首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gliomas can display marked changes in the concentrations of energy metabolism molecules such as creatine (Cr), phosphocreatine (PCr) and lactate, as measured using magnetic resonance spectroscopy (MRS). Moreover, the BOLD (blood oxygen level dependent) contrast enhancement in functional magnetic resonance imaging (fMRI) can be reduced or missing within or near gliomas, while neural activity is not significantly reduced (so-called neurovascular decoupling), so that the location of functionally eloquent areas using fMRI can be erroneous. In this paper, we adapt a previously developed model of the coupling between neural activation, energy metabolism and hemodynamics, by including the venous dilatation Balloon model of Buxton and Frank. We show that decreasing the cerebral blood flow (CBF) baseline value, or the CBF increase fraction, results in a decrease of the BOLD signal and an increase of the lactate peak during a sustained activation. Baseline lactate and PCr levels are not significantly affected by CBF baseline reduction, but are altered even by a moderate decrease of mitochondrial respiration. Decreasing the total Cr and PCr concentration reduces the BOLD signal after the initial overshoot. In conclusion, we suggest that the coupled use of BOLD fMRI and MRS could contribute to a better understanding of the neurovascular and metabolic decoupling in gliomas.  相似文献   

2.
In previous works we reported that the administration of a toxic dose of acetaminophen (APAP) induces acute renal failure (ARF) and promotes changes on Na(+), K(+)ATPase distribution in renal proximal plasma membranes. In the present work, we analyzed if APAP could promote the dissociation of Na(+), K(+)ATPase from its membrane anchorage. The participation of calpain activation was also evaluated. We analyzed the Triton X-100 extractability of Na(+), K(+)ATPase in freshly isolated cortical cell suspensions incubated with different APAP concentrations (0.1, 1, 10 and 100 mM). Both alpha(1) and beta(1) subunits were studied by Western blot. APAP promoted the increment of both subunits abundance in the Triton-soluble fraction. Calpain activation was detected in the membrane fractions of cells incubated with APAP. Incubation with APAP 0.1, 1 and 10 mM did not promote an increment in LDH release compared with controls, while APAP 100 mM promoted an increased LDH release. Our results show that incubation of proximal cells with sublethal and lethal APAP concentrations promotes the detachment of Na(+), K(+)ATPase from its membrane anchoring. Inhibition of calpain activation by SJA 7029 protected against APAP-induced membrane damage but not against APAP-induced increase of the Triton X-100 extractability of Na(+), K(+)ATPase.  相似文献   

3.
The activation of a wide range of cellular receptors has been detected previously using a novel instrument, the microphysiometer. In this study microphysiometry was used to monitor the basal and cholinergic-stimulated activity of the Na+/K+ adenosine triphosphatase (ATPase) (the Na+/K+ pump) in the human rhabdomyosarcoma cell line TE671. Manipulations of Na+/K+ ATPase activity with ouabain or removal of extracellular K+ revealed that this ion pump was responsible for 8.8 +/- 0.7% of the total cellular energy utilization by those cells as monitored by the production of acid metabolites. Activation of the pump after a period of inhibition transiently increased the acidification rate above baseline, corresponding to increases in intracellular [Na+] ([Na+]i) occurring while the pump was off. The amplitude of this transient was a function of the total [Na+]i excursion in the absence of pump activity, which in turn depended on the duration of pump inhibition and the Na+ influx rate. Manipulations of the mode of energy metabolism in these cells by changes of the carbon substrate and use of metabolic inhibitors revealed that, unlike some other cells studied, the Na+/K+ ATPase in TE671 cells does not depend on any one mode of metabolism for its adenosine triphosphate source. Stimulation of cholinergic receptors in these cells with carbachol activated the Na+/K+ ATPase via an increase in [Na+]i rather than a direct activation of the ATPase.  相似文献   

4.
The effect of AlCl(3) on the (Na(+)/K(+))ATPase activity of freeze-thawed synaptosomes, isolated from rat brain cortex, has been studied. The AlCl(3) action on the enzyme hydrolytic activity was examined using in vitro and in vivo approaches. Following exposure to AlCl(3) using both in vitro (synaptosomes incubated in the presence of AlCl(3) for 5 min) and in vivo (synaptosomes isolated from rats that received 0.03 g AlCl(3)/day for 4 months) approaches, the (Na(+)/K(+))ATPase activity was inhibited in a concentration-dependent way. The maximal inhibitory effect (approximately 60%) was observed in the presence of a AlCl(3) concentration >75 microM and at non-limiting ATP concentrations. Conversely, AlCl(3) did not inhibit the enzyme activity when UTP was used as substrate instead of ATP. Analysis of the substrate dependence of membrane-bound (Na(+)/K(+))ATPase by a computer simulation model suggests that the AlCl(3)-induced inhibitory effect is characterised by a reduction of the rate-limiting step velocity of the reaction cycle. Moreover, it seems that aluminium can induce impairment of the interprotomeric interaction within the oligomeric ensemble of membrane-bound (Na(+)/K(+))ATPase. In fact, this effect was accompanied by a slight, but significant, decrease of readily accessible SH groups, which are involved in the maintenance of the membrane-bound (Na(+)/K(+))ATPase oligomeric structure. In conclusion, during exposure to aluminium, reduction of the activation of membrane-bound (Na(+)/K(+))ATPase by high ATP concentrations occurs, which results in a partial inhibition of the enzyme.  相似文献   

5.
The binding of [14C]phenobarbital into synaptosomal plasma membranes of dog brain follows a sigmoid path. The "best fit" curve of this binding is the one described by the Hill equation (r2 less than 0.93 and Hill coefficient, n = 1.32). (Na+, K+)-stimulated ATPase and Ca2+-stimulated ATPase activities are modulated by phenobarbital. Arrhenius plots of (Na+, K+, Mg2+)-dependent ATPase revealed that phenobarbital (2 mM) lowered the transition temperature and altered the Arrhenius activation energies of this enzyme. The allosteric inhibition by F- of the (Na+, K+)-stimulated ATPase was studied in control and phenobarbital-treated membranes. The lowering of the transition temperature and changes in Arrhenius activation energy about the transition temperature in combination with changes observed in the allosteric properties of the (Na+, K+)-stimulated ATPase by F-, produced by phenobarbital, would be expected if it is assumed that phenobarbital "fluidizes" synaptosomal plasma membranes.  相似文献   

6.
Adjustment of the Na/K ATPase activity to changes in oxygen availability is a matter of survival for neuronal cells. We have used freshly isolated rat cerebellar granule cells to study oxygen sensitivity of the Na/K ATPase function. Along with transport and hydrolytic activity of the enzyme we have monitored alterations in free radical production, cellular reduced glutathione, and ATP levels. Both active K(+) influx and ouabain-sensitive inorganic phosphate production were maximal within the physiological pO(2) range of 3-5 kPa. Transport and hydrolytic activity of the Na/K ATPase was equally suppressed under hypoxic and hyperoxic conditions. The ATPase response to changes in oxygenation was isoform specific and limited to the alpha1-containing isozyme whereas alpha2/3-containing isozymes were oxygen insensitive. Rapid activation of the enzyme within a narrow window of oxygen concentrations did not correlate with alterations in the cellular ATP content or substantial shifts in redox potential but was completely abolished when NO production by the cells was blocked by l-NAME. Taken together our observations suggest that NO and its derivatives are involved in maintenance of high Na/K ATPase activity under physiological conditions.  相似文献   

7.
The addition of LiCl stimulated the (Na+ + K+)-dependent ATPase activity of a rat brain enzyme preparation. Stimulation was greatest in high Na+/low K+ media and at low Mg-ATP concentrations. Apparent affinities for Li+ were estimated at the alpha-sites (moderate-affinity sites for K+ demonstrable in terms of activation of the associated K+-dependent phosphatase reaction), at the beta-sites (high-affinity sites for K+ demonstrable in terms of activation of the overall ATPase reaction), and at the Na+ sites for activation. The relative efficacy of Li+ was estimated in terms of the apparent maximal velocity of the phosphatase and ATPase reactions when Li+ was substituted for K+, and also in terms of the relative effect of Li+ on the apparent Km for Mg-ATP. With these data, and previously determined values for the apparent affinities of K+ and Na+ at these same sites, quantitative kinetic models for the stimulation were examined. A composite model is required in which Li+ stimulates by relieving inhibition due to K+ and Na+ (i) by competing with K+ for the alpha-sites on the enzyme through which K+ decreases the apparent affinity for Mg-ATP and (ii) by competing with Na+ at low-affinity inhibitory sites, which may represent the external sites at which Na+ is discharged by the membrane Na+/K pump that this enzyme represents. Both these sites of action for Li+ would thus lie, in vivo, on the cell exterior.  相似文献   

8.
Alzheimer's disease (AD) is associated with impaired glutamate clearance and depressed Na(+)/K(+) ATPase levels in AD brain that might lead to a cellular ion imbalance. To test this hypothesis, [Na(+)] and [K(+)] were analyzed in postmortem brain samples of 12 normal and 16 AD individuals, and in cerebrospinal fluid (CSF) from AD patients and matched controls. Statistically significant increases in [Na(+)] in frontal (25%) and parietal cortex (20%) and in cerebellar [K(+)] (15%) were observed in AD samples compared to controls. CSF from AD patients and matched controls exhibited no differences, suggesting that tissue ion imbalances reflected changes in the intracellular compartment. Differences in cation concentrations between normal and AD brain samples were modeled by a 2-fold increase in intracellular [Na(+)] and an 8-15% increase in intracellular [K(+)]. Since amyloid beta peptide (Aβ) is an important contributor to AD brain pathology, we assessed how Aβ affects ion homeostasis in primary murine astrocytes, the most abundant cells in brain tissue. We demonstrate that treatment of astrocytes with the Aβ 25-35 peptide increases intracellular levels of Na(+) (~2-3-fold) and K(+) (~1.5-fold), which were associated with reduced levels of Na(+)/K(+) ATPase and the Na(+)-dependent glutamate transporters, GLAST and GLT-1. Similar increases in astrocytic Na(+) and K(+) levels were also caused by Aβ 1-40, but not by Aβ 1-42 treatment. Our study suggests a previously unrecognized impairment in AD brain cell ion homeostasis that might be triggered by Aβ and could significantly affect electrophysiological activity of brain cells, contributing to the pathophysiology of AD.  相似文献   

9.
Regulation of cytosolic free Na (Nai) was measured in isolated rabbit gastric glands with the use of a recently developed fluorescent indicator for sodium, SBFI. Intracellular loading of the indicator was achieved by incubation with an acetoxymethyl ester of the dye. Digital imaging of fluorescence was used to monitor Nai in both acid-secreting parietal cells and enzyme-secreting chief cells within intact glands. In situ calibration of Nai with ionophores indicated that SBFI fluorescence (345/385 nm excitation ratio) could resolve 2 mM changes in Nai and was relatively insensitive to changes in K or pH. Measurements on intact glands showed that basal Nai was 8.5 +/- 2.2 mM in parietal cells and 9.2 +/- 3 mM in chief cells. Estimates of Na influx and efflux were made by measuring rates of Nai change after inactivation or reactivation of the Na/K ATPase in a rapid perfusion system. Na/K ATPase inhibition resulting from the removal of extracellular K (Ko) caused Nai to increase at 3.2 +/- 1.5 mM/min and 3.5 +/- 2.7 mM/min in parietal and chief cells, respectively. Na buffering was found to be negligible. Addition of 5 mM Ko and removal of extracellular Na (Nao) caused Nai to decrease rapidly toward 0 mM Na. By subtracting passive Na efflux under these conditions (the rate at which Nai decreased in Na-free solution containing ouabain), an activation curve (dNai/Nai) for the Na/K ATPase was calculated. The pump demonstrated the greatest sensitivity between 5 and 20 mM Nai. At 37 degrees C the pump rate was less than 3 mM/min at 5 mM Nai and 26 mM/min at 25 mM Nai, indicating that the pump has a great ability to respond to changes in Nai in this range. Carbachol, which stimulates secretion from both cell types, was found to stimulate Na influx in both cell types, but did not have detectable effects on Na efflux. dbcAMP+IBMX, potent stimulants of acid secretion, had no effect on Na metabolism.  相似文献   

10.
A variety of evidence indicates the presence of a circulating ligand to the Na, K ATPase molecule that is involved in the regulation of extracellular sodium metabolism. To examine the potential role of endogenous ligands to the Na, K ATPase molecule in the regulation of intracellular sodium metabolism, the tissue distribution of digitalis-like activity was quantitated in several brain regions and peripheral organs. The digitalis-like activity of desalted and delipidated extracts of tissue was widely distributed and produced a displacement of tritiated ouabain that was parallel to the displacement produced by cold ouabain. These results suggest that tissue contains an endogenous ligand to the Na, K ATPase molecule and that this ligand may regulate intracellular sodium metabolism in an autocoid-like manner.  相似文献   

11.
Is Na + K ATPase a Myelin-Associated Enzyme?   总被引:6,自引:4,他引:2  
The Na + K ATPase activity associated with purified myelin has been investigated. On the basis of marker enzyme studies, the Na + K ATPase activity of myelin was higher than could be accounted for by microsomal contamination. Fractions prepared from white matter-enriched areas of rat brain showed a threefold enrichment in Na + K ATPase activity in myelin as compared with the white matter homogenate. The ATPase activity in myelin was stimulated fourfold by treatment with sodium deoxycholate, but the activity in the whole brain homogenate and the microsomal fraction was only doubled. This discontinuity temperature for Na + K ATPase activity was significantly higher for the myelin fraction (29 degrees C) than for the microsomal fraction (21 degrees C), but the energies of activation, both above and below the discontinuity temperature, were the same for both fractions, Myelin Na + K ATPase had a lower affinity for strophanthidin than the microsomal enzyme, but both fractions were inhibited to the same extent by 10-3 M-strophanthidin. The evidence thus indicated that much of the ATPase activity of myelin is not the result of microsomal contamination. Although the possibility of axolemmal contamination cannot be ruled out conclusively, indirect evidence suggest that this is not a significant factor and that Na + K ATPase may be a myelin-associated enzyme.  相似文献   

12.
Electric stimulation (EC) of a suspension of native synaptic membranes of rat brain cortex in the Krebs-Ringer-glucose medium revealed Ca-dependent inhibition of Na+, K+-ATPase and inhibition of transport Ca-activated, Mg-dependent ATPase. The effects observed are not induced by a change in the SH-groups of the membrane proteins and are removed by an addition of total lipids of the brain (membrane protein: lipid = 5:1) or 0.35 mM novocaine. Cyclic 3',5'-AMP in concentrations of 0.1--1.0 mM causes an inhibition (up to 50%) of Na+, K+-ATPase of native synaptic membranes. The Na+, K+-ATPase activity of purified membrane preparations is not changed either by the cyclic nucleotide, or by EC. It is assumed that depolarization of excitable membranes results in structural changes, mediated by the activation of protein kinase, and manifesting themselves as labilization of protein-lipid ratios.  相似文献   

13.
Rapid eye movement sleep deprivation-associated elevated noradrenaline increases and decreases neuronal and glial Na–K ATPase activity, respectively. In this study, using C6 cell-line as a model, we investigated the possible intracellular molecular mechanism of noradrenaline-induced decreased glial Na–K ATPase activity. The cells were treated with noradrenaline in the presence or absence of adrenoceptor antagonists, modulators of extra- and intracellular Ca++ and modulators of intracellular signalling pathways. We observed that noradrenaline acting on β-adrenoceptor decreased Na–K ATPase activity and mRNA expression of the catalytic α2-Na–K ATPase subunit in the C6 cells. Further, cAMP and protein kinase-A mediated release of intracellular Ca++ played a critical role in such decreased α2-Na–K ATPase expression. In contrast, noradrenaline acting on β-adrenoceptor up-regulated the expression of regulatory β2-Na–K ATPase subunit, which although was cAMP and Ca++ dependent, was independent of protein kinase-A and protein kinase-C. Combining these with previous findings (including ours) we have proposed a working model for noradrenaline-induced suppression of glial Na–K ATPase activity and alteration in its subunit expression. The findings help understanding noradrenaline-associated maintenance of brain excitability during health and altered states, particularly in relation to rapid eye movement sleep and its deprivation when the noradrenaline level is naturally altered.  相似文献   

14.
(Na+ + K+)-dependent ATPase preparations from rat brain, dog kidney, and human red blood cells also catalyze a K+ -dependent phosphatase reaction. K+ activation and Na+ inhibition of this reaction are described quantitatively by a model featuring isomerization between E1 and E2 enzyme conformations with activity proportional to E2K concentration: (formula; see text) Differences between the three preparations in K0.5 for K+ activation can then be accounted for by differences in equilibria between E1K and E2K with dissociation constants identical. Similarly, reductions in K0.5 produced by dimethyl sulfoxide are attributable to shifts in equilibria toward E2 conformations. Na+ stimulation of K+ -dependent phosphatase activity of brain and red blood cell preparations, demonstrable with KCl under 1 mM, can be accounted for by including a supplementary pathway proportional to E1Na but dependent also on K+ activation through high-affinity sites. With inside-out red blood cell vesicles, K+ activation in the absence of Na+ is mediated through sites oriented toward the cytoplasm, while in the presence of Na+ high-affinity K+ -sites are oriented extracellularly, as are those of the (Na+ + K+)-dependent ATPase reaction. Dimethyl sulfoxide accentuated Na+ -stimulated K+ -dependent phosphatase activity in all three preparations, attributable to shifts from the E1P to E2P conformation, with the latter bearing the high-affinity, extracellularly oriented K+ -sites of the Na+ -stimulated pathway.  相似文献   

15.
Rat brain has the alpha 3 form of the (Na+,K+)ATPase   总被引:2,自引:0,他引:2  
Y M Hsu  G Guidotti 《Biochemistry》1989,28(2):569-573
Multiple forms of the catalytic subunit of the (Na+,K+)ATPase have been identified in rat brain. While two of them (alpha 1 and alpha 2) have been well characterized, the third form (alpha 3) of these catalytic subunits only recently has been described by cDNA cloning; the corresponding polypeptide has not been isolated. In this paper it is shown that rat brain contains the alpha 3 chain. The catalytic subunits of the (Na+, K+)ATPase from rat brain axolemma were purified by SDS-PAGE and subjected to formic acid cleavage. Amino acid sequence analysis of the resulting fragments revealed that axolemma has the alpha 3 form of the catalytic subunit. In addition, alpha 3-specific antiserum was raised in rabbits immunized with a synthetic peptide. Immunoblotting with this antiserum revealed that the alpha 3 form of the (Na+,K+)ATPase is present also in whole brain microsomes. In SDS-PAGE, the mobilities of the three catalytic subunits of brain (Na+, K+)ATPase follow the order alpha 1 greater than alpha 2 greater than alpha 3. Determination of the ouabain-inhibitable ATPase activity indicates that if the alpha 3 form of the (Na+,K+)ATPase is able to hydrolyze ATP, it is present in a form of the enzyme with a high affinity for this cardiac glycoside and is similar to the alpha 2 form in this respect.  相似文献   

16.
17.
It is shown that the incomplete, uncompetitive inhibition pattern exhibited by oligomycin toward Na,K,ATPase cannot be explained by a single-cycle enzyme model. In contrast, the experimental data are easily explained in terms of a dimeric enzyme, only one subunit of which can bind oligomycin at a time, and that subunit is then rendered inactive. In a brief analysis of the model thus obtained by way of numerical examples it is shown that it may show activation at small concentrations of moderator, which disappears at higher concentrations, a property observed for the hydrolysis ofp-nitro-phenylphosphate, which is also catalyzed by Na,K,ATPase.  相似文献   

18.
A mathematical model is developed which describes a signalling mechanism of neurovascular coupling with a model of a pyramidal neuron and its corresponding fMRI BOLD response. In the first part of two papers (Part I) we described the integration of the neurovascular coupling unit extended to include a complex neuron model, which includes the important Na/K ATPase pump, with a model that provides a BOLD signal taking its input from the cerebral blood flow and the metabolic rate of oxygen consumption. We showed that this produced a viable signal in terms of initial dip, positive and negative BOLD signals. In this paper (PART II) our model predicts the variations of the BOLD response due to variations in neuronal activity and indicates that the BOLD signal could be used as an initial biomarker for neuronal dysfunction or variations in the perfusion of blood to the cerebral tissue. We have compared the simulated hypoxic BOLD response to experimental BOLD signals observed in the hippocampus during hypoxia showing good agreement. This approach of combined quantitative modelling of neurovascular coupling response and its BOLD response will enable more specific assessment of a brain region.  相似文献   

19.
We evaluated the function of Na(+)/K(+) ATPase and sarcolemmal K(ATP) channels in diabetic rat hearts. Six weeks after streptozotocin (STZ) injection, unidirectional K(+) fluxes were assayed by using (87)rubidium ((87)Rb(+)) MRS. The hearts were loaded with Rb(+) by perfusion with Krebs-Henseleit buffer, in which 50% of K(+) was substituted with Rb(+). The rate constant of Rb(+) uptake via Na(+)/K(+) ATPase was reduced. K(ATP)-mediated Rb(+) efflux was activated metabolically with 2,4-dinitrophenol (DNP, 50 micromol.L(-1)) or pharmacologically with a K(ATP) channel opener, P-1075 (5 micromol.L(-1)). Cardiac energetics were monitored by using (31)P MRS and optical spectroscopy. DNP produced a smaller ATP decrease, yet similar Rb(+) efflux activation in STZ hearts. In K(+)-arrested hearts, P-1075 had no effect on high-energy phosphates and stimulated Rb(+) efflux by interaction with SUR2A subunit of K(ATP) channel; this stimulation was greater in STZ hearts. In normokalemic hearts, P-1075 caused cardiac arrest and ATP decline, and the stimulation of Rb(+) efflux was lower in normokalemic STZ hearts arrested by P-1075. Thus, the Rb(+)efflux stimulation in STZ hearts was altered depending on the mode of K(ATP) channel activation: pharmacologic stimulation (P-1075) was enhanced, whereas metabolic stimulation (DNP) was reduced. Both the basal concentration of phosphocreatine ([PCr]) and [PCr]/[ATP] were reduced; nevertheless, the STZ hearts were more or equally resistant to metabolic stress.  相似文献   

20.
The role of Ca(2+) as a cytosolic signaling molecule between porcine cardiac sarcoplasmic reticulum (SR) ATPase and mitochondrial ATP production was evaluated in vitro. The Ca(2+) sensitivity of these processes was determined individually and in a reconstituted system with SR and mitochondria in a 0.5:1 protein-to-cytochrome aa(3) ratio. The half-maximal concentration (K(1/2)) of SR ATPase was 335 nM Ca(2+). The ATP synthesis dependence was similar with a K(1/2) of 243 nM for dehydrogenases and 114 nM for overall ATP production. In the reconstituted system, Ca(2+) increased thapsigargin-sensitive ATP production (maximum approximately 5-fold) with minimal changes in mitochondrial reduced nicotinamide adenine dinucleotide (NADH). NADH concentration remained stable despite graded increases in NADH turnover induced over a wide range of Ca(2+) concentrations (0 to approximately 500 nM). These data are consistent with a balanced activation of SR ATPase and mitochondrial ATP synthesis by Ca(2+) that contributes to a homeostasis of energy metabolism metabolites. It is suggested that this balanced activation by cytosolic Ca(2+) is partially responsible for the minimal alteration in energy metabolism intermediates that occurs with changes in cardiac workload in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号