首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This mini‐review focuses on fluorescent optically active crown ethers (polymeric derivatives are not included) reported in the literature (according to our knowledge), of which enantiomeric recognition ability, and in some cases, also inorganic cation complexation properties, were investigated by the sensitive and versatile fluorescence spectroscopy. These crown ether‐based chemosensors contain various fluorophore signaling units such as binaphthyl, anthracene, pyrene, tryptophan, benzimidazole, terpyridine, acridine, phenazine, acridone, BODIPY, and another conjugated aromatic one.  相似文献   

2.
Two novel chemosensors (2a and 2b) were synthesized by facile condensation of the binding unit (l ‐histidine) and the fluorophores (anthracene and dansyl groups). Both of them displayed high selectivity and sensitivity towards Fe3+ over other metal ions in aqueous solution. The sensing mechanism was based on the paramagnetic property of Fe3+ that would lead to fluorescence quenching of the fluorophores when Fe3+ was bound to the recognition units. The results showed that l ‐histidine was a good coordination motif for Fe3+ and both the anthracene and dansyl groups can sensitively report the sensing information. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
We describe the design, synthesis, and evaluation of a selective activity probe for leucine-rich repeat kinase 2 (LRRK2), a possible molecular target for the treatment of Parkinson’s disease. Our optimal chemosensor design, termed Nictide-S2, incorporates a phosphorylation-sensitive sulfonamido-oxine fluorophore at an engineered cysteine within the substrate sequence. This design allows for the direct, real-time analysis of LRRK2 kinase activity with a detection limit of 2.5 nM. Under optimized conditions, we measured a Z′ factor of 0.7 demonstrating the potential utility of this assay for inhibitor screening. Off-target kinases capable of phosphorylating Nictide-S2 are identified and an optimized inhibitor cocktail for suppressing background signal is provided. The resulting chemosensor could be utilized to identify LRRK2 inhibitors as well as selectively report on LRRK2 activity in the presence of off-target kinases.  相似文献   

4.
D Singh  V Kumar    K N Ganesh 《Nucleic acids research》1990,18(11):3339-3345
The synthesis of oligodeoxynucleotides d(AT)5 in which specific adenines are linked at C-8 position with dansyl fluorophores via a variable polymethylene spacer chain are reported. This was achieved by a strategy involving prelabelling at the monomeric stage followed by solid phase assembly of oligonucleotides to obtain regiospecifically labeled oligonucleotides. Several mono and polydansyl d(AT)5 derivatives in which the fluorophore is linked via ethylene, tetramethylene and hexamethylene spacer arms were synthesised for a systematic study of their fluorescence characteristics. It was observed that (i) enhancements in fluorescence intensity and emission quantum yields are seen due to multiple labelling, (ii) the magnitude of enhancements are related to labelling configuration and (iii) quenching efficiency is minimal with shorter and rigid spacer arms. The results may aid rational design of multiple fluorescent DNA probes for nonradioactive detection of nucleic acids.  相似文献   

5.
We report the multi-functionalized cubic silsesquioxane (POSS) as the ratiometric multimodal chemosensors for monitoring solvent polarity with fluorescence and (19)F NMR. The alteration of the dispersion state of the modified POSS by changing solvent polarity can be reflected into the orthogonal signal responses for the fluorescence and (19)F NMR. In addition, the ratiometric dual monitoring for the enzymatic reaction was performed using the POSS-based chemosensor.  相似文献   

6.
Ion‐induced change in fluorescence is a straight‐forward method for detection of toxic metal ions showing immediate response. Cadmium ions are toxic to the environment. We report in this paper a piperidine‐4‐one‐based fluorescent chemosensor of Cd2+ ions, designed and synthesized by a simple method. The compound is characterized using infra‐red (IR) and 1H–NMR spectral techniques. The chemosensor showed Cd2+ ion selectivity and sensitivity in aqueous solution. The stoichiometry and the binding constants were determined using fluorescence spectroscopy. Piperidine‐4‐one shows a 1:1 stoichiometric binding to Cd2+. The limit of detection of Cd2+ was reported.  相似文献   

7.
A novel ratiometric fluorescent peptidyl chemosensor (Dansyl-Cys-Pro-Gly-Cys-Trp-NH(2), D-P5) for metal ions detection has been synthesized via Fmoc solid-phase peptide synthesis. The chemosensor exhibited a high selectivity for Cd(2+) over other metal ions including competitive transition and Group I and II metal ions in neutral pH. The fluorescence emission intensity of D-P5 was significantly enhanced in the presence of Cd(2+) by fluorescent resonance energy transfer (FRET) and chelation enhanced fluorescence (CHEF) effects. The binding stoichiometry, detection limit, binding affinity, reversibility and pH sensitivity of the sensor for Cd(2+) were investigated.  相似文献   

8.
We have studied the association of a helix-loop-helix peptide scaffold carrying a benzenesulfonamide ligand to carbonic anhydrase using steady-state and time-resolved fluorescence spectroscopy. The helix-loop-helix peptide, developed for biosensing applications, is labeled with the fluorescent probe dansyl, which serves as a polarity-sensitive reporter of the binding event. Using maximum entropy analysis of the fluorescence lifetime of dansyl at 1:1 stoichiometry reveals three characteristic fluorescence lifetime groups, interpreted as differently interacting peptide/protein structures. We characterize these peptide/protein complexes as mostly bound but unfolded, bound and partly folded, and strongly bound and folded. Furthermore, analysis of the fluorescence anisotropy decay resulted in three different dansyl rotational correlation times, namely 0.18, 1.2, and 23 ns. Using the amplitudes of these times, we can correlate the lifetime groups with the corresponding fluorescence anisotropy component. The 23-ns rotational correlation time, which appears with the same amplitude as a 17-ns fluorescence lifetime, shows that the dansyl fluorophore follows the rotational diffusion of carbonic anhydrase when it is a part of the folded peptide/protein complex. A partly folded and partly hydrated interfacial structure is manifested in an 8-ns dansyl fluorescence lifetime and a 1.2-ns rotational correlation time. This structure, we believe, is similar to a molten-globule-like interfacial structure, which allows segmental movement and has a higher degree of solvent exposure of dansyl. Indirect excitation of dansyl on the helix-loop-helix peptide through Förster energy transfer from one or several tryptophans in the carbonic anhydrase shows that the helix-loop-helix scaffold binds to a tryptophan-rich domain of the carbonic anhydrase. We conclude that binding of the peptide to carbonic anhydrase involves a transition from a disordered to an ordered structure of the helix-loop-helix scaffold.  相似文献   

9.
The fluorescence spectra of several dansyl derivatives (dansylamide, ?-N-dansyl-l-lysine, dansyl-l-alanine, and α-N-dansyl-l-alanine amide) bound to anti-dansyl antibodics (induced by an α-N-dansyl-poly d,l-alanine-poly l-lysine conjugate) are shifted by about 60 nm to the blue, and the quantum yields are markedly enhanced, compared to their respective fluorescence properties in water. The light emitted by the bound haptens is partly circularly polarized, reflecting the asymmetry induced in the bound chromophores by the antibody combining site. In contradistinction, the fluorescence spectrum of 1-dansyl-2-alanine diaminoethane bound to anti-alanine antibodies is similar to that of the free fluorophore in water and lacks circular polarization. These results imply that in this case the fluorophore of the hapten protrudes out of the site into the aqueous solvent. No circular dichroism is observed in the 300 to 400 nm region for the dansyl-anti-dansyl complex. Thus a change in the mode of interaction between the chromophore and its binding site takes place upon electronic excitation. The heterogeneity of the antibody binding sites is expressed by the dependence of the circular polarization of fluorescence on excitation wavelength. Differences in the circular polarization of luminescence were also observed when the residues attached to the dansyl group have been varied. This may reflect differences in the alignment of the fluorophore within the binding sites for the different dansyl derivatives.The linear polarization of dansylamide dissolved in glycerol is not constant across the emission band, indicating that the transition dipole moments related to the various vibronic states do not have the same spatial directions. Vibronic mixing of the emitting excited state with higher electronic states is thus indicated. Dansyl-l-alanine bound to anti-dansyl antibodies exhibitsan even more pronounced variation of the linear polarization across the emission band. In this case, the dependence of the linear polarization of the emitted light on excitation wavelength is anomalous, which is again a reflection of the heterogeneity of the population of the antibody molecules. The implications of these results to the studies of the fluorescence polarization of dansyl-protein complexes are discussed.  相似文献   

10.
In the past, fluorescence emission from an extrinsic fluorophore bound to heme-proteins would only be studied with the removal of the heme since fluorescence from the fluorophore could not be detected using right-angle optics. Using front-face fluorometry, a significant steady state emission signal originating from the probe bound to hemoglobin is detected. This is the first report of the detection of extrinsic fluorescence of a probe bound to a heme-protein. We also demonstrate that the extrinsic probe, 5-iodoacetamidofluorescein, is covalently bound to hemoglobin, specifically at beta 93 Cysteine. Ligand binding results in a change in the fluorophore fluorescence intensity as predicted by hemoglobin crystallographic studies. Efficiency of energy transfer measurements are made.  相似文献   

11.
Synthesis of modified oligonucleotides in which the specific cytidine nucleoside analogues linked at 2'-OH position via a carbamate bond with an amino ethyl derivative of dansyl fluorophore is reported. For the multiple labeling of oligonucleotides, a strategy involving prelabeling at the monomeric level followed by solid phase assembly of oligonucleotides to obtain regiospecifically labeled probes has been described. The labeled monomer was phosphitylated using 2-cyanoethyl-N,N,N',N'-tetraisopropyl-phosphoramidite (Bis-reagent) and pyridiniumtrifluoro acetate (Py.TFA) as an activator. To ascertain the minimal number of labeled monomers required for a specific length of oligonucleotide for detection and also to assess the effect of carbamate linkage on hybridization, hexamer and 20-mer sequences were selected. Both were labeled with 1, 2, and 3 monomers at the 5'-end and hybridized with normal (unmodified) complementary sequences. As compared to midsequence or 3'-terminal labeling reported earlier, the 5'-terminal labeling has been found to have minimal contact-mediated quenching on duplex formation. This may be due to complementary deoxyguanosine (dG) rich oligonucleotide sequences or CG base pairs at a terminus that is known to yield stronger binding. This is one reason for selecting cytidine for labeling. The results may aid rational design of multiple fluorescent DNA probes for nonradioactive detection of nucleic acids.  相似文献   

12.
Two fluorescent chemosensors, denoted as chemosensor 1 and chemosensor 2 , were synthesized and subjected to comprehensive characterization using various techniques. The characterization techniques employed were Fourier-transform infrared (FTIR), proton (1H)- and carbon-13 (13C)-nuclear magnetic resonance (NMR) spectroscopy, electrospray ionization (ESI) mass spectrometry, and single crystal X-ray diffraction analysis. Chemosensor 1 is composed of a 1H-imidazole core with specific substituents, including a 4-(2-(4,5-c-2-yl)naphthalene-3-yloxy)butoxy)naphthalene-1-yl moiety. However, chemosensor 2 features a 1H-imidazole core with distinct substituents, such as 4-methyl-2-(4,5-diphenyl-1H-imidazole-2-yl)phenoxy)butoxy)-5-methylphenyl. Chemosensor 1 crystallizes in the monoclinic space group C2/c. Both chemosensors 1 and 2 exhibit a discernible fluorescence quenching response selectively toward iron(III) ion (Fe3+) at 435 and 390 nm, respectively, in dimethylformamide (DMF) solutions, distinguishing them from other tested cations. This fluorescence quenching is attributed to the established mechanism of chelation quenched fluorescence (CHQF). The binding constants for the formation of the 1 + Fe3+ and 2 + Fe3+ complexes were determined using the modified Benesi–Hildebrand equation, yielding values of approximately 2.2 × 103 and 1.3 × 104 M−1, respectively. The calculated average fluorescence lifetimes for 1 and 1 + Fe3+ were 2.51 and 1.17 ns, respectively, while for 2 and 2 + Fe3+, the lifetimes were 1.13 and 0.63 ns, respectively. Additionally, the applicability of chemosensors 1 and 2 in detecting Fe3+ in live cells was demonstrated, with negligible observed cell toxicity.  相似文献   

13.
Rational design of a molecular sensing tool is an important topic in molecular recognition, signalling, and optoelectronics that has piqued the interest of chemists, biologists, and environmental scientists. Approximately 150 years have passed since the beginning of the fluorescent chemosensor sector. Due to the paramagnetic properties of Cr3+ and Al3+, it is tough to prepare a photoluminescence plug-in detector. Most dye-based Al3+ sensors must be utilized in organic or mixed solvents for robust hydration of Al3+ in water. The sophisticated molecular design of sensors, conversely, allows for the detection of these metal ions in aqueous medium. The design of chemosensors using various fluorophores and their mechanisms of action have been thoroughly discussed. A literature survey covering the design of chemosensors and their mechanisms of action have been thoroughly discussed covering the period 2010–2022 and that was carried out including innovative and exemplary activities from numerous groups throughout the world that have significantly contributed to this sector. The most important advantages of these probes are their aqueous solubility and quick response with outstanding selectivity and sensitivity for temporal distribution with high fidelity of metals in living cells.  相似文献   

14.
A nanoparticle-based immunoassay for the detection of recombinant bovine prion protein (PrP) was developed as a step in the development of screening tools for the prevention of the spread of transmissible spongiform encephalopathies. The assay is based on the competitive binding between PrP and a peptide-fluorophore to a nanoparticle-labeled antibody which is specific for a conserved prion sequence. The fluorophore, when bound to the antibody, is subject to surfaced-modified fluorescence, enabling detection of changes in the concentration of bound fluorophore in the presence of prion protein. Important factors considered during the development of the assay were ease of use, robustness, and detection level. The effects of pH and nanoparticle conjugation chemistry on surface-modified fluorescence observed in the assay were explored. Effects of concentrations of antibody and fluorophore on reproducibility and detection limits were examined. At present, the detection limits of the system are approximately equal to the antibody-peptide fluorophore equilibrium dissociation constant, which is near one nanomolar concentration. Improved assay performance could be obtained by optimization of the nanoparticle surface resonance effects. The simplicity of the assay and ease of use may make the type of assay described in this report attractive for screening purposes in the food industry.  相似文献   

15.
The use of a simple fluorescent nucleoside analogue in detection of point mutations by hybridization in solution is described. Pyrene is placed at 3' and 5' ends of a pair of oligodeoxynucleotide probes via a phosphoramidite derivative of deoxyribose with this fluorophore attached at the 1' position, replacing a DNA base. Adjacent binding of dual probes containing this fluorophore to a complementary target sequence results in a pronounced spectral change from blue pyrene monomer emission (lambdamax= 381 398 nm) to green-white excimer emission (lambdamax= 490 nm). Optimization of the relative binding positions of the two probes shows that the greatest spectral change occurs when they bind with partial end overlap. In optimum orientation, the monomer emission band for the probes decreases intensity by as much as a factor of seven and the excimer band increases up to 40-fold on binding a complementary target. Application to the detection of a single-base point mutation in solution is described.  相似文献   

16.
R Takashi 《Biochemistry》1988,27(3):938-943
By peptide isolation and analysis, it has been shown that the dansyl fluorophore of dansylcadaverine [N-(5-aminopentyl)-5-(dimethylamino)naphthalene-1-sulfonamide] transfers to Gln-41 of actin from rabbit skeletal muscle when the reaction is catalyzed by guinea pig liver transglutaminase. As a function of time, the degree of labeling asymptotically approaches 1 mol of dansyl/l mol of actin. About 80-85% of the attached dansyl fluorophore was found at Gln-41. Such labeled G-actin polymerizes to the same extent as control actin, but the polymerization rate is greater and the critical concentration is less than for control actin. Complete polymerization is accompanied by a 1.5-2.0-fold increase in the emission intensity of the attached fluorophore. Labeled F-actin thus obtained activates myosin subfragment 1 (S-1) Mg2+-ATPase activity with the same Kapp, and to the same Vmax, as control actin; moreover, when such labeled F-actin is cross-linked to S-1 by 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide, the resulting superactivation of Mg2+-ATPase is the same as that attained with control actin. The attributes of this label thus make it an ideal reporter of events in the N-terminal 10-kilodalton region of actin, and a new topological point for proximity mapping.  相似文献   

17.
Polyamides that are structural analogues of the naturally occurring DNA minor groove binding antibiotic distamycin (Dst) are promising candidates as gene modulators. Developing strategies for the large scale screening and monitoring of the cellular distribution of such ligands would aid the faster discovery of molecules, which would have eventual utility in molecular biology and medicine. Attachment of fluorescent tags would be a useful step towards this end. A fundamental question in this connection is whether the tag modifies the DNA binding affinity of the parent compounds. Towards answering this question, we have developed two oligopeptides that bear the dansyl (N, N-dimethylaminonaphthalene sulfonamido fluorophore) coupled directly to the N-terminus of the conjugated N-methylpyrrole carboxamide network, and possess three or four N-methyl pyrrole carboxamide units (abbreviated as Dn3 and Dn4 respectively). DNA binding abilities of these molecules were assessed from fluorescence titration experiments, duplex-DNA T(m) analysis (employing both UV and fluorescence spectroscopy), induced circular dichroism measurements (ICD), salt dependence of ICD and apparent binding constant measurements (K(app)) employing ethidium bromide (EtBr) displacement assay. Both these molecules reported DNA binding in the form of an enhanced fluorescence emission. As judged from the ICD measurements, salt dependence of ICD, T(m) analysis and K(app) measurements, the binding affinities of the molecules that possessed dansyl group at their N-termini were lower than the ones with equivalent number of amide units, but possessed N-methylpyrrole carboxamide unit at their N- termini. These results would have implications in the future design of fluorescent polyamides.  相似文献   

18.
A novel N-4-butylamine acridone (BAA), which is an acridone derivative was synthesized and characterized by IR, MS and (1)H NMR. The fluorescent characteristics of BAA was investigated in detail and used as the fluorescent probe for detection of calf thymus DNA (ctDNA). It was found that DNA was able to quench the fluorescence of BAA at 426 nm with the excitation at 254 nm. Under optimal conditions, the corresponding linear response range was from 1.0 to 20.0mg/L and the limit of detections (LOD) was 0.020 mg/L (defined as S/N=3). Moreover, the interaction between BAA and ctDNA was investigated by fluorescence, absorption and viscosity measurements. The results suggested that the interaction between BAA and ctDNA is groove binding in nature.  相似文献   

19.
The location of flurophores specifically bound to the lactose/H+ carrier of Escherichia coli was ascertained by the use of various collisional quenchers. The reporter groups were (1) the pyrenyl residue of N-(1-pyrenyl)maleimide attached to the essential cysteine residue 148, which is presumably at or near the galactoside binding site, and (2) the dansyl moieties of a series of fluorescent substrate molecules. The accessibility of these fluorophores from the lipid phase was assessed by nitroxyl-labelled fatty acids and phospholipids. By using a series of nitroxyl-labelled fatty acids carrying the quencher at different positions in the acyl chain, the position of a quenchable fluorophore with respect to the membrane normal can be determined. The accessibility of fluophores from the aqueous phase was assessed by using a water-soluble quencher, the N-methylpicolinium ion. The results of quenching studies suggest that the galactoside binding site is located within the carrier and that this binding site communicates with the aqueous phase through a pore.  相似文献   

20.
Common alkylating antitumor drugs, such as temozolomide, trigger their cytotoxicity by methylating the O6-position of guanosine in DNA. However, the therapeutic effect of these drugs is dampened by elevated levels of the DNA repair enzyme, O6-methylguanine DNA methyltransferase (MGMT), which directly reverses this alkylation. As a result, assessing MGMT levels in patient samples provides an important predictor of therapeutic response; however, current methods available to measure this protein are indirect, complex and slow. Here we describe the design and synthesis of fluorescent chemosensors that report directly on MGMT activity in a single step within minutes. The chemosensors incorporate a fluorophore and quencher pair, which become separated by the MGMT dealkylation reaction, yielding light-up responses of up to 55-fold, directly reflecting repair activity. Experiments show that the best-performing probe retains near-native activity at mid-nanomolar concentrations. A nuclease-protected probe, NR-1, was prepared and tested in tumor cell lysates, demonstrating an ability to evaluate relative levels of MGMT repair activity in twenty minutes. In addition, a probe was employed to evaluate inhibitors of MGMT, suggesting utility for discovering new inhibitors in a high-throughput manner. Probe designs such as that of NR-1 may prove valuable to clinicians in selection of patients for alkylating drug therapies and in assessing resistance that arises during treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号