首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cytokinin is an adenine derivative plant hormone that generally regulates plant cell division and differentiation in conjunction with auxin. We report that a major cue for the negative regulation of sulfur acquisition is executed by cytokinin response 1 (CRE1)/wooden leg (WOL)/Arabidopsis histidine kinase 4 (AHK4) cytokinin receptor in Arabidopsis root. We constructed a green fluorescent protein (GFP) reporter system that generally displays the expression of the high-affinity sulfate transporter SULTR1;2 in Arabidopsis roots. GFP under the control of SULTR1;2 promoter showed typical sulfur responses that correlate with the changes in SULTR1;2 mRNA levels; accumulation of GFP was induced by sulfur limitation (-S), but was repressed in the presence of reduced sulfur compounds. Among the plant hormones tested, cytokinin significantly downregulated the expression of SULTR1;2. SULTR1;1 conducting sulfate uptake in sultr1;2 mutant was similarly downregulated by cytokinin. Downregulation of SULTR1;1 and SULTR1;2 by cytokinin correlated with the decrease in sulfate uptake activities in roots. The effect of cytokinin on sulfate uptake was moderated in the cre1-1 mutant, providing genetic evidence for involvement of CRE1/WOL/AHK4 in the negative regulation of high-affinity sulfate transporters. These data demonstrated the physiological importance of the cytokinin-dependent regulatory pathway in acquisition of sulfate in roots. Our results suggested that two different modes of regulation, represented as the -S induction and the cytokinin-dependent repression of sulfate transporters, independently control the uptake of sulfate in Arabidopsis roots.  相似文献   

2.
Cytokinin oxidase: Biochemical features and physiological significance   总被引:10,自引:0,他引:10  
The catabolism of cytokinin in plant tissues appears to be due, in large part, to the activity of a specific enzyme, cytokinin oxidase. This enzyme catalyses the oxidation of cytokinin substrates bearing unsaturated isoprenoid side chains, using molecular oxygen as the oxidant. In general, substrate specificity is highly conserved and cytokinin substrates bearing saturated or cyclic side chains do not serve as substrates for most cytokinin oxidases tested to date. Despite variation in molecular properties of the enzyme from a number of higher plants, oxygen is always required for the reaction. Cytokinin oxidases from several sources have been shown to be glycosylated. Cytokinin oxidase activity appears to be universally inhibited by cytokinin-active urea derivatives. Auxin has been reported to act as an allosteric regulator which increases activity of the enzyme.
Cytokinin oxidase activity is subject to tight regulation. Levels of the enzyme are controlled by a mechanism sensitive to cytokinin supply. The up-regulation of cytokinin oxidase expression in response to exogenous application of cytokinin suggests that the metabolic fate of exogenously applied cytokinins may not accurately mimic that of the endogenous compounds.
Cytokinin oxidase is believed to be a copper-containing amine oxidase (EC 1.4.3.6). Considerable evidence strongly supports a common mechanism for amine oxidases. It is possible that advances in understanding of other amine oxidases could be extrapolated to increase our understanding of cytokinin oxidase at the molecular level. This is discussed with reference to what is currently known about the catalytic mechanism of the enzyme. The possibility of pyrroloquinoline quinone, or a closely related compound, as a redox cofactor of cytokinin oxidase is considered, as are the implications of the glycosylated nature of the enzyme for its regulation and compartmentalisation within the cell.  相似文献   

3.
Cytokinin biosynthesis and interconversion   总被引:6,自引:0,他引:6  
To maintain hormone homeostasis, the rate of cytokinin biosynthesis, interconversion, and degradation is regulated by enzymes in plant cells. Cytokinins can be synthesized via direct (de novo) or indirect (tRNA) pathways. In the de novo pathway, a cytokinin nucleotide is synthesized from 5'-AMP and isopentenyl pyrophosphate; a key enzyme which catalyzes this synthesis has been isolated from plant tissues, slime mold, and some microorganisms. Studies on the in vitro synthesis of the isopentenyl side chain of cytokinin in tRNA demonstrated that the isopentenyl group was derived from mevalonate, and turnover of the cytokinin-containing tRNA may serve as a minor source of free cytokinins in plant cells. The interconversion of cytokinin bases, nucleosides and nucleotides is a major feature of cytokinin metabolism; and enzymes that regulate the interconversion have been identified. The N6-side chain and purine moiety of cytokinins are often modified and some of the enzymes involved in the modifications have been isolated. Most of the cytokinin metabolites have been characterized but very few enzymes regulating their metabolism have been purified to homogeneity. It remains a significant challenge to isolate plant genes involved in the regulation of cytokinin biosynthesis, interconversion and degradation.  相似文献   

4.
Mosses present several advantages for the analysis of phytohormone physiology. Their enormous regeneration capacity, the possibility of controlling their whole life cycle under in vitro culture conditions, as well as the small number of cell types facilitate studies of hormone homeostasis. This review focuses on the metabolism and biosynthesis of cytokinins, mostly summarising data obtained using the moss Physcomitrella patens (Hedw.) B.S.G. which has served as a model system for cytokinin research for many years. A comparison of metabolic differences with respect to seed plants is presented, pointing out an important role of adenosine kinase for the formation of nucleotides during cytokinin interconversion in Physcomitrella. Results on cytokinin biosynthesis in Physcomitrella are summarised with respect to the OVE mutants, which can be considered unique in the plant kingdom due to their strong overproduction of cytokinins. The OVE phenotype is correlated with both increased activity in early stages of cytokinin biosynthesis as well as increased conversion of cytokinin riboside to the base. Cytokinin interconverting reactions can contribute to the increased levels of cytokinins in OVE mutants. Further studies on hormone physiology in moss will help to complete our understanding of hormonal homeostasis by elucidating the situation in an evolutionary early embryophyte.  相似文献   

5.
种子萌发是子代植株建立、生长和繁育的重要阶段,在种子植物生命周期中起重要作用。种子休眠是在发育过程中形成的,在生理成熟期达到峰值。种子休眠与萌发的植物激素调控可能是种子植物中一种高度保守的机制。细胞分裂素(CK)是植物体内的一种重要信号分子,调控植物生长发育的许多方面。生物活性CK的水平由其生物合成、活化、失活、再活化...  相似文献   

6.
7.
The degradation of cytokinins in plants is controlled by the flavoprotein cytokinin dehydrogenase (EC 1.5.99.12). Cytokinin dehydrogenase from maize showed the ability to use oxidation products of guaiacol, 4-methylcatechol, acetosyringone and several other compounds as electron acceptors. These results led us to explore the cability for indirect production of suitable electron acceptors by different quinone-generating enzymes. The results reported here revealed that the electron acceptors may be generated in vivo from plant phenolics by other enzymatic systems such as peroxidase and tyrosinase/laccase/catechol oxidase. Histochemical localization of cytokinin dehydrogenase by activity staining and immunochemistry using optical and confocal microscopy showed that cytokinin dehydrogenase is most abundant in the aleurone layer of maize kernels and in phloem cells of the seedling shoots. Cytokinin dehydrogenase was confirmed to be present in the apoplast of cells. Co-staining of enzyme activity for laccase, an enzyme poised to function on the cell wall in the apoplast, in those tissues suggests a possible cooperation of the enzymes in cytokinin degradation. Additionally, the presence of precursors for electron acceptors of cytokinin dehydrogenase was detected in phloem exudates collected from maize seedlings, suggestive of an enzymatic capacity to control cytokinin flux through the vasculature. A putative metabolic connection between cytokinin degradation and conversion of plant phenolics by oxidases was proposed.  相似文献   

8.
Cytokinins enhance sugar-induced anthocyanin biosynthesis in Arabidopsis   总被引:3,自引:0,他引:3  
  相似文献   

9.
10.
11.
Cytokinins are phytohormones that regulate diverse developmental processes throughout the life of a plant. trans-Zeatin, kinetin, benzyladenine and dihydrozeatin are adenine-type cytokinins that are perceived by the AHK cytokinin receptors. Endogenous cytokinin levels are critical for regulating plant development. To manipulate intracellular cytokinin levels, caged cytokinins were designed on the basis of the crystal structure of the AHK4 cytokinin receptor. The caged cytokinin was photolyzed to release the cytokinin molecule inside the cells and induce cytokinin-responsive gene expression. The uncaging of intracellular caged cytokinins demonstrated that cytokinin-induced root growth inhibition can be manipulated with photo-irradiation. This caged cytokinin system could be a powerful tool for cytokinin biology.  相似文献   

12.
Cytokinin biosynthesis and perception   总被引:6,自引:0,他引:6  
Cytokinin has been considered to be a master regulator of plant growth and development, but only in the past several years has substantial progress been made uncovering the roles of cytokinins at various developmental stages. Recent studies on key metabolic enzymes and signaling components have contributed to understanding the basic mechanism of biosynthesis and perception of cytokinin within a whole plant body. The initial products of de novo cytokinin biosynthesis in higher plants and Agrobacterium are different, and the regulatory systems in biosynthesis and homeostasis are finely controlled and appear to be important in communicating nutrient signals to morphogenetic responses. The cytokinin receptors have largely overlapping, but still specific, functions in diverse cytokinin responses. In this review, we will specifically emphasize the biosynthesis of isoprenoid cytokinins and perception of cytokinin signals in Arabidopsis.  相似文献   

13.
Cytokinin metabolism in plants is very complex. More than 20 cytokinins bearing isoprenoid and aromatic side chains were identified by high performance liquid chromatography-mass spectrometry (HPLC-MS) in pea (Pisum sativum L. cv. Gotik) leaves, indicating diverse metabolic conversions of primary products of cytokinin biosynthesis. To determine the potential involvement of two enzymes metabolizing cytokinins, cytokinin oxidase/dehydrogenase (CKX, EC 1.5.99.12) and zeatin reductase (ZRED, EC 1.3.1.69), in the control of endogenous cytokinin levels, their in vitro activities were investigated in relation to the uptake and metabolism of [2−3H]trans-zeatin ([2−3H]Z) in shoot explants of pea. Trans-zeatin 9-riboside, trans-zeatin 9-riboside-5′-monophosphate and cytokinin degradation products adenine and adenosine were detected as predominant [2−3H]Z metabolites during 2, 5, 8, and 24 h incubation. Increasing formation of adenine and adenosine indicated extensive degradation of [2−3H]Z by CKX. High CKX activity was confirmed in protein preparations from pea leaves, stems, and roots by in vitro assays. Inhibition of CKX by dithiothreitol (15 mM) in the enzyme assays revealed relatively high activity of ZRED catalyzing conversion of Z to dihydrozeatin (DHZ) and evidently competing for the same substrate cytokinin (Z) in protein preparations from pea leaves, but not from pea roots and stems. The conversion of Z to DHZ by pea leaf enzyme was NADPH dependent and was significantly inhibited or completely suppressed in vitro by diethyldithiocarbamic acid (DIECA; 10 mM). Relations of CKX and ZRED in the control of cytokinin levels in pea leaves with respect to their potential role in establishment and maintenance of cytokinin homeostasis in plants are discussed.  相似文献   

14.
Cytokinin oxidase (EC 1.5.99.12) is an enzyme that catalyzes the irreversible degradation of cytokinin phytohormones that are extremely necessary for growth, development, and differentiation of plants. Cytokinin oxidase plays an important role in the regulation of quantitative level of cytokinins and their distribution in plant tissues. This review generalizes the available information on the structure, properties, and functional role of this enzyme in plant ontogeny under conditions of normal growth and under the influence of unfavorable environmental factors.  相似文献   

15.
The pattern of post-harvest senescence of broccoli (Brassica oleracea) and the effect of the cytokinin 6-benzylaminopurine (6-BAP) were investigated. Chlorophyll degraded before ammonia production increased and this was earlier in florets at the edge of the head than those at the centre. Application of 6-BAP delayed the onset of both chlorophyll degradation and ammonia production. Pedicels contained low levels of chlorophyll which changed little over the duration of the experiment. Pedicels were unresponsive to 6-BAP treatment with no differences between chlorophyll degradation or ammonia accumulation between the treated and non-treated tissues.Application of 6-BAP to the carpel delayed chlorophyll degradation in the sepals, stimulated growth of the carpel and, when over-mature heads of broccoli were used, stimulated petal emergence.Treatment of florets with 1-aminocyclopropane carboxylic acid (ACC) and silver ions indicated that ethylene may be involved in the control of chlorophyll degradation. Cytokinin application negated the ACC-stimulated senescence.  相似文献   

16.
Cytokinins play an important role in plant development and occur informs with different hormonal activity. As the nucleotide forms of cytokininsare considered to have little or no biological activity, the conversion ofcytokinin bases and ribosides to their nucleotides can contribute to the tuningof cytokinin activity in plant cells. Cytokinin metabolism was monitoredin vivo by feeding either radiolabelledisopentenyladenosine (3H-[9R]iP) or isopentenyladenine(3H-iP) to liquid grown chloronema tissue ofPhyscomitrellapatens (Hedw.) B.S.G. wild type. The riboside 3H-[9R]iPwas rapidly converted to 3H-iP, which was released into the culturemedium. The intracellular concentration of the 3H-iP was twice ashigh as extracellular. From the overall amount of 3H-iP about 95%were present in the medium. Cytokinin nucleotides occurred as tritiated mono-,di- and triphosphates of 3H-[9R]iP. When feeding the base3H-iP however, its main metabolic fate was degradation and nosignificant amounts of radiolabelled cytokinin nucleotides were detected. Forthe cytokinin metabolism in P. patens it is concludedthat,in contrast to higher plants nucleotides are mainly formed from ribosidesvia the adenosine kinase pathway and not byribophosphorylation of the cytokinin base via adeninephosphoribosyltransferase.  相似文献   

17.
New insights into the biology of cytokinin degradation   总被引:9,自引:0,他引:9  
A survey of recent results is presented concerning the role of cytokinin degradation in plants, which is catalyzed by cytokinin oxidase/dehydrogenase (CKX) enzymes. An overview of Arabidopsis CKX gene expression suggests that their differential regulation by biotic and abiotic factors contributes significantly to functional specification. Here, we show using reporter gene and semiquantitative RT-PCR analyses regulation of individual CKX genes by cytokinin, auxin, ABA, and phosphate starvation. Partially overlapping expression domains of CKX genes and cytokinin-synthesizing IPT genes in meristematic tissues and endo-reduplicating cells lend support for a locally restricted function of cytokinin. On the other hand, their expression in vascular tissue suggests a function in controlling transported cytokinin. Recent studies led to a model for the biochemical reaction mechanism of CKX-mediated catalysis, which was refined on the basis of the three-dimensional enzyme structure. Last but not least, the developmental functions of CKX enzymes are addressed. The recent identification of the rice OSCKX2 gene as an important novel breeding tool is highlighted. Together the results corroborate the relevance of metabolic control in determining cytokinin activity.  相似文献   

18.
19.
Cytokinin regulation of a soybean pollen allergen gene   总被引:2,自引:0,他引:2  
Cytokinin treatment of suspension-cultured soybean cells stimulated the accumulation of an mRNA, called cim 1, by a factor of ca. 20 within 4 h. Induction of cim 1 mRNA accumulation occurred at benzyladenine concentrations as low as 10-8 M. Furthermore, cim 1 mRNA accumulation was stimulated in the absence of cytokinin by staurosporine (an inhibitor of protein kinases) and inhibited in the presence of cytokinin by okadaic acid (an inhibitor of protein phosphatases 1 and 2a), suggesting that cim 1 accumulation in response to cytokinin is dependent on cytokinin-induced dephosphorylation of one or more cellular proteins. The deduced amino acid sequence of the cim 1 protein product, derived from the complete nucleotide sequence of a cim 1 cDNA, was 40% identical to that of a perennial rye grass pollen allergen cDNA (Lol Pl). This sequence also indicated that the cim 1 protein product contains a putative signal peptide followed by predominantly hydrophilic residues, consistent with the hypothesis that it is exported to the apoplast.  相似文献   

20.
S H Hahm  M J Saunders 《Cell calcium》1991,12(10):675-681
Changes in intracellular [Ca2+] ([Ca2+]i) after cytokinin-treatment in protonema cells of the moss Funaria hygrometrica have been measured using the pentapotassium salt of Indo-1. The extent of dye loading strongly depended on lowering the pH of the incubation medium to 5.0. Exposing dye-loaded cells briefly with Mn2+ did not quench fluorescence suggesting that the source of fluorescence is from the cytoplasm and not from the cell wall. Indo-1 remains responsive to changes in [Ca2+]i in Funaria cells. The [Ca2+]i in quiescent cells (with and without extracellular Ca2+) is 250 nM, which is within the range of reported [Ca2+]i of other plant cells. Treatment of cells with extracellular cytokinin in 4 mM Ca2+ induced a three-fold increase in [Ca2+]i to 750 nM in target caulonema cells. This increase was not observed in Ca(2+)-free medium. These target cells respond to cytokinin treatment by an asymmetrical division, while non-target chloronema cells do not divide. Cytokinin appears to increase [Ca2+]i by extracellular Ca2+ uptake. However, non-target chloronema cells and tip cells also respond to cytokinin treatment by increasing [Ca2+]i. The differential physiological response of these cell types to hormonal stimulation must lie further down the signal transduction chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号