首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amino acid analysis of [3H]proline-labeled polyomavirus major capsid protein VP1 by two-dimensional paper chromatography of the acid-hydrolyzed protein revealed the presence of 3H-labeled hydroxyproline. Addition of the proline analog L-azetidine-2-carboxylic acid to infected mouse kidney cell cultures prevented or greatly reduced hydroxylation of proline in VP1. Immunofluorescence analysis performed on infected cells over a time course of analog addition revealed that virus proteins were synthesized but that transport from the cytoplasm to the nucleus was impeded. A reduction in the assembly of progeny virions demonstrated by CsCl gradient purification of virus from [35S]methionine-labeled infected cell cultures was found to correlate with the time of analog addition. These results suggest that incorporation of this proline analog into VP1, accompanied by reduction of the hydroxyproline content of the protein, influences the amount of virus progeny produced by affecting transport of VP1 to the cell nucleus for assembly into virus particles.  相似文献   

2.
Polyomavirus reaches the nucleus in a still encapsidated form, and the viral genome is readily found in association with the nuclear matrix. This association is thought to be essential for viral replication. In order to identify the protein(s) involved in the virus-nuclear matrix interaction, we focused on the possible roles exerted by the multifunctional cellular nuclear matrix protein Yin Yang 1 (YY1) and by the viral major capsid protein VP1. In the present work we report on the in vivo association between YY1 and VP1. Using the yeast two-hybrid system we demonstrate that the VP1 and YY1 proteins physically interact through the D-E region of VP1 and the activation domain of YY1.  相似文献   

3.
X S Chen  T Stehle    S C Harrison 《The EMBO journal》1998,17(12):3233-3240
A complex of the polyomavirus internal protein VP2/VP3 with the pentameric major capsid protein VP1 has been prepared by co-expression in Escherichia coli. A C-terminal segment of VP2/VP3 is required for tight association, and a crystal structure of this segment, complexed with a VP1 pentamer, has been determined at 2.2 A resolution. The structure shows specific contacts between a single copy of the internal protein and a pentamer of VP1. These interactions were not detected in the previously described structure of the virion, but the location of VP2 in the recombinant complex is consistent with features in the virion electron-density map. The C-terminus of VP2/VP3 inserts in an unusual, hairpin-like manner into the axial cavity of the VP1 pentamer, where it is anchored strongly by hydrophobic interactions. The remainder of the internal protein appears to have significant flexibility. This structure restricts possible models for exposure of the internal proteins during viral entry.  相似文献   

4.
The gene for mouse polyomavirus major structural protein VP1 was expressed in Saccharomyces cerevisiae from the inducible GAL7 promoter. VP1 pseudocapsids were purified from cell lysates. Their subpopulation contained fragments of host DNA, which, in contrast to those of VP1 pseudocapsids produced in insect cells, did not assemble with cellular histones into pseudonucleocores. VP1 pseudocapsids accumulated in the yeast cell nuclei. A strong interaction of VP1 with tubulin fibres of the mitotic spindle was observed. The fibres of spindles were larger in diameter, apparently due to tight VP1 binding. Substantial growth inhibition of yeast cells producing VP1 was observed.  相似文献   

5.
Four hybridoma cell lines producing monoclonal antibodies against intact polyoma virions were produced and characterized. These antibodies were selected for their ability to react with polyoma virions in an enzyme-linked immunosorbent assay. The antibodies immunoprecipitated polyoma virions and specifically recognized the major capsid protein VP1 on an immunoblot. Distinct VP1 isoelectric species were immunoprecipitated from dissociated virion capsomere preparations. Two-dimensional gel electrophoresis demonstrated antibody reactivity with specific VP1 species. Monoclonal antibodies E7 and G9 recognized capsomeres containing VP1 species D, E, and F, while monoclonal antibodies C10 and D3 recognized capsomeres containing species B and C. Two of the monoclonal antibodies, E7 and G9, were capable of neutralizing viral infection and inhibiting hemagglutination. The biological activity of the monoclonal antibodies correlated well with the biological function of the species with which they reacted.  相似文献   

6.
The major capsid protein of polyomavirus, VP1, was separated into at least four subspecies by isoelectric focusing. One of these subspecies was selectively extracted from purified virions by mild treatment with sodium dodecyl sulfate, leaving a 140S particle enriched in the other three forms. The two most acidic subspecies were labeled in vivo with [32P]phosphate, and these subspecies are among those identified as being deficient in nontransforming host range (hr-t) mutant virus nonpermissive infection of NIH3T3 cells. Quantitation of VP1 phosphorylation revealed that hr-t mutant virus VP1 is phosphorylated to about 40 to 50% the level of the wild type in NIH3T3 cells, and two-dimensional phosphoamino acid analysis suggested that threonine phosphorylation was affected more than serine phosphorylation. Two results indicate that the VP1 modifications occur before and independent of virus assembly: modified subspecies were detected during wild-type infection within a 2-min pulse-label with [32S]methionine, and VP1 modifications of temperature-sensitive VP1 mutants were the same at both restrictive and permissive temperatures for virus assembly. We conclude that most VP1 modification occurs before viral DNA encapsidation, and that one defect in hr-t mutant virus assembly is in VP1 phosphorylation, primarily affecting threonine.  相似文献   

7.
Conformations of polyomavirus (Py) major capsid protein VP1 were analyzed by circular dichroism (CD) and fluorescence spectroscopy in the presence of sodium dodecyl sulfate (SDS). Binding of PyVP1 to SDS induced marked conformational changes of PyVP1, which were reflected on the CD and fluorescence spectra. Abrupt changes in both optical properties occurred within the narrow ranges of SDS concentrations with the transition midpoints closely related to SDS micelle formation. Analysis of circular dichroism spectra showed that the contents of alpha-helices, beta-sheets, beta-turns and random coils in PyVP1 varied upon addition of SDS, demonstrating the exquisite sensitivity of the conformations of the protein to the environment. The interactions of PyVP1 with SDS were shown to be dependent on the ionic strength of the protein solution, suggesting that both hydrophobic and electrostatic forces contribute to the PyVP1-SDS complex formation. The SDS-induced conformational changes of PyVP1 appeared to be a two-stage process.  相似文献   

8.
9.
The major virion protein of polyomavirus, VP1, consists of about six isoelectric species designated A through F. The minor species D, E, and F are phosphorylated and are thought to serve as viral receptors. We first wanted to distinguish whether all VP1 species are derived by post-translational modification from a common amino acid sequence or whether one or more of the species contain a region(s) of altered amino acid sequence resulting from alternate mRNA processing. We compared the VP1 species by detailed peptide mapping with several combinations of specific protease and radioisotopic labels. This approach enabled us to examine more than 80% of the predicted VP1 sequence, including the amino-and carboxy-termini. We found no evidence of sequence differences among any of the VP1 species. The specific incorporation of 32Pi was found to be the same for all of the phosphorylated species. Comparison of the phosphorylation sites of in vivo 32Pi-labeled D, E, and F by peptide mapping showed them to be identical. Each phosphorylated species contained a single major phosphopeptide and several minor phosphopeptides. The major phosphoamino acid, identified by acid hydrolysis, was phosphothreonine, with phosphoserine also present. By using chemical cleavage methods, we localized the major phosphorylation region to a central portion of the VP1 sequence. We discuss some features of this region and relate this information to functional implications of phosphorylation.  相似文献   

10.
Localization of calcium on the polyomavirus VP1 capsid protein.   总被引:1,自引:5,他引:1       下载免费PDF全文
Our laboratory has previously shown that the divalent cation Ca2+ is an integral part of the polyomavirus and plays a major role in stabilizing the intact virion structure. In this report, we show that calcium is sequestered on the major capsid protein VP1 of polyomavirus. The virion structural proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis before being transferred to nitrocellulose and probed with 45CaCl2. Autoradiography revealed 45Ca binding exclusively to VP1. Increasing the amount of VP1 transferred to the nitrocellulose resulted in a concomitant increase in 45Ca binding. 45Ca binding to VP1 could be reduced by competition with an excess of unlabeled CaCl2. Separation of the species of VP1 by two-dimensional gel electrophoresis before electroblotting and probing with 45CaCl2 revealed that all six species (A to F) bind the radiolabeled calcium. Formic acid cleavage of the 43-kilodalton (kDa) VP1 protein into 29-, 18-, and 16-kDa fragments before 45Ca-binding analysis revealed that only the 18- and 16-kDa carboxyl-terminal fragments of this protein bind 45Ca.  相似文献   

11.
As a first step toward identifying the various functional regions of the polyomavirus major capsid protein VP1, we used recently developed methods for the chemical cleavage of proteins and the available polyomavirus sequence data to devise a scheme to produce large, identifiable peptides and generate a cleavage map of VP1. Formic acid (75%) was found to cleave VP1 at only two sites, producing three peptides of apparent molecular weights of 29,000, 16,000, and 2,000. The order of peptides in intact VP1 was determined by recleavage of partial products and was found to be 29,000, 16,000, and 2,000. Two-dimensional peptide mapping studies of 125I-labeled VP1 formic acid peptides established that the limit products of formic acid digestion contained mutually exclusive sets of labeled peptides when either trypsin or chymotrypsin was used and that together the formic acid peptides contained all of the 125I-labeled tryptic and chymotryptic peptides found in VP1. Iodosobenzoic acid (IBA) digestion produced four peptides separable by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, with apparent molecular weights of 12,000, 8,000, 7,000, and 5,000. The approximate positions of the IBA peptides in the VP1 sequence were determined by cleavage of formic acid fragments with IBA. The number of peptides produced, their respective sizes, and their order in the intact VP1 molecule agree with predictions made from available sequence data, both for formic acid cleavage and IBA cleavage. In addition, the numbers of 125I-labeled tryptic peptides produced from digestion of VP1 formic acid peptides also agree with predictions made from the sequence information. These data establish with reasonable certainty that the peptides produced by formic acid cleavage and IBA cleavage of VP1 are indeed those predicted. Antibodies raised against spontaneously produced, previously undefined polypeptides resulting from degradation of VP1 reacted exclusively with the formic acid peptides derived from the C-terminal portion of VP1. These antibodies inhibited hemagglutination and neutralized polyomavirus virions. We interpret this to mean that at least some of the antigenic determinants of the receptor moiety reside in this portion of the VP1 sequence.  相似文献   

12.
Introduction of DNA into normal and immunodeficient mice, alone or in complex with VP1 pseudocapsids, has been compared to DNA transfer by viral infection. Similar to natural infection and in contrast to plasmid alone, VP1 pseudocapsids efficiently introduced DNA, which remained for months in normal mice and possibly longer in B- and T-cell-deficient mice.  相似文献   

13.
The major structural viral protein, VP1, of the human polyomavirus JC virus (JCV), the causative agent of progressive multifocal leukoencephalopathy (PML), was expressed by using recombinant baculoviruses. Recombinant VP1 formed virus-like particles (VLP) with the typical morphology of empty JCV capsids. Purified VP1 VLP bind to SVG, B, and T cells, as well as to monkey kidney cells. After binding, VP1 VLP were also internalized with high efficiency and transported to the nucleus. Immunization studies revealed these particles as highly immunogenic when administered with adjuvant, while immunization without adjuvant induced no immune response. VP1 VLP hyperimmune serum inhibits binding to SVG cells and neutralizes natural JCV. Furthermore, the potential of VP1 VLP as an efficient transporter system for gene therapy was demonstrated. Exogenous DNA could be efficiently packaged into VP1 VLP, and the packaged DNA was transferred into COS-7 cells as shown by the expression of a marker gene. Thus, VP1 VLP are useful for PML vaccine development and represent a potential new transporter system for human gene therapy.  相似文献   

14.
Recombinant polyomavirus VP2 protein was expressed in Escherichia coli (RK1448), using the recombinant expression system pFPYV2. Recombinant VP2 was purified to near homogeneity by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, electroelution, and Extracti-Gel chromatography. Polyclonal serum to this protein which reacted specifically with recombinant VP2 as well as polyomavirus virion VP2 and VP3 on Western blots (immunoblots) was produced. Purified VP2 was used to establish an in vitro protein-protein interaction assay with polyomavirus structural proteins and purified recombinant VP1. Recombinant VP2 interacted with recombinant VP1, virion VP1, and the four virion histones. Recombinant VP1 coimmunoprecipitated with recombinant VP2 or truncated VP2 (delta C12VP2), which lacked the carboxy-terminal 12 amino acids. These experiments confirmed the interaction between VP1 and VP2 and revealed that the carboxyterminal 12 amino acids of VP2 and VP3 were not necessary for formation of this interaction. In vivo VP1-VP2 interaction study accomplished by cotransfection of COS-7 cells with VP2 and truncated VP1 (delta N11VP1) lacking the nuclear localization signal demonstrated that VP2 was capable of translocating delta N11VP1 into the nucleus. These studies suggest that complexes of VP1 and VP2 may be formed in the cytoplasm and cotransported to the nucleus for virion assembly to occur.  相似文献   

15.
The major capsid protein of polyomavirus, VP1, has been expression cloned in Escherichia coli, and the recombinant VP1 protein has been purified to near homogeneity (A. D. Leavitt, T. M. Roberts, and R. L. Garcea, J. Biol. Chem. 260:12803-12809, 1985). With this recombinant protein, a nitrocellulose filter transfer assay was developed for detecting DNA binding to VP1 (Southwestern assay). In optimizing conditions for this assay, dithiothreitol was found to inhibit DNA binding significantly. With recombinant VP1 proteins deleted at the carboxy and amino termini, a region of the protein affecting DNA binding was identified within the first 7 amino acids (MAPKRKS) of the VP1 amino terminus. Southwestern analysis of virion proteins separated by two-dimensional gel electrophoresis demonstrated equivalent DNA binding among the different VP1 isoelectric focusing subspecies, suggesting that VP1 phosphorylation does not modulate this function. By means of partial proteolysis of purified recombinant VP1 capsomeres for assessing structural features of the protein domain affecting DNA binding, a trypsin-sensitive site at lysine 28 was found to eliminate VP1 binding to DNA. The binding constant of recombinant VP1 to polyomavirus DNA was determined by an immunoprecipitation assay (R. D. G. McKay, J. Mol. Biol. 145:471-488, 1981) to be 1 x 10(-11) to 2 x 10(-11) M, which was not significantly different from its affinity for plasmid DNA. McKay analysis of deleted VP1 proteins and VP1-beta-galactosidase fusion proteins indicated that the amino terminus was both necessary and sufficient for DNA binding. As shown by electron microscopy, DNA inhibited in vitro capsomere self-assembly into capsidlike structures (D. M. Salunke, D. L. D. Caspar, and R. L. Garcea, Cell 46:895-904, 1986). Thus, VP1 is a high-affinity, non-sequence-specific DNA-binding protein with the binding function localized near its trypsin-accessible amino terminus. The inhibitory effects of disulfide reagents on DNA binding and of DNA on capsid assembly suggest possible intermediate steps in virion assembly.  相似文献   

16.
Infectious pancreatic necrosis virus (IPNV) is a bisegmented, double-stranded RNA (dsRNA) virus of the Birnaviridae family that causes widespread disease in salmonids. Its two genomic segments are encapsulated together with the viral RNA-dependent RNA polymerase, VP1, and the assumed internal protein, VP3, in a single-shell capsid composed of VP2. Major aspects of the molecular biology of IPNV, such as particle assembly and interference with host macromolecules, are as yet poorly understood. To understand the infection process, analysis of viral protein interactions is of crucial importance. In this study, we focus on the interaction properties of VP3, the suggested key organizer of particle assembly in birnaviruses. By applying the yeast two-hybrid system in combination with coimmunoprecipitation, VP3 was proven to bind to VP1 and to self-associate strongly. In addition, VP3 was shown to specifically bind to dsRNA in a sequence-independent manner by in vitro pull-down experiments. The binding between VP3 and VP1 was not dependent on the presence of dsRNA. Deletion analyses mapped the VP3 self-interaction domain within the 101 N-terminal amino acids and the VP1 interaction domain within the 62 C-terminal amino acids of VP3. The C-terminal end was also crucial but not sufficient for the dsRNA binding capacity of VP3. For VP1, the 90 C-terminal amino acids constituted the only dispensable part for maintaining VP3-binding ability. Kinetic analysis revealed the presence of VP1-VP3 complexes prior to the formation of mature virions in IPNV-infected CHSE-214 cells, which indicates a role in promoting the assembly process.  相似文献   

17.
The mouse polyomavirus gene for the major structural protein, VP1, with point mutation in the calcium-binding pocket (VP1(Ala)), was expressed in Saccharomyces cerevisiae and in a baculovirus expression system. Surprisingly, VP1(Ala) forms virus-like particles (VLPs) in nuclei of both yeast and insect cells. VP1(Ala)-VLPs produced in S. cerevisiae are unstable and, unlike wild-type VP1 (VP1(wt))-VLPs, they disassemble during the purification procedure and storage. In contrast to VP1(wt), VP1(Ala) does not interact with the yeast mitotic spindle. Nevertheless, both wild-type and mutated VP1 inhibit yeast cell growth. The inhibition is cAMP-dependent. The production of VP1(Ala) and VP1(wt)-VLPs in insect cells also revealed differences in their interactions with cellular protein(s). Thus, the mutation in the VP1 calcium pocket alters the stability and surface conformation of VLPs rather than the ability of VP1 to self-assemble.  相似文献   

18.
Murine polyomavirus contains two related minor coat proteins, VP2 and VP3, in addition to the major coat protein, VP1. The sequence of VP3 is identical to that of the carboxy-terminal two-thirds of VP2. VP2 may serve a role in uncoating of the virus, and both minor coat proteins may be important for viral assembly. In this study, we show that VP3 and a series of deletion mutants of VP3 can be expressed in Escherichia coli as fusion proteins to glutathione S-transferase and partially solubilized with a mild detergent. Using an in vitro binding assay, we demonstrate that a 42-amino-acid fragment near the carboxy terminus of VP3 (residues 140 to 181) is sufficient for binding to purified VP1 pentamers. This binding interaction is rapid, saturable, and specific for the common carboxy terminus of VP2 and VP3. The VP1-VP3 complex can be coimmunoprecipitated with an antibody specific to VP1, and a purified VP3 fragment can selectively extract VP1 from a crude cell lysate. The stoichiometry of the binding reaction suggests that each VP1 pentamer in the virus binds either one VP2 or one VP3, with the VP1-VP2/3 complex stabilized by hydrophobic interactions. These results, taken together with studies from other laboratories on the expression of polyomavirus capsid proteins in mouse and insect cells (S. E. Delos, L. Montross, R. B. Moreland, and R. L. Garcea, Virology, 194:393-398, 1993; J. Forstova, N. Krauzewicz, S. Wallace, A. J. Street, S. M. Dilworth, S. Beard, and B. E. Griffin, J. Virol. 67:1405-1413, 1993), support the idea that a VP1-VP2/3 complex forms in the cytoplasm and, after translocation into the nucleus, acts as the unit for viral assembly.  相似文献   

19.
Phosphorylation of the polyomavirus major capsid protein VP1 was examined after in vivo 32P labeling of virus-infected cells. Two phosphorylated peptide fragments of VP1 were identified by protease digestion, high-performance liquid chromatography purification, mass spectrometry, and N-terminal sequencing. The peptides from residues 58 to 78 and residues 153 to 173 were phosphorylated on threonine. Site-directed mutations were introduced at these threonine sites, and mutant viruses were reconstructed. A threonine-to-glycine change at residue 63 (mutant G63) and a threonine-to-alanine change at residue 156 (mutant A156) resulted in viruses defective in phosphorylation of the respective peptides after in vivo labeling. Growth of the mutant G63 virus was similar to that of the wild-type virus, but the mutant A156 was inefficient in assembly of 240S viral particles. Polyomavirus nontransforming host range (hr-t) mutants are defective in VP1 threonine phosphorylation when grown in nonpermissive cells (R. L. Garcea, K. Ballmer-Hofer, and T. L. Benjamin, J. Virol. 54:311-316, 1985). Proteolytic mapping of VP1 peptides after in vivo labeling from hr-t mutant virus infections demonstrated that both residues T-63 and T-156 were affected. These results suggest that the block in virion assembly in hr-t mutant viruses is associated with a defect in phosphorylation of threonine 156.  相似文献   

20.
Rotavirus is a nonenveloped virus with a three-layered capsid. The inner layer, made of VP2, encloses the genomic RNA and two minor proteins, VP1 and VP3, with which it forms the viral core. Core assembly is coupled with RNA viral replication and takes place in definite cellular structures termed viroplasms. Replication and encapsidation mechanisms are still not fully understood, and little information is available about the intermolecular interactions that may exist among the viroplasmic proteins. NSP2 and NSP5 are two nonstructural viroplasmic proteins that have been shown to interact with each other. They have also been found to be associated with precore replication intermediates that are precursors of the viral core. In this study, we show that NSP5 interacts with VP2 in infected cells. This interaction was demonstrated with recombinant proteins expressed from baculovirus recombinants or in bacterial systems. NSP5-VP2 interaction also affects the stability of VP6 bound to VP2 assemblies. The data presented showed evidence, for the first time, of an interaction between VP2 and a nonstructural rotavirus protein. Published data and the interaction demonstrated here suggest a possible role for NSP5 as an adapter between NSP2 and the replication complex VP2-VP1-VP3 in core assembly and RNA encapsidation, modulating the role of NSP2 as a molecular motor involved in the packaging of viral mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号