首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in cytosolic free Mg(2+) and adenosine nucleotide phosphates affect cardiac excitability and contractility. To investigate how modulation by Mg(2+), ATP, and ADP of K(ATP) and L-type Ca(2+) channels influences excitation-contraction coupling, we incorporated equations for intracellular ATP and MgADP regulation of the K(ATP) current and MgATP regulation of the L-type Ca(2+) current in an ionic-metabolic model of the canine ventricular myocyte. The new model: 1), quantitatively reproduces a dose-response relationship for the effects of changes in ATP on K(ATP) current, 2), simulates effects of ADP in modulating ATP sensitivity of K(ATP) channel, 3), predicts activation of Ca(2+) current during rapid increase in MgATP, and 4), demonstrates that decreased ATP/ADP ratio with normal total Mg(2+) or increased free Mg(2+) with normal ATP and ADP activate K(ATP) current, shorten action potential, and alter ionic currents and intracellular Ca(2+) signals. The model predictions are in agreement with experimental data measured under normal and a variety of pathological conditions.  相似文献   

2.
Ouabain and other cardiotonic steroids (CTS) inhibit Na(+) pumps and are widely believed to exert their cardiovascular effects by raising the cytosolic Na(+) concentration ([Na(+)](cyt)) and Ca(2+). This view has not been rigorously reexamined despite evidence that low-dose CTS may act without elevating [Na(+)](cyt); also, it does not explain the presence of multiple, functionally distinct isoforms of the Na(+) pump in many cells. We investigated the effects of Na(+) pump inhibition on [Na(+)](cyt) (with Na(+) binding benzofuran isophthalate) and Ca(2+) transients (with fura 2) in primary cultured arterial myocytes. Low concentrations of ouabain (3-100 nM) or human ouabain-like compound or reduced extracellular K(+) augmented hormone-evoked mobilization of stored Ca(2+) but did not increase bulk [Na(+)](cyt). Augmentation depended directly on external Na(+), but not external Ca(2+), and was inhibited by 10 mM Mg(2+) or 10 microM La(3+). Evoked Ca(2+) transients in pressurized small resistance arteries were also augmented by nanomolar ouabain and inhibited by Mg(2+). These results suggest that Na(+) enters a tiny cytosolic space between the plasmalemma (PL) and the adjacent sarcoplasmic reticulum (SR) via an Mg(2+)- and La(3+)-blockable mechanism that is activated by SR store depletion. The Na(+) and Ca(2+) concentrations within this space may be controlled by clusters of high ouabain affinity (alpha3) Na(+) pumps and Na/Ca exchangers located in PL microdomains overlying the SR. Inhibition of the alpha3 pumps by low-dose ouabain should raise the local concentrations of Na(+) and Ca(2+) and augment hormone-evoked release of Ca(2+) from SR stores. Thus the clustering of small numbers of specific PL ion transporters adjacent to the SR can regulate global Ca(2+) signaling. This mechanism may affect vascular tone and blood flow and may also influence Ca(2+) signaling in many other types of cells.  相似文献   

3.
Isolated sarcoplasmic reticulum vesicles in the presence of Mg(2+) and absence of Ca(2+) retain significant ATP hydrolytic activity that can be attributed to the Ca(2+)-ATPase protein. At neutral pH and the presence of 5 mM Mg(2+), the dependence of the hydrolysis rate on a linear ATP concentration scale can be fitted by a single hyperbolic function. MgATP hydrolysis is inhibited by either free Mg(2+) or free ATP. The rate of ATP hydrolysis is not perturbed by vanadate, whereas the rate of p-nitrophenyl phosphate hydrolysis is not altered by a nonhydrolyzable ATP analog. ATP binding affinity at neutral pH and in a Ca(2+)-free medium is increased by Mg(2+) but decreased by vanadate when Mg(2+) is present. It is suggested that MgATP hydrolysis in the absence of Ca(2+) requires some optimal adjustment of the enzyme cytoplasmic domains. The Ca(2+)-independent activity is operative at basal levels of cytoplasmic Ca(2+) or when the Ca(2+) binding transition is impeded.  相似文献   

4.
We used the direct route of occlusion to study the equilibrium between free and occluded Rb(+) in the Na(+)/K(+)-ATPase, in media with different concentrations of ATP, Mg(2+), or Na(+). An empirical equation, with the restrictions imposed by the stoichiometry of ligand binding was fitted to the data. This allowed us to identify which states of the enzyme were present in each condition and to work out the schemes and equations that describe the equilibria between the ATPase, Rb(+), and ATP, Mg(2+), or Na(+). These equations were fitted to the corresponding experimental data to find out the values of the equilibrium constants of the reactions connecting the different enzyme states. The three ligands decreased the apparent affinity for Rb(+) occlusion without affecting the occlusion capacity. With [ATP] tending to infinity, enzyme species with one or two occluded Rb(+) seem to be present and full occlusion seems to occur in enzymes saturated with the nucleotide. In contrast, when either [Mg(2+)] or [Na(+)] tended to infinity no occlusion was detectable. Both Mg(2+) and Na(+) are displaced by Rb(+) through a process that seems to need the binding and occlusion of two Rb(+), which suggests that in these conditions Rb(+) occlusion regains the stoichiometry of the physiological operation of the Na(+) pump.  相似文献   

5.
Fat cells from rat and rabbit hydrolyzed externally applied adenosine triphosphate at a rate of about 1.8 nmol times mg(-1) cells times min(-1) corresponding to about 0.3 mumol times mg(-1) protein tinus min(-1). Similar activities were found in cell homogenates. In purified adipocyte plasma membranes the rate of hydrolysis was about 1.8 mumol times mg(-1) protein times min(-1). The hydrolytic activity was dependent on divalent metal ions. Mg(2+), Mn(2+) and Ca(2+) gave highest activities. The activity was maximal at about equimolar concentrations of M(2+) and ATP. Km for MgATP was about 0.23 mM and for CaATP about 0.36 mM. Combinations of Mg(2+) and Ca(2+), or of Mg(2+), Na(+) and K(+) gave similar activities as did Mg(2+) only. At concentrations of 1 mM the following nucleotides were hydrolyzed with a decreasing rate: ATP > ITP > GTP > UTP = CTP. In isolated fat cells the beta-adrenergic drug isoproterenol and insulin slightly increased the rate of hydrolysis of external ATP, while the alpha-effector clonidine was inhibitory. The results suggest that a major portion of the ATP hydrolytic activity of the fat cell plasma membrane represents a nucleotide pyrophosphatase activity with access to externally applied ATP.  相似文献   

6.
The bidentate complex of ATP with Cr(3+), CrATP, is a nucleotide analog that is known to inhibit the sarcoplasmic reticulum Ca(2+)-ATPase and the Na(+),K(+)-ATPase, so that these enzymes accumulate in a conformation with the transported ion (Ca(2+) and Na(+), respectively) occluded from the medium. Here, it is shown that CrATP is also an effective and irreversible inhibitor of the plasma membrane Ca(2+)-ATPase. The complex inhibited with similar efficiency the Ca(2+)-dependent ATPase and the phosphatase activities as well as the enzyme phosphorylation by ATP. The inhibition proceeded slowly (T(1/2)=30 min at 37 degrees C) with a K(i)=28+/-9 microM. The inclusion of ATP, ADP or AMPPNP in the inhibition medium effectively protected the enzyme against the inhibition, whereas ITP, which is not a PMCA substrate, did not. The rate of inhibition was strongly dependent on the presence of Mg(2+) but unaltered when Ca(2+) was replaced by EGTA. In spite of the similarities with the inhibition of other P-ATPases, no apparent Ca(2+) occlusion was detected concurrent with the inhibition by CrATP. In contrast, inhibition by the complex of La(3+) with ATP, LaATP, induced the accumulation of phosphoenzyme with a simultaneous occlusion of Ca(2+) at a ratio close to 1.5 mol/mol of phosphoenzyme. The results suggest that the transport of Ca(2+) promoted by the plasma membrane Ca(2+)-ATPase goes through an enzymatic phospho-intermediate that maintains Ca(2+) ions occluded from the media. This intermediate is stabilized by LaATP but not by CrATP.  相似文献   

7.
Kinetics and inhibition of Na(+)/K(+)-ATPase and Mg(2+)-ATPase activity from rat synaptic plasma membrane (SPM), by separate and simultaneous exposure to transition (Cu(2+), Zn(2+), Fe(2+) and Co(2+)) and heavy metals (Hg(2+) and Pb(2+)) ions were studied. All investigated metals produced a larger maximum inhibition of Na(+)/K(+)-ATPase than Mg(2+)-ATPase activity. The free concentrations of the key species (inhibitor, MgATP(2-), MeATP(2-)) in the medium assay were calculated and discussed. Simultaneous exposure to the combinations Cu(2+)/Fe(2+) or Hg(2+)/Pb(2+) caused additive inhibition, while Cu(2+)/Zn(2+) or Fe(2+)/Zn(2+) inhibited Na(+)/K(+)-ATPase activity synergistically (i.e., greater than the sum metal-induced inhibition assayed separately). Simultaneous exposure to Cu(2+)/Fe(2+) or Cu(2+)/Zn(2+) inhibited Mg(2+)-ATPase activity synergistically, while Hg(2+)/Pb(2+) or Fe(2+)/Zn(2+) induced antagonistic inhibition of this enzyme. Kinetic analysis showed that all investigated metals inhibited Na(+)/K(+)-ATPase activity by reducing the maximum velocities (V(max)) rather than the apparent affinity (Km) for substrate MgATP(2-), implying the noncompetitive nature of the inhibition. The incomplete inhibition of Mg(2+)-ATPase activity by Zn(2+), Fe(2+) and Co(2+) as well as kinetic analysis indicated two distinct Mg(2+)-ATPase subtypes activated in the presence of low and high MgATP(2-) concentration. EDTA, L-cysteine and gluthathione (GSH) prevented metal ion-induced inhibition of Na(+)/K(+)-ATPase with various potencies. Furthermore, these ligands also reversed Na(+)/K(+)-ATPase activity inhibited by transition metals in a concentration-dependent manner, but a recovery effect by any ligand on Hg(2+)-induced inhibition was not obtained.  相似文献   

8.
We have constructed a three-dimensional reaction-diffusion model of the mammalian cardiac calcium release unit. We analyzed effects of diffusion coefficients, single channel current amplitude, density of RyR channels, and reaction kinetics of ATP(2-) with Ca(2+) and Mg(2+) ions on spatiotemporal concentration profiles of Ca(2+), Mg(2+), and ATP(2-) in the dyadic cleft during Ca(2+) release. The model revealed that Ca(2+) concentration gradients persist near RyRs in the steady state. Even with low number of open RyRs, peak [Ca(2+)] in the dyadic space reached values similar to estimates of luminal [Ca(2+)] in approximately 1 ms, suggesting that during calcium release the Ca(2+) gradient moves from the cisternal membrane towards the boundary of the dyadic space with the cytosol. The released Ca(2+) bound to ATP(2-), and thus substantially decreased ATP(2-) concentration in the dyadic space. The released Ca(2+) could also replace Mg(2+) in its complex with ATP(2-) during first milliseconds of release if dissociation of MgATP was fast. The results suggest that concentration changes of Ca(2+), Mg(2+), and ATP(2-) might be large and fast enough to reduce dyadic RyR activity. Thus, under physiological conditions, termination of calcium release may be facilitated by the synergic effect of the construction and chemistry of mammalian cardiac dyads.  相似文献   

9.
Using the patch-clamp technique, we have identified an intermediate conductance Ca(2+)-activated K(+) channel from bullfrog (Rana catesbeiana) erythrocytes and have investigated the regulation of channel activity by cytosolic ATP. The channel was highly selective for K(+) over Na(+), gave a linear I-V relationship with symmetrical 117.5 mM K(+) solutions and had a single-channel conductance of 60 pS. Channel activity was dependent on Ca(2+) concentration (K(1/2) = 600 nM) but voltage-independent. These basic characteristics are similar to those of human and frog erythrocyte Ca(2+)-activated K(+) (Gardos) channels previously reported. However, cytoplasmic application of ATP reduced channel activity with block exhibiting a novel bell-shaped concentration dependence. The channel was inhibited most by approximately 10 microM ATP (P(0) reduced to 5% of control) but less blocked by lower and higher concentrations of ATP. Moreover, the novel type of ATP block did not require Mg(2+), was independent of PKA or PKC, and was mimicked by a nonhydrolyzable ATP analog, AMP-PNP. This suggests that ATP exerts its effect by direct binding to sites on the channel or associated regulatory proteins, but not by phosphorylation of either of these components.  相似文献   

10.
ATP and the divalent cations Mg2+ and Ca2+ regulated K+ stimulation of the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum vesicles. Millimolar concentrations of total ATP increased the K+-stimulated ATPase activity of the Ca2+ pump by two mechanisms. First, ATP chelated free Mg2+ and, at low ionized Mg2+ concentrations, K+ was shown to be a potent activator of ATP hydrolysis. In the absence of K+ ionized Mg2+ activated the enzyme half-maximally at approximately 1 mM, whereas in the presence of K+ the concentration of ionized Mg2+ required for half-maximal activation was reduced at least 20-fold. Second MgATP apparently interacted directly with the enzyme at a low affinity nucleotide site to facilitate K+-stimulation. With a saturating concentration of ionized Mg2+, stimulation by K+ was 2-fold, but only when the MgATP concentration was greater than 2 mM. Hill plots showed that K+ increased the concentration of MgATP required for half-maximal enzymic activation approx. 3-fold. Activation of K+-stimulated ATPase activity by Ca2+ was maximal at an ionized Ca2+ concentration of approx. 1 microM. At very high concentrations of either Ca2+ or Mg2+, basal Ca2+-dependent ATPase activity persisted, but the enzymic response to K+ was completely inhibited. The results provide further evidence that the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum has distinct sites for monovalent cations, which in turn interact allosterically with other regulatory sites on the enzyme.  相似文献   

11.
1. Isolated outer membranes from rat spleen mitochondria can be stored in liquid N(2) for several weeks without significant loss of ATPase (adenosine triphosphatase) activity. 2. The ATPase reaction has a broad pH optimum centering on neutral pH, with little significant activity above pH9.0 or below pH5.5. 3. A sigmoidal response of the ATPase activity to temperature is observed between 0 and 55 degrees C, with complete inactivation at 60 degrees C. The Arrhenius plot shows that the activation energy above the transition temperature (22 degrees C) (E(a)=144kJ/mol) is one-third of that calculated for below the transition temperature (E'(a)=408kJ/mol). 4. The outer-membrane ATPase (K(m) for MgATP=50mum) is inactive unless Mg(2+) is added, whereas the inner-membrane ATPase (K(m) for ATP=11mum) is active without added Mg(2+) unless the mitochondria have been depleted of all endogenous Mg(2+) (by using ionophore A23187). 5. The substrate for the outer-membrane ATPase is a bivalent metal ion-nucleoside triphosphate complex in which Mg(2+) (K(m)=50mum) can be replaced effectively by Ca(2+) (K(m)=6.7mum) or Mn(2+), and ATP by ITP. Cu(2+), Co(2+), Sr(2+), Ba(2+), Ni(2+), Cd(2+) and Zn(2+) support very little ATP hydrolysis. 6. Univalent metal ions (Na(+), K(+), Rb(+), Cs(+) and NH(4) (+), but not Li(+)) stimulate the MgATPase activity (<10%) at low concentrations (50mm), but, except for K(+), are slightly inhibitory (20-30%) at higher concentrations (500mm). 7. The Mg(2+)-stimulated ATPase activity is significantly inhibited by Cu(2+) (K(i)=90mum), Ni(2+) (K(i)=510mum), Zn(2+) (K(i)=680mum) and Co(2+) (K(i)=1020mum), but not by Mg(2+), Ca(2+), Ba(2+) or Sr(2+). 8. The outer-membrane ATPase is insensitive to the inhibitors oligomycin, NN'-dicyclohexylcarbodiimide, NaN(3), ouabain and thiol-specific reagents. A significant inhibition is observed at high concentrations of AgNO(3) (0.5mm) and NaF (10mm). 9. The activity towards MgATP is competitively inhibited by the product MgADP (K(i)=0.7mm) but not by the second product P(i) or by 5'-AMP.  相似文献   

12.
Sarcoplasmic reticulum vesicles adsorbed on a black lipid membrane generate an electrical current after a fast increment of the concentration of ATP. This demonstrates directly that the sarcoplasmic Ca2+-ATPase from skeletal muscle acts as an electrogenic ion pump. The increment of the concentration of ATP is achieved by the photolysis of caged ATP (P3-1-(2-nitro)phenylethyl adenosine 5'-triphosphate) a protected analogue of ATP (Kaplan, J.H. et al. (1978) Biochemistry 17, 1929-1935), which is split into ATP and 2-nitroso acetophenone. The release of ATP leads to a transient current flow across the lipid membrane indicating that the vesicles are capacitatively coupled to the underlying lipid membrane. In addition to this transient signal, a stationary current flow is obtained in the presence of ionophores which increase the conductance of the bilayer system and prevent the accumulation of Ca2+ in the lumen of the vesicles. The direction of the transient and the stationary current is in accordance with the concept that Ca2+ is pumped into the lumen of the vesicles. The transient current depends on the concentration of ATP, Ca2+ and Mg2+ as would be the case for a current generated by the sarcoplasmic Ca2+-ATPase. Its amplitude is half-maximal at 10 microM ATP and 1 microM Ca2+. At Ca2+ concentrations above 0.1 mM the amplitude of the current signal declines again. The Mg2+ concentration dependence of the current amplitude at a constant ATP concentration indicates that the MgATP complex is the substrate for the activation of the current. The pump current is inhibited by vanadate and ADP. No current signal is observed if caged ATP is replaced by caged ADP. However, the release of ADP from caged ADP generates a pump current in the presence of an ATP generating system such as creatine phosphate and creatine kinase.  相似文献   

13.
The carboxylic acid ionophore monensin, known as an electroneutral Na(+) ionophore, an anticoccidial agent, and a growth-promoting feed additive in agriculture, is shown to be highly efficient as an ionophore for Pb(2+) and to be highly selective for Pb(2+) compared with other divalent cations. Monensin transports Pb(2+) by an electroneutral mechanism in which the complex PbMonOH is the transporting species. Electrogenic transport via the species PbMon(+) may also be possible. Monensin catalyzed Pb(2+) transport is little affected by Ca(2+), Mg(2+), or K(+) concentrations that are encountered in living systems. Na(+) is inhibitory, but its effectiveness at 100 mm does not exceed approximately 50%. The poor activity of monensin as an ionophore for divalent cations other than Pb(2+) is consistent with the pattern of complex formation constants observed in the mixed solvent 80% methanol/water. This pattern also explains why Ca(2+), Mg(2+), and K(+) are ineffective as inhibitors of Pb(2+) transport, but it does not fully explain the actions of Na(+), where kinetic features of the transport mechanism may also be important. When given to rats at 100 ppm in feed together with Pb(2+) at 100 ppm in drinking water, monensin reduces Pb accumulation in several organs and tissues. It also accelerates the excretion of Pb that was accumulated previously and produces this effect without depleting the organs of zinc or copper. Monensin, used alone or in combination with other agents, may be useful for the treatment of Pb intoxication.  相似文献   

14.
We propose a steady-state kinetic model for the squid Na(+)/Ca(2+) exchanger that differs from other current models of regulation in that it takes into account, within a single kinetic scheme, all ionic [intracellular Ca(2+) (Ca(i)(2+))-intracellular Na(+) (Na(i)(+))-intracellular H(i)(+)] and metabolic (ATP) regulations of the exchanger in which the Ca(i)(2+)-regulatory pathway plays the central role in regulation. Although the integrated ionic-metabolic model predicts all squid steady-state experimental data on exchange regulation, a critical test for the validity of it is the predicted dual effect of Na(i)(+) on steady-state Ca(2+) influx through the exchanger. To test this prediction, an improved technique for the estimation of isotope fluxes in squid axons was developed, which allows sequential measurements of ion influx and effluxes. With this method, we report here two novel observations of the squid axon Na(+)/Ca(2+) exchanger. First, at intracellular pH (7.0) and in the absence of MgATP, Na(i)(+) has a dual effect on Ca(2+) influx: inhibition at low concentrations followed by stimulation at high Na(i)(+) concentrations, reaching levels higher than those seen without Na(i)(+). Second, in the presence of MgATP, the biphasic response to Na(i)(+) disappears and is replaced by a sigmoid activation. Furthermore, the model predicts that Ca(2+) efflux is monotonically inhibited by Na(i)(+), more pronouncedly without than with MgATP. These results are predicted by the proposed kinetic model. Although not fully applicable to all exchangers, this scheme might provide some insights on expected net Ca(2+) movements in other tissues under a variety of intracellular ionic and metabolic conditions.  相似文献   

15.
16.
The mgtC gene of Salmonella enterica serovar Typhimurium encodes a membrane protein of unknown function that is important for full virulence in the mouse. Since mgtC is part of an operon with mgtB which encodes a Mg(2+)-transporting P-type ATPase, MgtC was hypothesized to function in ion transport, possibly in Mg(2+) transport. Consequently, MgtC was expressed in Xenopus laevis oocytes, and its effect on ion transport was evaluated using ion selective electrodes. Oocytes expressing MgtC did not exhibit altered currents or membrane potentials in response to changes in extracellular H(+), Mg(2+), or Ca(2+), thus ruling out a previously postulated function as a Mg(2+)/H(+) antiporter. However, addition of extracellular K(+) markedly hyperpolarized membrane potential instead of the expected depolarization. Addition of ouabain to block the oocyte Na(+),K(+)-ATPase completely prevented hyperpolarization and restored the normal K(+)-induced depolarization response. These results suggested that the Na(+),K(+)-ATPase was constitutively activated in the presence of MgtC resulting in a membrane potential largely dependent on Na(+),K(+)-ATPase. Consistent with the involvement of Na(+),K(+)-ATPase, oocytes expressing MgtC exhibited an increased rate of (86)Rb(+) uptake and had increased intracellular free [K(+)] and decreased free [Na(+)] and ATP. The free concentrations of Mg(2+) and Ca(2+) and cytosolic pH were unchanged, although the total intracellular Ca(2+) content was slightly elevated. These results suggest that the serovar Typhimurium MgtC protein may be involved in regulating membrane potential but does not directly transport Mg(2+) or another ion.  相似文献   

17.
The interplay of inorganic phosphate (Pi) with other ligands such as Mg(2+), ADP, ATP, and Ca(2+) on the activation of 2-oxoglutarate dehydrogenase complex (2-OGDH) in both isolated enzyme complex and mitochondrial extracts was examined. Pi alone activated the enzyme, following biphasic kinetics with high (K(0.5) = 1.96+/-0.42 mM) and low (K(0.5) = 9.8+/-0.4 mM) affinity components for Pi. The activation by Pi was highly pH-dependent; it increased when the pH raised from 7.1 to 7.6, but it was negligible at pH values below 7.1. Mg-Pi and Mg-ADP, but not Mg-ATP, were more potent activators of 2-OGDH than free Pi and free ADP. ATP inhibited the 2-OGDH activity by chelating the free Mg(2+) and also as a Mg-ATP complex. With or without Mg(2+), ADP, and Pi activated the 2-OGDH by increasing the affinity for 2-OG and the V(m) of the reaction; ATP diminished the V(m), but it increased the affinity for 2-OG in the mitochondrial extract. Pi did not modify the 2-OGDH activation by Ca(2+). The results above mentioned were similar for both preparations, except for hyperbolic kinetics in the isolated enzyme and sigmoidal kinetics in the mitochondrial extracts when 2-oxoglutarate was varied. The data of this study indicated that physiological concentrations of Pi may exert a significant activation of 2-OGDH, which was potentiated by Mg(2+) and high pH, but surpassed by ADP.  相似文献   

18.
Although several Ca(2+)-ATPase isoforms have been described in vertebrates, little is known about Ca(2+)-transport in the muscle of invertebrates. In the microsomal fraction obtained from the sea cucumber (Ludwigothurea grisea) longitudinal body wall smooth muscle, we identified a Ca(2+)-transport ATPase that is able to transport Ca(2+) at the expense of ATP hydrolysis. This enzyme has a high affinity for both Ca(2+) and ATP, an optimum pH around 7.0, and - different from the vertebrate sarcoplasmic reticulum Ca(2+)-ATPases isoforms so far described - is activated 3- to 5-fold by K(+) but not by Li(+), at all temperatures, Ca(2+) and ATP concentrations tested. Calcium accumulation by the sea cucumber microsomes is inhibited by Mg/ATP concentrations >1 mM and the accumulated Ca(2+) is released to the medium when the ATP concentration is raised from 0.1 to 4.0 mM.  相似文献   

19.
The administration of selective alpha(1) (phenylephrine)-, beta (isoproterenol)-, or mixed (epinephrine) adrenergic agonists induces a marked Mg(2+) extrusion from perfused rat livers. In the absence of extracellular Ca(2+), phenylephrine does not induce a detectable Mg(2+) extrusion, isoproterenol-induced Mg(2+) mobilization is unaffected, and epinephrine induces a net Mg(2+) extrusion that is lower than in the presence of extracellular Ca(2+) and quantitatively similar to that elicited by isoproterenol. In the absence of extracellular Na(+), no Mg(2+) is extruded from the liver irrespective of the agonist used. Similar results are observed in perfused livers stimulated by glucagon or 8-chloroadenosine 3', 5'-cyclic monophosphate. In the absence of extracellular Na(+) or Ca(2+), adrenergic-induced glucose extrusion from the liver is also markedly decreased. Together, these results indicate that liver cells extrude Mg(2+) primarily via a Na(+)-dependent mechanism. This extrusion pathway can be activated by the increase in cellular cAMP that follows the stimulation by glucagon or a specific beta-adrenergic receptor agonist or, alternatively, by the changes in cellular Ca(2+) induced by the stimulation of the alpha(1)-adrenoceptor. In addition, the stimulation of the alpha(1)-adrenoceptor appears to activate an auxiliary Ca(2+)-dependent Mg(2+) extrusion pathway. Finally, our data suggest that experimental conditions that affect Mg(2+) mobilization also interfere with glucose extrusion from liver cells.  相似文献   

20.
1. A sarcolemmal fraction was isolated from hamster hind-leg skeletal muscles by successive treatment with lithium bromide and potassium chloride. The membranous fraction was observed to contain a highly active Ca(2+)-stimulated ATPase (adenosine triphosphatase), a Mg(2+)-stimulated ATPase, and an Na(+)+K(+)-stimulated Mg(2+)-dependent ouabain-sensitive ATPase. 2. The Ca(2+)-stimulated ATPase activity was pH-dependent, the optimum being pH7.6. 3. Optimum activation of this enzyme was obtained with 3-4mm-Ca(2+) when 4mm-ATP was present as a substrate, and was not influenced by Na(+), K(+) or ouabain, whereas 2,4-dinitrophenol, sodium azide, oligomycin, sodium fluoride and ethanedioxybis(ethylamine)tetra-acetate were inhibitory. 4. The Ca(2+)-stimulated ATPase was markedly inhibited by thiol-blocking reagents, and cysteine was able to reverse this inhibition. 5. Various bivalent cations stimulated ATP hydrolysis by the sarcolemmal fraction in the following decreasing order of potency: Mg(2+), Ca(2+), Mn(2+), Co(2+), Sr(2+), Ba(2+), Zn(2+), Cu(2+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号