of their central processes. The number of NF200+-neurons decreases to greater degree following dorsal rhizotomy in comparison to IB4+-neurons.  相似文献   

14.
The influence of voltage on the time-course of desensitization onset and recovery has been studied at the frog neuromuscular junction. The activation-desensitization sequence was determined from carbachol- induced end-plate currents in potassium-depolarized fibers voltage- clamped either to -40 mV or +40 mV. The time-course of both desensitization onset and recovery developed exponentially, with onset occurring more rapidly than recovery. Desensitization onset was voltage dependent, the onset time constant being 8.3 +/- 1.3 s (11 fibers) at - 40 mV and 19.3 +/- 3.4 s (15 fibers) at +40 mV. Recovery from desensitization was also influenced by voltage. The extent of recovery after 2 min was 80.4 +/- 6.3% in those fibers voltage-clamped to -40 mV and 57.4 +/- 3.6% in those fibers voltage-clamped to +40 mV. The voltage dependence of desenistization onset and recovery did not result from a difference in ability to control voltage at these two levels of membrane potential. These results demonstrate that in the potassium- depolarized preparation the processes controlling both desensitization onset and recovery of sensitivity from the desensitivity from the desensitized state are influenced by membrane voltage.  相似文献   

15.
Unmedullated fibers originating in dorsal root ganglia   总被引:10,自引:2,他引:8  
  相似文献   

16.
A new method using high performance liquid chromatography coupled with electrospray mass spectrometry (HPLC-MS) was developed and validated, for the quantification of plasma concentration of the new protease inhibitors darunavir (DRV) and other 11 antiretroviral agents (ritonavir, amprenavir, atazanavir, lopinavir, saquinavir, indinavir, nelfinavir and its metabolite M-8, nevirapine, efavirenz and tipranavir). A simple protein precipitation extraction procedure was applied on 50 microl of plasma aliquots and chromatographic separation of drugs and Internal Standard (quinoxaline) was achieved with a gradient (acetonitrile and water with formic acid 0.05%) on an C-18 reverse phase analytical column with 25 min of analytical run. Calibration curves were optimised according to expected ranges of drug concentrations in patients, and correlation coefficient (r2) was higher than 0.998 for all analytes. Mean intra- and inter-day precision (relative standard deviation %) for all compounds were 8.4 and 8.3%, respectively, and mean accuracy (% of deviation from nominal level) was 3.9%. Extraction recovery ranged within 93 and 105% for all drugs analysed. This novel HPLC-MS methodology allows a specific, sensitive and reliable determination of DRV and 11 other antiretrovirals. In our hand, it was used to measure DRV and ritonavir plasma concentration in HIV-positive patients, and it is now successfully applied for routine therapeutic drug monitoring and pharmacokinetics studies.  相似文献   

17.
The neural generators of the somatosensory evoked potentials (SEPs) elicited by electrical stimulation of the median nerve were studied in man and in rhesus monkeys. Recordings from the cuneate nucleus were compared to the far-field potentials recorded from electrodes placed on the scalp. It was found that the shape of the response from the surface of the human cuneate nucleus to stimulation of the median nerve is similar to that of the response recorded more caudally in the dorsal column, i.e., an initially small positivity followed by a negative wave that is in turn followed by a slow positive wave. The beginning of the negative wave coincides in time with the N14 peak in the SEP recorded from the scalp, and its latency is 13 msec. The response from the cuneate nucleus in the rhesus monkey has a similar shape and its negative peak appears with the same latency as the positive peak in the vertex response that has a latency of 4.5 msec; the peak negativity has a latency of about 6 msec and thus coincides with P6.2 in the vertex recording. Depth recordings from the cuneate nucleus and antidromic stimulation of the dorsal column fibers in the monkey provide evidence that the early components of the response from the surface of the cuneate nucleus are generated by the dorsal column fibers that terminate in the nucleus.The results support the hypothesis that the P14 peak in the human SEP is generated by the termination of the dorsal column fibers and that the cuneate nucleus itself contributes little to the far-field potentials.  相似文献   

18.
1. The aim of the present study was to examine the distribution of unmyelinated, small-diameter myelinated neuronal nitric oxide synthase immunoreactive (nNOS-IR) axons and large-diameter myelinated neuronal nitric oxide synthase and parvalbumin-immunoreactive (PV-IR) axons in the dorsal funiculus (DF) of sacral (S1–S3) and lumbar (L1–L7) segments of the dog. 2. nNOS and PV immunohistochemical methods were used to demonstrate the presence of nNOS-IR and PV-IR in the large-diameter myelinated, presumed to be proprioceptive, axons in the DF along the lumbosacral segments. 3. Fiber size and density of nNOS-IR and PV-IR axons were used to compartmentalize the DF into five compartments (CI–CV). The first compartment (CI) localized in the lateralmost part of the DF, containing both unmyelinated and small-diameter myelinated nNOS-IR axons, is homologous with the dorsolateral fasciculus, or Lissauer tract. The second compartment (CII) having similar fiber organization as CI is situated more medially in sacral segments. Rostrally, in lower lumbar segments, CII moves more medially, and at upper lumbar level, CII reaches the dorsomedial angle of the DF and fuses with axons of CIV. CIII is the largest in the DF and the only one containing large-diameter myelinated nNOS-IR and PV-IR axons. The largest nNOS-IR and PV-IR axons of CIII (8.0–9.2 μm in diameter), presumed to be stem Ia proprioceptive afferents, are located in the deep portion of the DF close to the dorsal and dorsomedial border of the dorsal horn. The CIV compartment varies in shape, appearing first as a small triangular area in S3 and S2 segments, homologous with the Philippe–Gombault triangle. Beginning at S1 level, CIV acquires a more elongated shape and is seen throughout the lumbar segments as a narrow band of fibers extending just below the dorsal median septum in approximately upper two-thirds of the DF. The CV is located in the basal part of the DF. In general, CV is poor in nNOS-IR fibers; among them solitary PV-IR fibers are seen. 4. The analysis of the control material and the degeneration of the large- and medium-caliber nNOS-IR fibers after unilateral L7 and S1 dorsal rhizotomy confirmed that large-caliber nNOS-IR and and PV-IR axons, presumed to be proprioceptive Ia axons, and their ascending and descending collaterals are present in large number in the DF of the lumbosacral intumescence. However, in the DF of the upper lumbar segments, the decrease in the number of nNOS-IR and PV-IR fibers is quite evident.  相似文献   

19.
The retinal innervation, cytoarchitectural, and immunohistochemical organization of the suprachiasmatic nucleus (SCN) was studied in the domestic sheep. The SCN is a large elongated nucleus extending rostrocaudally for roughly 3 mm in the hypothalamus. The morphology is unusual in that the rostral part of the nucleus extends out of the main mass of the hypothalamus onto the dorsal aspect of the optic chiasm. Following intraocular injection of wheat-germ agglutininhorseradish peroxidase or tritiated amino acids, anterograde label is distributed throughout the SCN. Retinal innervation of the SCN is bilaterally symmetric or predominantly ipsilateral. Quantitative image analysis demonstrates that, although the amount of autoradiographic label is greatest in the ventral and central parts of the nucleus, density varies progressively between different regions. In addition to the SCN, retinal fibers are also seen in the medial preoptic area, the anterior and lateral hypothalamic areas, the dorsomedial hypothalamus, the retrochiasmatic area, and the basal telencephalon. Whereas the SCN can be identified using several techniques, complete delineation of the nucleus requires combined tract tracing, cytoarchitectural, and histochemical criteria. Compared with the surrounding hypothalamic regions, the SCN contains smaller, more densely packed neurons, and is largely devoid of myelinated fibers. Cell soma sizes are smaller in the ventral SCN than in the dorsal or lateral parts, but an obvious regional transition is lacking. Using Nissl, myelin, acetylcholinesterase, and cytochrome oxidase staining, the SCN can be clearly distinguished in the rostral and medial regions, but is less differentiated toward the caudal pole. Immunohistochemical demonstration of several neuropeptides shows that the neurochemical organization of the sheep SCN is heterogeneous, but that it lacks a distinct compartmental organization. Populations of different neuropeptide-containing cells are found throughout the nucleus, although perikarya positive for vasoactive intestinal polypeptide and fibers labeled for methionine-enkephalin are predominant ventrally; neurophysine-immunoreactive cells are more prominent in the dorsal region and toward the caudal pole. The results suggest that the intrinsic organization of the sheep SCN is characterized by gradual regional transitions between different zones.  相似文献   

20.
ABSTRACT

Plasmid DNA pRc/CMV HBS encoding the S (small) region of hepatitis B surface antigen (HBsAg) was incorporated by the dehydration–rehydration method into Lipodine? liposomes composed of 16 µmoles phosphatidylcholine (PC) or distearoyl phosphatidylcholine (DSPC), 8 µmoles of (dioleoyl phosphatidylethanolamine (DOPE) or cholesterol and 4 µmoles of the cationic lipid 1,2-dioleoyl-3-(trimethylammonium propane (DOTAP) (molar ratios 1 : 0.5 : 0.25). Incorporation efficiency was high (89–93% of the amount of DNA used) in all four formulations tested and incorporated DNA was shown to be resistant to displacement in the presence of the competing anionic sodium dodecyl sulphate molecules. This is consistent with the notion that most of the DNA is incorporated within the multilamellar vesicles structure rather than being vesicle surface-complexed. Stability studies performed in simulated intestinal media also demonstrated that dehydration–rehydration vesicles (DRV) incorporating DNA (DRV(DNA)) were able to retain significantly more of their DNA content compared to DNA complexed with preformed small unilamellar vesicles (SUV–DNA) of the same composition. Moreover, after 4h incubation in the media, DNA loss for DSPC DRV(DNA) was only minimal, suggesting this to be the most stable formulation. Oral (intragastric) liposome-mediated DNA immunisation studies employing a variety of DRV(DNA) formulations as well as naked DNA revealed that secreted IgA responses against the encoded HBsAg were (as early as three weeks after the first dose) substantially higher after dosing with 100 µg liposome-entrapped DNA compared to naked DNA. Throughout the fourteen week investigation, IgA responses in mice were consistently higher with the DSPC DRV(DNA) liposomes compared to naked DNA and correlated well with their improved DNA retention when exposed to model intestinal fluids. To investigate gene expression after oral (intragastric) administration, mice were given 100 µg of naked or DSPC DRV liposome-entrapped plasmid DNA expressing the enhanced green fluorescent protein (pCMV.EGFP). Expression of the gene, in terms of fluorescence intensity in the draining mesenteric lymph nodes, was much greater in mice dosed with liposomal DNA than in animals dosed with the naked DNA. These results suggest that DSPC DRV liposomes containing DNA (Lipodine?) may be a useful system for the oral delivery of DNA vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号