首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Xia GL  Kikuchi K  Noguchi J  Izaike Y 《Theriogenology》2000,53(9):1807-1815
This study evaluated the effect of forskolin and FSH on pig oocyte maturation when cultured in a maturation inhibiting system. Ovaries from prepubertal gilts were collected at a local slaughterhouse. Oocytes were cultured in a hypoxanthine (HX 4 mM) containing M 199 for 24 or 40 h with or without forskolin and FSH treatment. After the culture, we examined germinal vesicle breakdown (GVBD) and polar body (PB) formation. Two experiments were designed. (1) Cumulus enclosed oocytes (CEO) were cultured for 24 or 40 h with or without different doses of forskolin and FSH. (2) CEO were primed by forskolin and FSH for different times and then transferred into an HX-medium for a further culture. The total culture period was 24 h. The results revealed that 4 mM HX markedly prevented pig CEO from undergoing GVBD. After 24 and 40 h culture, FSH (50-200 U/L) stimulated oocytes to resume meiosis by overcoming the inhibition of HX. Both GVBD and PB formation were increased (P < 0.002 and 0.01 respectively) after 40 h exposed to FSH. Forskolin showed a biphasic effect on CEO maturation. Within 24 h forskolin, in combination with HX, inhibited oocytes maturation. The GVBD percentage was significantly decreased compared to HX alone group (2% to 20%, P < 0.01), whereas no inhibition was observed after 40 h of culture. The second experiment showed that forskolin (3 microM) and FSH (100 U/L) priming CEO could time-dependently induce oocyte maturation by overriding the inhibition of HX. After 30 and 60 min priming by FSH or forskolin, the GVBD and PB percentage was significantly increased (P < 0.002 and 0.01 respectively). No difference of GVBD percentage was observed between FSH short time priming group and FSH long time presentation group. In conclusion, we found that forskolin and FSH in vitro can stimulate pig cumulus cells to secrete a meiosis-activating substance which induces the oocyte to overcome the inhibition of hypoxanthine and undergo GVBD.  相似文献   

2.
In this study we have investigated the efficiency of in vitro maturation (IVM) as a basic way to study the development of canine oocytes after in vitro fertilization (IVF). We decided, therefore, to perform two-part experiments. Firstly, experiment I compared the effects of TCM199 without fetal bovine serum (FBS) with TCM199 supplemented with 5% FBS on the in vitro nuclear maturation rate of canine oocytes. For the efficiency of meiotic development to the metaphase II (MII) stage, we found that 4.7% (4/64) of all oocytes grown in TCM199 without FBS developed to the MII stage compared with only 1.7% (1/59) of those grown in TCM199 with 5% FBS for 48 h. Therefore, FBS did not increase in vitro nuclear maturation. In experiment II, the cleavage rate of canine oocytes used for IVF was investigated following heparin treatment. Canine oocytes were fertilized in four groups: Fert-TALP medium without heparin (Fert I) or Fert-TALP medium supplemented with 10, 20 or 30 microg/ml heparin (Fert II, Fert III, Fert IV, respectively). Oocytes that were grown for 24 h in Fert I following fertilization showed the highest rate of all of the groups, 6.5% (5/77) and developed to the early morula stage. Markedly, the oocytes cultured in Fert I for 24 h following insemination had a higher rate of embryonic development than other groups. We can assert that, unlike findings in other mammals, heparin treatment in canine IVF does not increase the efficiency of the fertilization rate and is therefore not an important factor.  相似文献   

3.
Germinal vesicle breakdown (GVBD) in cumulus-enclosed and denuded cattle oocytes was sensitive to puromycin at concentrations at or above 50 micrograms/ml. Media supplemented with 5-25 micrograms/ml of puromycin did not significantly reduce either rate or sequence of GVBD after 8 h of culture (82-96% GVBD). In concentrations of 50, 75, and 100 micrograms/ml, GVBD occurred in 15, 4, and 2% of oocytes, respectively. However, 50 micrograms puromycin/ml did postpone the time sequence of GVBD, since all treated oocytes underwent GVBD after 20 h of culture. Oocytes arrested in the germinal vesicle (GV) stage possessed GV filled with highly condensed bivalents. The puromycin block (100 micrograms/ml) was fully reversible, and the time sequence of GVBD was two times faster than in control medium. Proteins important for GVBD were synthesized during the first 4 h of culture, and 81% of oocytes underwent GVBD when puromycin (100 micrograms/ml) was added after 4 h of preincubation in control medium. The first polar body (I PB) expulsion was more sensitive to inhibition of protein synthesis, as shown by the observation that 2.5 and 5 micrograms puromycin/ml significantly (69 and 61%) reduced the incidence of Metaphase II, and 10 micrograms/ml highly significantly (31%) reduced it. The I PB expulsion in concentrations of 25 and 37 micrograms puromycin/ml was less than 5%. The subsequent culture in puromycin (8 h) and 6-dimethylaminopurine (8 h) proved that nuclear membrane breakdown is less sensitive to inhibition of protein phosphorylation than the process of chromatin condensation.  相似文献   

4.
The perfection of in vitro maturation in the bitch has yet to be achieved, and is an essential prerequisite for gamete salvage programmes in endangered canine species. In contrast to most mammals, the bitch ovulates an immature oocyte which undergoes meiotic maturation within the oviduct. A model of the oviductal environment may therefore be useful for performing in vitro maturation. This study was performed to investigate the effect of introducing an oviductal element to the culture environment, first with the use of a synthetic oviductal fluid (SOF), and secondly, using coculture with isolated canine oviductal epithelial cells, upon the rate of oocyte maturation in vitro. It was found that there was no difference in the proportion of oocytes undergoing germinal vesicle breakdown (GVBD) after 48 h in culture between SOF containing 0.3% bovine serum albumin (BSA, 45%), containing 4% BSA (36%) and control medium 199 (27%). There was also no difference in oocyte nuclear maturation to metaphase I/anaphase I/metaphase II (MI/AI/MII) after 48 h in culture between SOF containing 0.3% BSA (5%), containing 4% BSA (7%) and control medium 199 (6%). In addition, there was no difference in oocyte nuclear maturation to MI/AI/MII after 96 h between SOF containing 0.3% BSA (0), containing 4% BSA (7%) and control medium 199 (11%). In contrast, the proportion of oocytes undergoing GVBD after 96 h in culture was affected by the treatment used, with 27% in SOF + 0.3% BSA, 62% in SOF + 4% BSA and 63% in medium 199. It was found that there was no difference in the proportion of oocytes undergoing GVBD between the coculture treatments 199 (33%), 199 + cells (37%), coculture medium (30%) and coculture medium + cells (49%), and for oocyte nuclear maturation to MI/AI/MII, between medium 199 (2%), 199 + cells (0), coculture medium (6%) and coculture medium + cells (2%) after 48 h in culture. In addition, there was no difference in oocyte nuclear maturation to GVBD after 96 h between 199 (61%), 199 + cells (59%), coculture medium (65%) and coculture medium + cells (53%). In contrast, the proportion of oocytes maturing to MI/AI/MII after 96 h in culture was affected by the treatment used, with a significant difference between 199 (0), 199 + cells (9%), coculture medium (0) and coculture medium + cells (0). It was shown, therefore, that the culture of oocytes in the SOF improved oocyte nuclear maturation when supplemented with a high concentration of protein and that culture in the presence of oviductal epithelial cells improved oocyte maturation, but only after a prolonged period of time.  相似文献   

5.
In cows, protein synthesis is required for germinal vesicle breakdown (GVBD). This study examines more closely the need for protein synthesis and the nuclear changes in the bovine oocyte during 24 h of culture. Bovine oocytes with compact and complete cumulus were washed and incubated in groups of 10 for up to 24 h in 50-microliters drops of TCM-199 supplemented with follicle-stimulating hormone (NIAMADD, 0.5 micrograms/ml), luteinizing hormone (LH) NIAMADD, 5 micrograms/ml), estradiol-17 beta (1 microgram/ml), pyruvate (20 microM), and 10% heat-treated fetal calf serum. Medium was overlaid with paraffin oil. Oocytes (n = 891) were fixed at the end of each 3-h interval from 0 to 24 h of culture, or at 24 h after addition of cycloheximide (10 micrograms/ml at 10 different times during maturation (0, 1, 2, 3, 6, 9, 12, 15, 18, 21 h; n = 175). At each time point, the chromosomal status of oocytes was evaluated, frequencies were computed, and the time spent on each step was determined. The germinal vesicle (GV) was present from 0 to 6.6 h, GVBD at 6.6 to 8.0 h, chromatin condensation at 8.0 to 10.3 h, metaphase I at 10.3 to 15.4 h, anaphase I at 15.4 to 16.6, telophase I at 16.6 to 18.0 h, and metaphase II at 18.0 to 24 h. Cycloheximide blocked oocyte maturation at GVBD, if added from 0 to 3 h; at chromatin condensation, if present from 6 to 24 h; and at metaphase I, when present from 9 to 12 h.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
A series of experiments were designed to evaluate the meiotic competence of mouse oocyte germinal vesicle (GV) in rabbit ooplasm. In experiment 1, an isolated mouse GV was transferred into rabbit GV-stage cytoplast by electrofusion. It was shown that 71.8% and 63.3% of the reconstructed oocytes completed the first meiosis as indicated by the first polar body (PB1) emission when cultured in M199 and M199 + PMSG, respectively. Chromosomal analysis showed that 75% of matured oocytes contained the normal 20 mouse chromosomes. When mouse spermatozoa were microinjected into the cytoplasm of oocytes matured in M199 + PMSG and M199, as many as 59.4% and 48% finished the second meiosis as revealed by the second polar body (PB2) emission and a few fertilized eggs developed to the eight-cell stage. In experiment 2, a mouse GV was transferred into rabbit MII-stage cytoplast. Only 13.0-14.3% of the reconstructed oocytes underwent germinal vesicle breakdown (GVBD) and none proceeded past the MI stage. When two mouse GVs were transferred into an enucleated rabbit oocyte, only 8.7% went through GVBD. In experiment 3, a whole zona-free mouse GV oocyte was fused with a rabbit MII cytoplast. The GVBD rates were increased to 51.2% and 49.4% when cultured in M199 + PMSG and M199, respectively, but none reached the MII stage. In experiment 4, a mouse GV was transferred into a partial cytoplasm-removed rabbit MII oocyte in which the second meiotic apparatus was still present. GVBD occurred in nearly all the reconstructed oocytes when one or two GVs were transferred and two or three metaphase plates were observed in ooplasm after culturing in M199 + PMSG for 8 hr. These data suggest that cytoplasmic factors regulating the progression of the first and the second meioses are not species-specific in mammalian oocytes and that these factors are located in the meiotic apparatus and/or its surrounding cytoplasm at MII stage.  相似文献   

7.
In female mice, despite the presence of slight DNA double-strand breaks (DSBs), fully grown oocytes are able to undergo meiosis resumption as indicated by germinal vesicle breakdown (GVBD); however, severe DNA DSBs do reduce and delay entry into M phase through activation of the DNA damage checkpoint. But little is known about the effect of severe DNA DSBs on the spindle assembly checkpoint (SAC) during oocyte maturation. We showed that nearly no first polar body (PB1) was extruded at 12 h of in vitro maturation (IVM) in severe DNA DSBs oocytes, and the limited number of oocytes with PB1 were actually at telophase. However, about 60% of the severe DNA DSBs oocytes which underwent GVBD at 2 h of IVM released a PB1 at 18 h of IVM and these oocytes did reach the second metaphase (MII) stage. Chromosome spread at MI and MII stages showed that chromosomes fragmented after GVBD in severe DNA DSBs oocytes. The delayed PB1 extrusion was due to the disrupted attachment of microtubules to kinetochores and activation of the SAC. At the same time, misaligned chromosome fragments became obvious at the first metaphase (MI) in severe DNA DSBs oocytes. These data implied that the inactivation of SAC during the metaphase-anaphase transition of first meiosis was independent of chromosome integrity. Next, we induced DNA DSBs in vivo, and found that the number of superovulated oocytes per mouse was significantly reduced; moreover, this treatment increased the percentage of apoptotic oocytes. These results suggest that DNA DSBs oocytes undergo apoptosis in vivo.  相似文献   

8.
Changes in organelle topography and microtubule configuration have been studied during the resumption and progression of meiosis in cultured preovulatory rat oocytes. Germinal vesicle breakdown (GVBD) was reversibly inhibited by dibutyryl cAMP (DcAMP) or nocodazole, a microtubule-disrupting agent. The microtubule stabilizing agent taxol did not inhibit GVBD, but did impair further maturation. The migration of acidic organelles and chromatin in living oocytes was analyzed using the vital stains acridine orange and Hoechst 33258, respectively. Germinal vesicle stage oocytes undergo perinuclear aggregation of acidic organelles during GVBD and these organelles subsequently disperse into the cell cortex as the first meiotic spindle migrates to the oocyte periphery. DcAMP and nocodazole block the perinuclear aggregation of acidic organelles, whereas, in taxol-treated oocytes, organelle aggregation and GVBD occur but the dispersion of acidic organelles was arrested. Dose-response studies on the effects of nocodazole showed that GVBD was generally retarded and that a 50% inhibition of GVBD was achieved at concentrations in excess of 1.0 microM. Concentrations of taxol at 10 microM or above effectively inhibited both chromatin condensation and meiotic spindle formation. Indirect immunofluorescence microscopy with anti-tubulin antibodies revealed dissolution of microtubules with 1.0 microM nocodazole. Taxol had little effect on microtubule organization in germinal vesicle or chromatin condensation stage oocytes; however, when oocytes that had formed first meiotic spindles were treated with taxol, numerous microtubule asters appeared which were preferentially associated with the oocyte cortex. The changes in organelle topography, microtubule configuration, and drug sensitivity are discussed with respect to the regulation of cytoplasmic reorganization during the meiotic maturation of rat preovulatory oocytes.  相似文献   

9.
用电镜方法研究小鼠卵母细胞的发育及受精虽然已有很多报道,但大多数是有关细胞质、尤其是皮质颗粒、高尔基复合体及线粒体的形态及分布变化的。从卵母细胞体外成熟培养、第一次减数分裂恢复到受精后第二次减数分裂完成,细胞核经历了复杂的变化,有关的系统研究却很少。本实验详细地研究了小鼠卵母细胞体外成熟及受精过程中两性生殖细胞内细胞核的时空变化规律。从卵巢中采集生发泡(GV)期卵母细胞,进行体外成熟培养,经超排获得的成熟卵母细胞去卵丘和透明带后,用于体外受精。于体外成熟培养及受精后的不同时间,用光镜及电镜方法观察细胞核变化及极体排放。结果表明,尽管大多数卵母细胞在体外培养2至4小时生发泡破裂(GVBD),但有13.6%在培养8小时后仍处于GV期(图1)。电镜观察揭示,不发生GVBD的卵母细胞核的核仁由颗粒性纤维成分、空泡及纤维中心组成。有时核仁表面有空泡。只有核仁完全致密化、核仁周围有核仁相随染色质分布时,卵母细胞才获得恢复减数分裂的能力。GVBD发生时,随着核仁相随染色质向核膜侧扩散迁移,核仁越来越小;与此同时,核膜打折,染色质团块中央出现电子致密的芯。核仁的消失早于核膜的破裂,提示核仁成分可能参与核膜打折及破裂,体外培  相似文献   

10.
11.
The role of protein kinase C (PKC) in the successive steps of mouse oocyte meiotic process was investigated. We have used either OAG, an analog of diacylglycerol, or mezerein, a nonphorbol ester diterpene, less tumor promoting than phorbol esters, as PKC activators, and staurosporine as PKC inhibitor. Cumulus-free oocytes were cultured in minimum essential medium with each of these PKC modulators and maturation stages were screened every two hours until the end of the process. Both PKC activators prevented GVBD at each tested dose for 4 hr (OAG) and 8 hr (mezerein), and decreased the frequencies of PB oocytes. The inhibitory effects of both activators were dose dependent and reversible. The addition of OAG to the culture medium after GVBD occurrence (i.e., after 4 hrs) did not affect PB extrusion whereas similar addition of mezerein significantly decreased the frequency of PB oocytes. Inhibition of PKC by staurosporine accelerated GVBD and increased the frequency of PB extrusion. When staurosporine was added after GVBD, PB extrusion occurred earlier but PB oocyte frequency was not increased. Fertilizability was not affected when oocyte maturation occurred in the presence of any of these substances despite the delay in maturation process. These results clearly indicate that the PKC pathway is involved in mouse oocyte meiotic process: activation of the enzyme would arrest meiotic process whereas its inhibition would participate in meiosis induction.  相似文献   

12.
In vitro maturation (IVM) of goat oocytes with serum-supplemented media results in oocytes with reduced developmental potential. The objective of this study was to develop a defined medium for IVM of goat oocytes that better supports subsequent embryonic development. Cumulus oocyte complexes (COC) were matured for 18-20 hr in: Experiment (1), tissue culture medium 199 (TCM199) with 10% (v/v) goat serum or modified synthetic oviduct fluid maturation medium (mSOFmat) with 2.5, 8.0, or 20.0 mg/ml bovine serum albumin (BSA); Experiment (2), mSOFmat with 4.0, 8.0, 12.0, or 16.0 mg/ml BSA; or Experiment (3), 1.0 mg/ml polyvinyl alcohol (PVA; control), 4.0 mg/ml BSA, 0.5 mg/ml hyaluronate plus 0.5 mM citrate, or hyaluronate, citrate, and BSA. Mature COC were coincubated for 20-22 hr with 12-15 x 10(6) sperm/ml in modified Brackett and Oliphant (mBO) medium. Embryos were cultured for a total of 7 days in G1/2, and evaluated for cleavage, and blastocyst development, hatching, and total cell numbers. In the first experiment, more (P < 0.05) blastocysts developed per cleaved embryo following maturation in mSOFmat with 2.5 or 8.0 mg/ml BSA than with 20.0 mg/ml BSA or TCM199 with 10% goat serum. The various concentrations of BSA used in the second experiment did not affect (P > 0.05) any of the developmental endpoints examined. In the third experiment, developmental potential of oocytes matured with PVA or hyaluronate with citrate was not different (P > 0.05) from oocytes matured in the presence of BSA. These results demonstrate that developmentally competent goat oocytes can be matured under defined conditions.  相似文献   

13.
Zhang M  Tao Y  Xia G  Xie H  Hong H  Wang F  Lei L 《Theriogenology》2005,64(4):902-916
This study examined the effect of atrial natriuretic peptide (ANP) on porcine cumulus-enclosed oocyte (CEO) maturation and cumulus expansion. ANP negatively regulated follicle-stimulating hormone (FSH)-stimulated germinal vesicle breakdown (GVBD; 90.1, 81.2 and 68.2% for FSH, FSH+10nM ANP and FSH+1 microM ANP, respectively), first polar body emission (PB1; 86.1, 75.3 and 53.3% for FSH, FSH+1 nM ANP and FSH+1 microM ANP, respectively) and cumulus expansion (CEI; 3.47, 3.16 and 2.43 for FSH, FSH+1 nM ANP and FSH+1 microM ANP, respectively) in a dose-dependent manner when CEOs were cultured in the maturation medium containing porcine follicular fluid (pFF). This negative effect showed a time-dependent manner after preincubation with 100 nM ANP for 5h (78.4% PB1), 10h (81.7% GVBD and 74.1% PB1), 20 h (78.5% GVBD and 68.9% PB1), and 44 h (75.3% GVBD and 60.5% PB1), respectively. ANP also significantly inhibited FSH-induced porcine oocyte GVBD (47.6% versus 83.8%) and PB1 emission (22.4% versus 45.2%) when CEOs were cultured in pFF-free maturation medium. cGMP analog 8-Br-cGMP (10 microM to 1mM) mimicked the effects of ANP on GVBD, PB1, and CEI. The negative effect of ANP was completely reversed by KT5823 (a specific inhibitor of cGMP-dependent protein kinase), while C-ANP-(4-23) (an analogue of ANP and specific binder for natriuretic peptide receptors-C) was ineffective in oocyte maturation. Neither ANP nor C-ANP-(4-23) had an effect on spontaneous porcine oocyte maturation and cumulus expansion. These results suggested that ANP negatively regulates FSH-activated porcine oocyte meiotic resumption, meiotic maturation and cumulus expansion. The function of ANP on porcine oocyte maturation is via the cGMP dependent protein kinase (PKG) pathway.  相似文献   

14.
Sun QY  Fuchimoto D  Nagai T 《Theriogenology》2004,62(1-2):245-255
The ubiquitin-proteasome pathway is involved in the degradation of proteins related to cell cycle progression including cyclins. The present study, using two specific proteasome inhibitors, for the first time investigated the roles of ubiquitin-proteasome in cell cycle progression during pig oocyte meiotic maturation and after fertilization. In contrast to its effect in rodent oocytes, proteasome inhibition strongly prevented germinal vesicle breakdown (GVBD). After GVBD, proteasome inhibition disrupted meiotic apparatus organization, cell cycle progression, and first polar body (PB1) extrusion. Sperm penetration into the oocytes was completely inhibited when proteasome inhibitors were added at the beginning of insemination. However, sperm chromatin decondensation and metaphase-interphase transition were not affected when inhibitors were added once sperm penetrated. The results suggest that ubiquin-proteasome complex is one of the critical regulators of meiotic cell cycle, but proteasome inhibitors do not affect major fertilization events when added after sperm penetration into the oocytes in the pig.  相似文献   

15.
Temporal progression of nuclear events of goat oocytes matured in vitro was studied by adding a specific inhibitor to the culture medium at different time points, to investigate protein synthesis requirements and its pattern during in vitro maturation. Goat cumulus-oocyte complexes (COCs) were matured in vitro in TCM 199, fixed at different time intervals and stained with orcein to assess nuclear changes. The germinal vesicle (GV) stage was found to be present at 0 h, chromosomal condensation stage was observed at 8 h, metaphase I at 12 to 14 h, and metaphase II was begun after 16 h of maturation and was nearly completed at 24 h. Protein synthesis inhibitor, cycloheximide, blocked oocyte maturation at germinal vesicle breakdown(GVBD), if added to the maturation medium between 0 to 4 h, suggesting that protein synthesis is required for GVBD. The transition from metaphase I to metaphase II was also protein synthesis-dependent, as observed when cycloheximide was used between 8 to 10 h of culture. When cycloheximide was added from 12 h of culture onwards, nuclear progression to metaphase II was progressively restored, but many chromosomal abnormalities were noted. Changes in the protein synthesis pattern were studied by radiolabeling of oocytes with [(35)S]-methionine at 0, 7, 12 and 24 h of culture, corresponding with GV, GVBD, metaphase I and metaphase II stages. A polypeptide of 28.1 KDa appeared as a major band at the GV stage, and its size decreased greatly and disappeared after the GVBD stage. Three new polypeptides (35, 36.5 and 39 KDa) appeared at GVBD and were detectable at metaphase II. In conclusion, the synthesis of proteins is required for the maintenance and transition of goat oocytes from GV to metaphase II during in vitro maturation.  相似文献   

16.
This study evaluated in vitro maturation of pig oocytes in two maturation media (TCM199 and NCSU23) supplemented with 10% porcine follicular fluid (pFF) or 0.1% polyvinyl alcohol (PVA) and four hormonal treatments. The best media was then used to evaluate the effect of reversible meiosis inhibitors cycloheximide (5 microgram/ml) [DOSAGE ERROR CORRECTED]and butyrolactone I (12.5M) on the maturation of pig oocytes was evaluated. After maturation for 44 h, the oocytes were fixed, stained, and examined under epifluorescence microscopy. The comparison of the proportion of oocytes in metaphase II revealed that hormonal treatment 2(incubation for 22 h - 10 ng EGF/ml, 10 IU hCG/ml and 10 IU eCG/ml, followed by incubation for 22 h - 10 ng EGF/ml) presented higher repeatability percentages: TCM+ PVA (54.5% - 61/112); TCM+ pFF (65.0% - 63/97);NCSU23 + PVA (54.6% - 65/119), and NCSU23 + pFF (58.1% - 61/105). The comparison of maturation media showed that TCM199 presented more constant results than NCSU23. Regarding supplementation with pFF or PVA, TCM199 with pFF presented better results. The comparison between butyrolactone I and cycloheximide demonstrated that both drugs effectively inhibited meiosis; however, only cycloheximide presented metaphase II percentages similar to the control (70.29% and 75.49%, respectively). In conclusion, it is recommended the use of TCM199 medium supplemented with pFF and hormonal treatment with 10 ng EGF/ml, 10 UI hCG/mland 10 UI eCG/ml during the first 22 h and more 22 h with 10 ng EGF/ml for the pig oocytes maturation. Butyrolactone I and cycloheximide effectively arrested/resumpted maturation; however, the oocytes percentages in metaphase II was the same for both cycloheximide and the control groups.  相似文献   

17.
The kinetics of nuclear maturation, M-phase promoting factor (MPF) and mitogen-activated protein kinase (MAP kinase) activities during in vitro maturation of porcine and bovine oocytes were examined. A further objective was to determine the duration of the meiotic stages during the maturation process. Porcine and bovine cumulus-oocyte complexes (COCs) were incubated in TCM 199 supplemented with 20% (v/v) heat inactivated fetal calf serum (FCS), 0.05microg/ml gentamycin, 0.02mg/ml insulin, 2.5microg/ml FSH and 5microg/ml LH. COCs were removed from the culture media in hourly intervals starting immediately after recovery from the follicle until 24 (bovine) or 48h (porcine) of culture. Oocytes were either fixed to evaluate the maturation status or the activity of MPF, assessed by its histone H1 kinase activity, and MAP kinase were determined by a radioactive assay simultaneously. In oocytes of both species, the MPF activity oscillated during the culture period with two maxima corresponding with the two metaphases: between 27-32 and after 46h (porcine) and between 6-9 and after 22h (bovine). There was a temporary decline in activity after 33-38 (porcine) and after 19h (bovine), which corresponded with anaphase I and telophase I. MAP kinase activity increased during the whole culture period and reached maximum levels after 47 (porcine) and after 22h (bovine). In porcine oocytes, the MAP kinase was activated before GVBD and MPF activation. In bovine oocytes, MPF and MAP kinase were activated at approximately the same time as the GVBD (8-9h of incubation). In average porcine, oocytes remain 23.4h in the germinal vesicle (GV) stage (13h in GV I, 5.7h in GV II, 3.2h in GV III and 1.5h in GV IV), 0.9h in diakinese, 9.6h in the metaphase I, 2.8h in anaphase I and 1.9h in telophase I of the first meiotic division. In bovine oocytes, the temporal distribution of the meiotic stages were 8.5h for the GV stage, 1.2h for diakinese, 8.3h for metaphase I, 1.6h for anaphase I and 1.9h for telophase I. These results indicate that the duration of the meiotic stages differs between the species and that MAP kinase is activated before MPF and GVBD in porcine oocytes.  相似文献   

18.
The role of the cumulus cells in initiating the resumption of meiosis after exposure to forskolin and dbcAMP was studied in the mouse. The resumption of meiosis was monitored by the percentage of germinal vesicle breakdown (GVBD) and polar body formation (PB). The cumulus-enclosed oocytes (CEO) and denuded oocytes (DO) were cultured with and without hypoxanthine (HX) in the culture medium. Three types of experiments were performed: (1) Effect of forskolin on spontaneous resumption of meiosis, i.e. cultures without HX, and two experiments in which HX is present throughout the culture: (2) Effect of transient exposure to forskolin or dibutyric-cyclic adenosinemonophosphate (dbcAMP) on GVBD prior to continued culture without forskolin or dbcAMP (oocyte priming). (3) Priming of CEO with forskolin for 2 hr, separation of cumulus cells and oocytes, followed by coculture of rejoined cumulus cells and oocytes, or coculture of the cumulus cells and new, unprimed DO. (1) Forskolin inhibited a spontaneous resumption of meiosis in a dose-dependent manner during the first 5 hr of culturing. After 22 hr all controls and CEO resumed meiosis, whereas only half of the DO did. (2) At least 1 hr of priming the CEO with forskolin is needed to induce GVBD and PB formation, but forskolin inhibited the resumption of meiosis when present for 24 hr. Similar results were obtained with a high concentration of dbcAMP. (3) A separation and rejoining of oocytes and cumulus cells after priming induced the resumption of meiosis in a significantly greater number of oocytes than in the control oocytes which were not primed. The GVBD of unstimulated DO also increased significantly when cocultured with cumulus cells from primed CEO. The percentage of GVBD in unprimed DO and in DO isolated from primed CEO was the same. We suggest that within 1–2 hr, forskolin and cAMP stimulate cumulus cells to produce a diffusible meiosis-inducing substance which overcomes HX-inhibition and induces oocyte maturation, including both GVBD and PB formation. The CEO must be primed for more than 2 hr before the resumption of meiosis in DO isolated from such CEO is induced. Oocyte-cumulus connections are crucial as far as initiating the production of a meiosis-inducing substance is concerned. Oocyte-cumulus connections are not needed for transferring this substance to the oocyte. © 1994 Wiley-Liss, Inc.  相似文献   

19.
RhoA, a small GTPase, plays versatile roles in many aspects of cell function such as stress fiber formation, cytokinesis, and cell polarization. In this study, we investigated the subcellular localization of RhoA and its possible roles during oocyte maturation and fertilization. RhoA was localized in the cytoplasm of eggs from the germinal vesicle (GV) stage to 2-cell stage, especially concentrating in the midbody of telophase spindle when oocyte extruded PB1 and PB2. The RhoA kinases (ROCKs) specific inhibitor Y-27632 blocked GV breakdown (GVBD) and first polar body extrusion, but did not affect apparatus formation and anaphase/telophase I entry. Anti-RhoA antibody microinjection into the oocytes showed similar results. RhoA inhibitor caused abnormal organization of microfilaments, failure of spindle rotation, PB2 extrusion as well as cleavage furrow formation, while sister chromatid separation was not affected. Microinjection of RhoA antibody also blocked PB2 emission. Our findings indicate that RhoA, by regulating microfilament organization, regulates several important events including GVBD, polar body emission, spindle rotation, and cleavage.  相似文献   

20.
Tatemoto H  Terada T 《Theriogenology》1995,43(6):1107-1113
To identify the stage during maturation at which new protein and RNA are synthesized for meiotic resumption, follicular oocytes were cultured in TCM-199 with the protein synthesis inhibitor cycloheximide or the hnRNA synthesis inhibitor alpha-amanitin. Although the meiotic resumption of cumulus-enclosed oocytes was completely blocked by the addition of 25 microg/ml cycloheximide at 4 h after the onset of culture, 23% of oocytes cultured from 5 h post cultivation in the medium with cycloheximide underwent germinal vesicle breakdown (GVBD). By further delaying the addition of cycloheximide, the proportion of oocytes which underwent GVBD increased. Addition of the inhibitor at 8 h or more post cultivation resulted in GVBD occurring in more than 87% of oocytes, though none of them were able to proceed beyond the metaphase I stage. In contrast, the addition of 50 microg/ml alpha-amanitin from the onset of culture significantly reduced the proportion of GVBD to 75% in cumulus-enclosed oocytes, while no significant reduction in the proportions of GVBD was noted in the case of its addition from 1 h of culture onward. However, denuded oocytes were almost insensitive to any treatments with alpha-amanitin. These results indicate that protein synthesis in the oocytes and RNA synthesis in the cumulus cells soon after the onset of culture are necessary for GVBD and that continuous protein synthesis following GVBD is indispensable for progression of the meiotic division in bovine oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号