首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The N2 position of guanine (G) is one of the major sites for DNA modification by various carcinogens. Eight oligonucleotides with varying adduct bulk at guanine N2 were analyzed for catalytic efficiency and fidelity with human DNA polymerase (pol) eta, which is involved in translesion synthesis (TLS). Pol eta effectively bypassed N2-methyl(Me)G, N2-ethyl(Et)G, N2-isobutyl(Ib)G, N2-benzyl(Bz)G, and N2-CH2(2-naphthyl)G but was severely blocked at N2-CH2(9-anthracenyl)G (N2-AnthG) and N2-CH2(6-benzo[a]pyrenyl)G (N2-BPG). Steady-state kinetic analysis showed proportional decreases of kcat/Km in dCTP insertion opposite N2-AnthG and N2-BPG (73 and 320-fold) and also kcat/Km in next-base extension from a C paired with each adduct (15 and 51-fold relative to G). Frequencies of dATP misinsertion and extension beyond mispairs were also proportionally increased (70 and 450-fold; 12 and 44-fold) with N2-AnthG and N2-BPG, indicating the effect of adduct bulk on blocking and misincorporation in TLS by pol eta. N2-AnthG and N2-BPG also greatly decreased the pre-steady-state kinetic burst rate (25 and 125-fold) compared to unmodified G. N2-AnthG decreased dCTP binding affinity (2.6-fold) and increased DNA substrate binding affinity. These results and the small kinetic thio effects (S(p)-dCTPalphaS) suggest that the early steps, possibly conformational change, are interfered with by the bulky adducts. In contrast, human pol delta bypassed adducts effectively up to N2-EtG but was strongly blocked by N2-IbG and larger adducts. We conclude that TLS DNA polymerases may be required for the efficient bypass of pol delta-blocking N2-G adducts bulkier than N2-EtG in human cells, and the bulk size can be a major factor for efficient and error-free bypass at these adducts by TLS DNA polymerases.  相似文献   

2.
DNA polymerases beta and eta are among the few eukaryotic polymerases known to efficiently bypass cisplatin and oxaliplatin adducts in vitro. Our laboratory has previously established that both polymerases misincorporated dTTP with high frequency across from cisplatin- and oxaliplatin-GG adducts. This decrease in polymerase fidelity on platinum-damaged DNA could lead to in vivo mutations, if this base substitution were efficiently elongated. In this study, we performed a steady-state kinetic analysis of the steps required for fixation of dTTP misinsertion during translesion synthesis past cisplatin- and oxaliplatin-GG adducts by pol beta and pol eta. The efficiency of translesion synthesis by pol eta past Pt-GG adducts was very similar to that observed for this polymerase when the template contains thymine-thymine dimers. This finding suggested that pol eta could play a role in translesion synthesis past platinum-GG adducts in vivo. On the other hand, translesion synthesis past platinum-GG adducts by pol beta was much less efficient. Translesion synthesis by pol eta is likely to be predominantly error-free, since the probability of correct insertion and extension by pol eta was 1000-2000-fold greater than the probability of incorrect insertion and extension. Our results also indicated that for pol eta the frequency of misincorporation is the same across from the 3'G and the 5'G of the platinum-GG adducts for both cisplatin and oxaliplatin adducts. On the other hand, pol beta is more likely to misinsert at the 3'G of the adducts and misinsertion occurs at higher frequency for oxaliplatin-GG than for cisplatin-GG adducts.  相似文献   

3.
The encounter of replication forks with DNA lesions may lead to fork arrest and/or the formation of single-stranded gaps. A major strategy to cope with these replication irregularities is translesion DNA replication (TLS), in which specialized error-prone DNA polymerases bypass the blocking lesions. Recent studies suggest that TLS across a particular DNA lesion may involve as many as four different TLS polymerases, acting in two-polymerase reactions in which insertion by a particular polymerase is followed by extension by another polymerase. Insertion determines the accuracy and mutagenic specificity of the TLS reaction, and is carried out by one of several polymerases such as polη, polκ or polι. In contrast, extension is carried out primarily by polζ. In cells from XPV patients, which are deficient in TLS across cyclobutane pyrimidine dimers (CPD) due to a deficiency in polη, TLS is carried out by at least two backup reactions each involving two polymerases: One reaction involves polκ and polζ, and the other polι and polζ. These mechanisms may also assist polη in normal cells under an excessive amount of UV lesions.  相似文献   

4.
Arana ME  Potapova O  Kunkel TA  Joyce CM 《Biochemistry》2011,50(46):10126-10135
The fidelity of DNA synthesis by A-family DNA polymerases ranges from very accurate for bacterial, bacteriophage, and mitochondrial family members to very low for certain eukaryotic homologues. The latter include DNA polymerase ν (Pol ν) which, among all A-family polymerases, is uniquely prone to misincorporating dTTP opposite template G in a highly sequence-dependent manner. Here we present a kinetic analysis of this unusual error specificity, in four different sequence contexts and in comparison to Pol ν's more accurate A-family homologue, the Klenow fragment of Escherichia coli DNA polymerase I. The kinetic data strongly correlate with rates of stable misincorporation during gap-filling DNA synthesis. The lower fidelity of Pol ν compared to that of Klenow fragment can be attributed primarily to a much lower catalytic efficiency for correct dNTP incorporation, whereas both enzymes have similar kinetic parameters for G-dTTP misinsertion. The major contributor to sequence-dependent differences in Pol ν error rates is the reaction rate, k(pol). In the sequence context where fidelity is highest, k(pol) for correct G-dCTP incorporation by Pol ν is ~15-fold faster than k(pol) for G-dTTP misinsertion. However, in sequence contexts where the error rate is higher, k(pol) is the same for both correct and mismatched dNTPs, implying that the transition state does not provide additional discrimination against misinsertion. The results suggest that Pol ν may be fine-tuned to function when high enzyme activity is not a priority and may even be disadvantageous and that the relaxed active-site specificity toward the G-dTTP mispair may be associated with its cellular function(s).  相似文献   

5.
Human DNA polymerase nu (pol nu) is one of three A family polymerases conserved in vertebrates. Although its biological functions are unknown, pol nu has been implicated in DNA repair and in translesion DNA synthesis (TLS). Pol nu lacks intrinsic exonucleolytic proofreading activity and discriminates poorly against misinsertion of dNTP opposite template thymine or guanine, implying that it should copy DNA with low base substitution fidelity. To test this prediction and to comprehensively examine pol nu DNA synthesis fidelity as a clue to its function, here we describe human pol nu error rates for all 12 single base-base mismatches and for insertion and deletion errors during synthesis to copy the lacZ alpha-complementation sequence in M13mp2 DNA. Pol nu copies this DNA with average single-base insertion and deletion error rates of 7 x 10(-5) and 17 x 10(-5), respectively. This accuracy is comparable to that of replicative polymerases in the B family, lower than that of its A family homolog, human pol gamma, and much higher than that of Y family TLS polymerases. In contrast, the average single-base substitution error rate of human pol nu is 3.5 x 10(-3), which is inaccurate compared to the replicative polymerases and comparable to Y family polymerases. Interestingly, the vast majority of errors made by pol nu reflect stable misincorporation of dTMP opposite template G, at average rates that are much higher than for homologous A family members. This pol nu error is especially prevalent in sequence contexts wherein the template G is preceded by a C-G or G-C base pair, where error rates can exceed 10%. Amino acid sequence alignments based on the structures of more accurate A family polymerases suggest substantial differences in the O-helix of pol nu that could contribute to this unique error signature.  相似文献   

6.
Repair of interstrand DNA cross-links (ICLs) in Escherichia coli can occur through a combination of nucleotide excision repair (NER) and homologous recombination. However, an alternative mechanism has been proposed in which repair is initiated by NER followed by translesion DNA synthesis (TLS) and completed through another round of NER. Using site-specifically modified oligodeoxynucleotides that serve as a model for potential repair intermediates following incision by E. coli NER proteins, the ability of E. coli DNA polymerases (pol) II and IV to catalyze TLS past N(2)-N(2)-guanine ICLs was determined. No biochemical evidence was found suggesting that pol II could bypass these lesions. In contrast, pol IV could catalyze TLS when the nucleotides that are 5' to the cross-link were removed. The efficiency of TLS was further increased when the nucleotides 3' to the cross-linked site were also removed. The correct nucleotide, C, was preferentially incorporated opposite the lesion. When E. coli cells were transformed with a vector carrying a site-specific N(2)-N(2)-guanine ICL, the transformation efficiency of a pol II-deficient strain was indistinguishable from that of the wild type. However, the ability to replicate the modified vector DNA was nearly abolished in a pol IV-deficient strain. These data strongly suggest that pol IV is responsible for TLS past N(2)-N(2)-guanine ICLs.  相似文献   

7.
Replication across unrepaired DNA lesions in mammalian cells is effected primarily by specialized, low fidelity DNA polymerases. We studied translesion DNA synthesis (TLS) across a benzo[a]pyrene-guanine (BP-G) adduct, a major mutagenic DNA lesion generated by tobacco smoke. This was done using a quantitative assay that measures TLS indirectly, by measuring the recovery of gapped plasmids transfected into cultured mammalian cells. Analysis of PolK(+/+) mouse embryo fibroblasts (MEFs) showed that TLS across the BP-G adduct occurred with an efficiency of 48 +/- 4%, which is an order of magnitude higher than in Escherichia coli. In PolK(-/-) MEFs, bypass was 16 +/- 1%, suggesting that at least two-thirds of the BP-G adducts in MEFs were bypassed exclusively by polymerase kappa (polkappa). In contrast, poleta was not required for bypass across BP-G in a human XP-V cell line. Analysis of misinsertion specificity across BP-G revealed that bypass was more error-prone in MEFs lacking polkappa. Expression of polkappa from a plasmid introduced into PolK(-/-) MEFs restored both the extent and fidelity of bypass across BP-G. Polkappa was not required for bypass of a synthetic abasic site. In vitro analysis demonstrated efficient bypass across BP-G by both polkappa and poleta, suggesting that the biological role of polkappa in TLS across BP-G is due to regulation of TLS and not due to an exclusive ability to bypass this lesion. These results indicate that BP-G is bypassed in mammalian cells with relatively high efficiency and that polkappa bypasses BP-G in vivo with higher efficiency and higher accuracy than other DNA polymerases.  相似文献   

8.
Escherichia coli polymerase V (pol V/UmuD(2)'C) is a low-fidelity DNA polymerase that has recently been shown to avidly incorporate ribonucleotides (rNTPs) into undamaged DNA. The fidelity and sugar selectivity of pol V can be modified by missense mutations around the "steric gate" of UmuC. Here, we analyze the ability of three steric gate mutants of UmuC to facilitate translesion DNA synthesis (TLS) of a cyclobutane pyrimidine dimer (CPD) in vitro, and to promote UV-induced mutagenesis and cell survival in vivo. The pol V (UmuC_F10L) mutant discriminates against rNTP and incorrect dNTP incorporation much better than wild-type pol V and although exhibiting a reduced ability to bypass a CPD in vitro, does so with high-fidelity and consequently produces minimal UV-induced mutagenesis in vivo. In contrast, pol V (UmuC_Y11A) readily misincorporates both rNTPs and dNTPs during efficient TLS of the CPD in vitro. However, cells expressing umuD'C(Y11A) were considerably more UV-sensitive and exhibited lower levels of UV-induced mutagenesis than cells expressing wild-type umuD'C or umuD'C(Y11F). We propose that the increased UV-sensitivity and reduced UV-mutability of umuD'C(Y11A) is due to excessive incorporation of rNTPs during TLS that are subsequently targeted for repair, rather than an inability to traverse UV-induced lesions.  相似文献   

9.
Among several hypotheses to explain how translesion synthesis (TLS) by DNA polymerase eta (pol eta) suppresses ultraviolet light-induced mutagenesis in vivo despite the fact that pol eta copies DNA with low fidelity, here we test whether replication accessory proteins enhance the fidelity of TLS by pol eta. We first show that the single-stranded DNA binding protein RPA, the sliding clamp PCNA, and the clamp loader RFC slightly increase the processivity of yeast pol eta and its ability to recycle to new template primers. However, these increases are small, and they are similar when copying an undamaged template and a template containing a cis-syn TT dimer. Consequently, the accessory proteins do not strongly stimulate the already robust TT dimer bypass efficiency of pol eta. We then perform a comprehensive analysis of yeast pol eta fidelity. We show that it is much less accurate than other yeast DNA polymerases and that the accessory proteins have little effect on fidelity when copying undamaged templates or when bypassing a TT dimer. Thus, although accessory proteins clearly participate in pol eta functions in vivo, they do not appear to help suppress UV mutagenesis by improving pol eta bypass fidelity per se.  相似文献   

10.
DNA polymerase beta (pol beta) is the only mammalian DNA polymerase identified to date that can catalyze extensive bypass of platinum-DNA adducts in vitro. Previous studies suggest that DNA synthesis by pol beta is distributive on primed single-stranded DNA and processive on gapped DNA. The data presented in this paper provide an analysis of translesion synthesis past cisplatin- and oxaliplatin-DNA adducts by pol beta functioning in both distributive and processive modes using primer extension and steady-state kinetic experiments. Translesion synthesis past Pt-DNA adducts was greater with gapped DNA templates than with single-stranded DNA templates. In the processive mode pol beta did not discriminate between cisplatin and oxaliplatin adducts, while in the distributive mode it displayed about 2-fold increased ability for translesion synthesis past oxaliplatin compared with cisplatin adducts. The differentiation between cisplatin and oxaliplatin adducts resulted from a K(m)-mediated increase in the efficiency of dCTP incorporation across from the 3'-G of oxaliplatin-GG adducts. Rates of misincorporation across platinated guanines determined by the steady-state kinetic assay were higher in reactions with primed single-stranded templates than with gapped DNA and a slight increase in the misincorporation of dTTP across from the 3'-G was found for oxaliplatin compared with cisplatin adducts.  相似文献   

11.
DNA replication across blocking lesions occurs by translesion DNA synthesis (TLS), involving a multitude of mutagenic DNA polymerases that operate to protect the mammalian genome. Using a quantitative TLS assay, we identified three main classes of TLS in human cells: two rapid and error‐free, and the third slow and error‐prone. A single gene, REV3L, encoding the catalytic subunit of DNA polymerase ζ (polζ), was found to have a pivotal role in TLS, being involved in TLS across all lesions examined, except for a TT cyclobutane dimer. Genetic epistasis siRNA analysis indicated that discrete two‐polymerase combinations with polζ dictate error‐prone or error‐free TLS across the same lesion. These results highlight the central role of polζ in both error‐prone and error‐free TLS in mammalian cells, and show that bypass of a single lesion may involve at least three different DNA polymerases, operating in different two‐polymerase combinations.  相似文献   

12.
Yagi Y  Ogawara D  Iwai S  Hanaoka F  Akiyama M  Maki H 《DNA Repair》2005,4(11):1252-1269
In translesion synthesis (TLS), specialized DNA polymerases (pols) facilitate progression of replication forks stalled by DNA damage. Although multiple TLS pols have been identified in eukaryotes, little is known about endogenous TLS pols and their relative contributions to TLS in vivo because of their low cellular abundance. Taking advantage of Xenopus laevis oocyte cells, with their extraordinary size and abundant enzymes involved in DNA metabolism, we have identified and characterized endogenous TLS pols for DNA damage induced by ultraviolet (UV) irradiation. We designed a TLS assay which monitors primer elongation on a synthetic oligomer template over a single UV-induced lesion, either a cys-syn cyclobutane pyrimidine dimer (CPD) or a pyrimidine (6-4) pyrimidone photoproduct. Four distinct TLS activities (TLS1-TLS4) were identified in X. laevis oocyte extracts, using three template/primer (T/P) DNA substrates having various sites at which primer extension is initiated relative to the lesion. TLS1 and TLS2 activities appear to be sequence-dependent. TLS3 and TLS4 extended the primers over the CPD in an error-free manner irrespective of sequence context. Base insertion opposite the CPD of the T/P substrate in which the 3'-end of the primer is placed one base upstream of the lesion was observed only with TLS3. TLS3 and TLS4 showed primer extension with similar efficiencies on the T/P substrate whose 3'-primer terminal dinucleotide (AA) was complementary to the CPD lesion. Investigations with antibodies and recombinant pols revealed that TLS3 and TLS4 were most likely attributable to pol eta and pol kappa, respectively. These results indicate that error-free insertion in CPD bypass is due mainly to pol eta (TLS3) in the extracts, and suggest that pol kappa (TLS4) may assist pol eta (TLS3) in error-free extension during CPD bypass.  相似文献   

13.
DNA polymerase III (DNA pol III) efficiently replicates the Escherichia coli genome, but it cannot bypass DNA damage. Instead, translesion synthesis (TLS) DNA polymerases are employed to replicate past damaged DNA; however, the exchange of replicative for TLS polymerases is not understood. The umuD gene products, which are up-regulated during the SOS response, were previously shown to bind to the α, β and ε subunits of DNA pol III. Full-length UmuD inhibits DNA replication and prevents mutagenic TLS, while the cleaved form UmuD' facilitates mutagenesis. We show that α possesses two UmuD binding sites: at the N-terminus (residues 1-280) and the C-terminus (residues 956-975). The C-terminal site favors UmuD over UmuD'. We also find that UmuD, but not UmuD', disrupts the α-β complex. We propose that the interaction between α and UmuD contributes to the transition between replicative and TLS polymerases by removing α from the β clamp.  相似文献   

14.
The activity of DNA polymerase-associated proofreading 3'-exonucleases is generally enhanced in less stable DNA regions leading to a reduction in base substitution error frequencies in AT- versus GC-rich sequences. Unexpectedly, however, the opposite result was found for Escherichia coli DNA polymerase II (pol II). Nucleotide misincorporation frequencies for pol II were found to be 3-5-fold higher in AT- compared with GC-rich DNA, both in the presence and absence of polymerase processivity subunits, beta dimer and gamma complex. In contrast, E. coli pol III holoenzyme, behaving "as expected," exhibited 3-5-fold lower misincorporation frequencies in AT-rich DNA. A reduction in fidelity in AT-rich regions occurred for pol II despite having an associated 3'-exonuclease proofreading activity that preferentially degrades AT-rich compared with GC-rich DNA primer-template in the absence of DNA synthesis. Concomitant with a reduction in fidelity, pol II polymerization efficiencies were 2-6-fold higher in AT-rich DNA, depending on sequence context. Pol II paradoxical fidelity behavior can be accounted for by the enzyme's preference for forward polymerization in AT-rich sequences. The more efficient polymerization suppresses proofreading thereby causing a significant increase in base substitution error rates in AT-rich regions.  相似文献   

15.
Adar S  Livneh Z 《DNA Repair》2006,5(4):479-490
DNA lesions that have escaped DNA repair are tolerated via translesion DNA synthesis (TLS), carried out by specialized error-prone DNA polymerases. To evaluate the robustness of the TLS system in human cells, we examined its ability to cope with foreign non-DNA stretches of 3 or 12 methylene residues, using a gap-lesion plasmid assay system. We found that both the trimethylene and dodecamethylene inserts were bypassed with significant efficiencies in human cells, using both misinsertion and misalignment mechanisms. TLS across these non-DNA segments was aphidicolin-sensitive, and did not require poleta. In vitro primer extension assays showed that purified poleta, polkappa and poliota were each capable of inserting each of the four nucleotides opposite the trimethylene chain, but only poleta and polkappa could fully bypass it. Poleta and poliota, but not polkappa, could also insert each of the four nucleotides opposite the dodecamethylene chain, but all three polymerases were severely blocked by this lesion. The ability of TLS polymerases to insert nucleotides opposite a hydrocarbon chain, despite the lack of any similarity to DNA, suggests that they may act via a mode of transient and local template-independent polymerase activity, and highlights the robustness of the TLS system in human cells.  相似文献   

16.
Escherichia coli DNA polymerase IV (pol IV), a member of the error-prone Y family, predominantly generates -1 frameshifts when copying DNA in vitro. T-->G transversions and T-->C transitions are the most frequent base substitutions observed. The in vitro data agree with mutational spectra obtained when pol IV is overexpressed in vivo. Single base deletion and base substitution rates measured in the lacZalpha gene in vitro are, on average, 2 x 10(-4) and 5 x 10(-5), respectively. The range of misincorporation and mismatch extension efficiencies determined kinetically are 10(-3) to 10(-5). The presence of beta sliding clamp and gamma-complex clamp loading proteins strongly enhance pol IV processivity but have no discernible influence on fidelity. By analyzing changes in fluorescence of a 2-aminopurine template base undergoing replication in real time, we show that a "dNTP-stabilized" misalignment mechanism is responsible for making -1 frameshift mutations on undamaged DNA. In this mechanism, a dNTP substrate is paired "correctly" opposite a downstream template base, on a "looped out" template strand instead of mispairing opposite a next available template base. By using the same mechanism, pol IV "skips" past an abasic template lesion to generate a -1 frameshift. A crystal structure depicting dNTP-stabilized misalignment was reported recently for Sulfolubus solfataricus Dpo4, a Y family homolog of Escherichia coli pol IV.  相似文献   

17.
An interesting property of the Escherichia coli DNA polymerase II is the stimulation in DNA synthesis mediated by the DNA polymerase III accessory proteins beta,gamma complex. In this paper we have studied the basis for the stimulation in pol II activity and have concluded that these accessory proteins stimulate pol II activity by increasing the processivity of the enzyme between 150- and 600-fold. As is the case with pol III, processive synthesis by pol II requires both beta,gamma complex and SSB protein. Whereas the intrinsic velocity of synthesis by pol II is 20-30 nucleotides per s with or without the accessory proteins, the processivity of pol II is increased from approximately five nucleotides to greater than 1600 nucleotides incorporated per template binding event. The effect of the accessory proteins on the rate of replication is far greater on pol III than on pol II; pol III holoenzyme is able to complete replication of circular single-stranded M13 DNA in less than 20 s, whereas pol II in the presence of the gamma complex and beta requires approximately 5 min. We have investigated the effect of beta,gamma complex proteins on bypass of a site-specific abasic lesion by E. coli DNA polymerases I, II, and III. All three polymerases are extremely inefficient at bypass of the abasic lesion. We find limited bypass by pol I with no change upon addition of accessory proteins. pol II also shows limited bypass of the abasic site, dependent on the presence of beta,gamma complex and SSB. pol III shows no significant bypass of the abasic site with or without beta,gamma complex.  相似文献   

18.
Kusumoto R  Masutani C  Iwai S  Hanaoka F 《Biochemistry》2002,41(19):6090-6099
The XP-V (xeroderma pigmentosum variant) gene product, human DNA polymerase eta (pol eta), catalyzes efficient and accurate translesion synthesis (TLS) past cis-syn thymine-thymine dimers (TT dimer). In addition, recent reports suggest that pol eta is involved in TLS past various other types of lesion, including an oxidative DNA damage, 8-hydroxyguanine. Here, we compare the abilities of pol alpha and pol eta to replicate across thymine glycol (Tg) using purified synthetic oligomers containing a 5R- or 5S-Tg. DNA synthesis by pol alpha was inhibited at both steps of insertion of a nucleotide opposite the lesion and extension from the resulting product, indicating that pol alpha can weakly contribute to TLS past Tg lesions. In contrast, pol eta catalyzed insertion opposite the lesion as efficient as that opposite undamaged T, while extension was inhibited especially on the 5S-Tg template. Thus, pol eta catalyzed relatively efficient TLS past 5R-Tg than 5S-Tg. To compare the TLS abilities of pol eta for these lesions, we determined the kinetic parameters of pol eta for catalyzing TLS past a TT dimer, an N-2-acetylaminofluorene-modified guanine, and an abasic site analogue. The possible mechanisms of pol eta-catalyzed TLS are discussed on the basis of these results.  相似文献   

19.
The fidelity of DNA synthesis as determined by the misincorporation of the base analogue 2-aminopurine in competition with adenine has been measured as a function of deoxynucleoside triphosphate substrate concentrations using purified mutator (L56), antimutator (L141), and wild type (T4D) T4 DNA polymerases. Although the rates of both incorporation and turnover of aminopurine and adenine decrease as substrate concentrations are decreased, the ratio of turnover/polymerase activity is increased. Thus, the nuclease/polymerase ratio of each of these three DNA polymerases can be controlled. The misincorporation of aminopurine decreases with decreasing substrate concentrations such that all three enzymes approach nearly identical misincorporation frequencies at the lowest substrate concentration. The increased accuracy of DNA synthesis corresponds to conditions producing a high nuclease/polymerase ratio. The misinsertion frequency for aminopurine is independent of substrate concentrations and enzyme phenotype; therefore, the increased accuracy of DNA synthesis with decreasing substrate concentrations is shown to be a result of increased nuclease activity and not increased polymerase or nuclease specificity. The data are analyzed in terms of a kinetic model of DNA polymerase accuracy which proposes that discrimination in nucleotide insertion and removal is based on the free energy difference between matched and mismatched base pairs. A value of 1.1 kcal/mol free energy difference, delta G, between adenine: thymine and aminopurine:thymine base pairs is predicted by model analysis of the cocentration dependence of aminopurine misincorporation and removal frequencies. An independent estimate of this free energy difference based on the 6-fold higher apparent Km of T4 DNA polymerase for aminopurine compared to adenine also gives a value of 1.1 kcal/mol. It is shown that the aminopurine misinsertion frequency for an enzyme having either extremely low 3'-exonuclease activity, Escherichia coli DNA polymerase I, or no measurable exonuclease activity, calf thymus DNA polymerase alpha, is 12 to 15%, which is similar to that for the T4 polymerases and consistent with delta G approximately 1.1 kcal/mol.  相似文献   

20.
The products of the SOS-regulated umuDC genes are required for most UV and chemical mutagenesis in Escherichia coli. Recently it has been recognized that UmuC is the founding member of a superfamily of novel DNA polymerases found in all three kingdoms of life. Key findings leading to these insights are reviewed, placing a particular emphasis on contributions made by Bryn Bridges and on his interest in the importance of interactions between the umuDC gene products and the replicative DNA polymerase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号