首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nardilysin is a metalloprotease that cleaves peptides, such as dynorphin-A, α-neoendorphin, and glucagon, at the N-terminus of arginine and lysine residues in dibasic moieties. It has various functionally important molecular interaction partners (heparin-binding epidermal growth factor-like growth factor, tumour necrosis factor-α-converting enzyme, neuregulin 1, beta-secretase 1, malate dehydrogenase, P42IP4/centaurin-α1, the histone H3 dimethyl Lys4, and others) and is involved in a plethora of normal brain functions. Less is known about possible implications of nardilysin for brain diseases. This review, which includes some of our own recent findings, attempts to summarize the current knowledge on possible roles of nardilysin in Alzheimer disease, Down syndrome, schizophrenia, mood disorders, alcohol abuse, heroin addiction, and cancer. We herein show that nardilysin is a Janus-faced enzyme with regard to brain pathology, being probably neuropathogenic in some diseases, but neuroprotective in others.  相似文献   

2.
Production of active enkephalin peptides requires proteolytic processing of proenkephalin at dibasic Lys-Arg, Arg-Arg, and Lys-Lys sites, as well as cleavage at a monobasic arginine site. A novel “prohormone thiol protease” (PTP) has been demonstrated to be involved in enkephalin precursor processing. To find if PTP is capable of cleaving all the putative cleavage sites needed for proenkephalin processing, its ability to cleave the dibasic and the monobasic sites within the enkephalin-containing peptides, peptide E and BAM-22P (bovine adrenal medulla docosapeptide), was examined in this study. Cleavage products were separated by HPLC and subjected to microsequencing to determine their identity. PTP cleaved BAM-22P at the Lys-Arg site between the two basic residues. The Arg-Arg site of both peptide E and BAM-22P was cleaved at the NH2-terminal side of the paired basic residues to generate [Met]-enkephalin. Furthermore, the monobasic arginine site was cleaved at its NH2-terminal side by PTP. These findings, together with previous results showing PTP cleavage at the Lys-Lys site of peptide F, demonstrate that PTP possesses the necessary specificity for all the dibasic and monobasic cleavage sites required for proenkephalin processing. In addition, the unique specificity of PTP for cleavage at the NH2-terminal side of arginine at dibasic or monobasic sites distinguishes it from many other putative prohormone processing enzymes, providing further evidence that PTP appears to be a novel prohormone processing enzyme.  相似文献   

3.
The processing of the common precursor for pancreatic polypeptide and pancreatic icosapeptide was studied in primary cultures of endocrine cells isolated from the duodenal part of the canine pancreas. Biosynthetically labeled peptides were characterized by enzymatic digestion and radiosequencing and compared to a COOH-terminally extended form of the icosapeptide which was isolated from canine pancreas and also sequenced. It was substantiated that, in these cell cultures, processing can be studied at a classical dibasic site between the pancreatic polypeptide and the icosapeptide, and at a monobasic processing site between the icosapeptide and its COOH-terminal extension. Pulse-chase experiments showed that the monobasic cleavage occurs later than the dibasic one in the biosynthetic process; the monobasic site was apparently not cleaved before the prohormone had been processed at the dibasic site. The monobasic processing could also be distinguished from the dibasic cleavage mechanism as, in time, the cells gradually lost the ability to cleave at the monobasic site while the dibasic processing was unaffected. It is concluded that monobasic conversion, which is important in the activation of a series of hormones, neuropeptides, and growth factors, is a distinct cellular processing mechanism.  相似文献   

4.
The parathyroid hormone-related protein (PTHrP) precursor requires proteolytic processing to generate PTHrP-related peptide products that possess regulatory functions in the control of PTH-like (parathyroid-like) actions and cell growth, calcium transport, and osteoclast activity. Biologically active peptide domains within the PTHrP precursor are typically flanked at their NH2- and COOH-termini by basic residue cleavage sites consisting of multibasic, dibasic, and monobasic residues. These basic residues are predicted to serve as proteolytic cleavage sites for converting the PTHrP precursor into active peptide products. The coexpression of the prohormone processing enzyme PTP ("prohormone thiol protease") in PTHrP-containing lung cancer cells, and the lack of PTP in cell lines that contain little PTHrP, implicate PTP as a candidate processing enzyme for proPTHrP. Therefore, in this study, PTP cleavage of recombinant proPTHrP(1-141) precursor was evaluated by MALDI mass spectrometry to identify peptide products and cleavage sites. PTP cleaved the PTHrP precursor at the predicted basic residue cleavage sites to generate biologically active PTHrP-related peptides that correspond to the NH2-terminal domain (residues 1-37) that possesses PTH-like and growth regulatory activities, the mid-region domain (residues 38-93) that regulates calcium transport, and the COOH-terminal domain (residues 102-141) that modulates osteoclast activity. Lack of cleavage at other types of amino acids demonstrated the specificity of PTP processing at basic residue cleavage sites. Overall, these results demonstrate the ability of PTP to cleave the PTHrP precursor at multibasic, dibasic, and monobasic residue cleavage sites to generate active PTHrP-related peptides. The presence of PTP immunoreactivity in PTHrP-containing lung cancer cells suggests PTP as a candidate processing enzyme for the PTHrP precursor.  相似文献   

5.
The cleavage specificity of a monobasic processing dynorphin converting endoprotease is examined with a series of quench fluorescent peptide substrates and compared with the cleavage specificity of prohormone convertases. A dynorphin B-29-derived peptide, Abz-Arg-Arg-Gln-Phe-Lys-Val-Val-Thr-Arg-Ser-Glneddnp (where Abz is o-aminobenzoyl and eddnp is ethylenediamine 2,4-dinitrophenyl), that contains both dibasic and monobasic cleavage sites is efficiently cleaved by the dynorphin converting enzyme and not cleaved by two propeptide processing enzymes, furin and prohormone convertase 1. A shorter prorenin-related peptide, Dnp-Arg-Met-Ala-Arg-Leu-Thr-Leu-eddnp, that contains a monobasic cleavage site is cleaved by the dynorphin converting enzyme and prohormone convertase 1 and not by furin. Substitution of the P1' position by Ala moderately affects cleavage by the dynorphin-processing enzyme and prohormone convertase 1. It is interesting that this substitution results in efficient cleavage by furin. The site of cleavage, as determined by matrix-assisted laser desorption/ionization time of flight mass spectrometry, is N-terminal to the Arg at the P1 position for the dynorphin converting enzyme and C-terminal to the Arg at the P1 position for furin and prohormone convertase 1. Peptides with additional basic residues at the P2 and at P4 positions also serve as substrates for the dynorphin converting enzyme. This enzyme cleaves shorter peptide substrates with significantly lower efficiency as compared with the longer peptide substrates, suggesting that the dynorphin converting enzyme prefers longer peptides that contain monobasic processing sites as substrates. Taken together, these results suggest that the cleavage specificity of the dynorphin converting enzyme is distinct but related to the cleavage specificity of the prohormone convertases and that multiple enzymes could be involved in the processing of peptide hormones and neuropeptides at monobasic and dibasic sites.  相似文献   

6.
Previously, we reported the purification and characterization of a myofibril-bound serine proteinase (MBP) from carp muscle (Osatomi K, Sasai H, Cao M-J, Hara K, Ishihara T. Comp Biochem Physiol 1997;116B:159–66). In the present study, the N-terminal amino acid sequence of the enzyme was determined, which showed high identity with those of other trypsin-like serine proteases. The cleavage specificity of MBP for dibasic and monobasic residues was investigated using various fluorogenic substrates and peptides. Analyses of the cleaved peptide products showed that the enzyme hydrolyzed peptides both at monobasic and dibasic amino acid residues. Monobasic amino acid residues were hydrolyzed at the carboxyl side; dibasic residues were cleaved either at the carboxyl side of the pair or between the two basic residues and the enzyme showed a cleavage preference for the Arg-Arg pair. Unexpectedly, MBP hydrolyzed lysyl-bradykinin and methionyl–lysyl–bradykinin at the carboxyl side of Gly fairly specifically and efficiently displaying a unique cleavage. Because MBP also degraded protein substrates such as casein and myofibrillar proteins, the substrate specificity of MBP appeared not to be strictly specific.  相似文献   

7.
We have extracted, characterized, and partially purified an enzyme from secretory granules from rat small intestinal mucosa which cleaves a synthetic prosomatostatin substrate on the carboxyl side of a single arginine residue. This substrate Leu-Gln-Arg-Ser-Ala-Asn-Ser-NH2 contains the monobasic site at which mammalian prosomatostatin is cleaved in vivo to generate somatostatin-28. This activity was released from the granules by osmotic shock followed by extraction with 500 mM KCl. The enzyme had a molecular weight of about 55,000, a pH optimum of about 7.5, and a Km for the synthetic substrate of 20 microM. It was partially inhibited by diisopropyl fluorophosphate, phenylmethanesulfonyl fluoride, iodoacetate, soybean trypsin inhibitor, and EDTA. It was also very sensitive to aprotinin (complete inhibition at 25 micrograms/ml) but was not inhibited by bestatin, pepstatin, or p-chloromercuribenzoate. This endoprotease was unable to cleave three small trypsin and kallikrein substrates (N alpha-benzoyl-L-arginine ethyl ester, N alpha-benzoyl-DL-arginine p-nitroanilide, and N alpha-benzoyl-L-arginine 7-amido-4-methylcoumarin). It was unable to cleave either the Arg-Asp bond in CCK 12 or the Arg-Glu and Arg-Met bonds of synthetic peptides corresponding to sequences of anglerfish prosomatostatin II situated upstream from the somatostatin-28 domain. These observations together suggest that adjacent amino acids play a role in determining the conformational specificity of the monobasic cleavage. This soluble enzyme was also able to cleave three synthetic substrates containing dibasic residues (Arg-Lys or Lys-Arg) on the carboxyl side of the arginine, although it did so less rapidly than at the monobasic cleavage sites. When incubated with partially purified prosomatostatin from anglerfish pancreas, significant quantities of somatostatin-28 II were produced. All these cleavages were completely blocked by preincubation with aprotinin. Although further work is required to clarify the physiological role of this enzyme, it appears, in view of its catalytic properties, this endoprotease could be involved in the conversion of prosomatostatin to somatostatin-28 in intestine mucosal secretory cells.  相似文献   

8.
The location and nature of the endoproteolytic activity involved in processing of proproteins has been studied in chicken liver microsomes. A membrane-bound, calcium-dependent proteinase was found to cleave chicken proalbumin with a monobasic cleavage site approx. 10-times faster than human proalbumin, which has a dibasic cleavage site. The mutant (human) proalbumin Christchurch (Arg(-1)----Gln), with a potential monobasic site, was not processed. The enzyme, which had a pH optimum of between 5.0 and 7.0, was not inhibited by serine or aspartyl proteinase inhibitors but was affected by some inhibitors of cysteine proteinases. The convertase was specifically inhibited by the reactive centre variant alpha 1-antitrypsin Pittsburgh, but not by normal alpha 1-antitrypsin.  相似文献   

9.
An endoproteolytic activity that specifically cleaves CCK 33, producing CCK 8, has been purified from a rat brain synaptosome preparation. The purification, which included anion exchange, chromatofocusing, hydroxyapatite, and gel filtration chromatography, resulted in a greater than 3000-fold increase in specific activity. This neutral endoprotease (pH optimum 8) exists as a 90-kDa species, which can be dissociated into active 40-kDa species. The enzyme is a non-trypsin serine protease, which is inhibited by diisopropyl-fluorophosphate and p-aminobenzamidine but not by soybean trypsin inhibitor, phenylmethylsulfonyl fluoride, aprotinin, or a number of thiol or metalloprotease inhibitors. It is highly substrate-specific and cleaves neither trypsin, enteropeptidase, kallikrein substrates, nor analogues of mono- or dibasic cleavage sites of prohormones other than pro-CCK. The endoprotease will not cleave CCK 12 desulfate or CCK (20-29), although these peptides contain common sequences with CCK-33. The protease does cleave [Glu27]CCK (20-29), a peptide in which the glutamate mimics the negative charge normally present on tyrosine sulfate. This suggests that the negative charge at position 27 is important in substrate recognition. The enzyme will also cleave CCK 33 and CCK (1-21) on the carboxyl-terminal side of a single lysine residue in position 11. The subcellular location and specificity of this endoprotease make it a good candidate for a CCK-processing protease.  相似文献   

10.
Peptides derived from the post-translational processing of preprosodefrin were isolated from an extract of the abdominal glands of male red-bellied newts Cynops pyrrhogaster obtained 5 months prior to the onset of the breeding season. Structural characterization of the peptides showed that the pheromone sodefrin (SIPSKDALLK) is stored in a biologically inactive COOH-terminally extended form (SIPSKDALLKISA). It follows, therefore, that the activation of a protease that cleaves at a Lys-Ile bond to generate the active pheromone must occur by the time of onset of reproductive behavior. Additional peptides (representing preprosodefrin-(146-175)-peptide and preprosodefrin-(159-173)-peptide), that are derived from the precursor by cleavage at monobasic and dibasic processing sites, were also purified from the extract. The isolation of paralogs of these peptides, including an inactive COOH-terminally extended form of [Asn10]sodefrin, provides evidence for the expression of multiple genes encoding preprosodefrin. PCR products derived from total RNAs from the abdominal gland of individual newts collected from three different regions of Japan were analyzed. The data confirm the existence of multiple genes encoding sodefrin and its variants whose expression varied according to the individuals and the regions. However, genes encoding sodefrin were found to be expressed in all the specimens sampled.  相似文献   

11.
The primary structures of three peptides from extracts from the pancreatic islets of the daddy sculpin (Cottus scorpius) and three analogous peptides from the islets of the flounder (Platichthys flesus), two species of teleostean fish, have been determined by automated Edman degradation. The structures of the flounder peptides were confirmed by fast-atom bombardment mass spectrometry. The peptides show strong homology to residues (49-60), (63-96) and (98-125) of the predicted sequence of preprosomatostatin II from the anglerfish (Lophius americanus). The amino acid sequences of the peptides suggest that, in the sculpin, prosomatostatin II is cleaved at a dibasic amino acid residue processing site (corresponding to Lys61-Arg62 in anglerfish preprosomatostatin II). The resulting fragments are further cleaved at monobasic residue processing sites (corresponding to Arg48 and Arg97 in anglerfish preprosomatostatin II). In the flounder the same dibasic residue processing site is utilised but cleavage at different monobasic sites takes place (corresponding to Arg50 and Arg97 in anglerfish preprosomatostatin II). A peptide identical to mammalian somatostatin-14 was also isolated from the islets of both species and is presumed to represent a cleavage product of prosomatostatin I.  相似文献   

12.
Lakshmi Devi 《FEBS letters》1991,280(2):189-194
Many regulatory peptide precursors undergo post-translational processing at mono- and/or dibasic residues. Comparison of amino acids around the monobasic cleavage sites suggests that these cleavages follow certain sequence motifs and can be described as the rules that govern monobasic cleavages: (i) a basic amino acid it present at either 3, 5, or 7 amino acids N-terminal to the cleavage site, (ii) hydrophobic aliphatic amino acids (leucine, isoleucine, valine, or methionine) are never present in the position C-terminal to the monobasic amino acid at the cleavage site, (iii) a cysteine is never present in the vicinity of the cleavage site, and (iv) an aromatic amino acid is never present at the position N-terminal to the monobasic amino acid at the cleavage site. In addition to these rules, the monobasic cleavages follow certain tendencies: (i) the amino acid at the cleavage site tends to be predominantly arginine, (ii) the amino acid at the position C-terminal to the cleavage site tends to be serine, alanine or glycine in more than 60% of the cases, (iii) the amino acid at either 3, 5, or 7 position N-terminal to the cleavage site tends to be arginine, (iv) aromatic amino acids are rare at the position C-terminal to the monobasic amino acid at the cleavage site, and (v) aliphatic amino acids tend to be in the two positions N-terminal to and the two positions C-terminal to the cleavage site, except as noted above. When compared with a large number of sequence containing single basic amino acids, these rules and tendencies are capable of not only correctly predicting the processing sites, but also are capable of excluding most of the single basic sequences that are known to be uncleaved. Many or these rules can also be applied to correctly predict the dibasic and multibasic cleavage sites suggesting that the rules and tendencies could govern endoproteolytic processing at the monobasic, dibasic and multibasic sites.  相似文献   

13.
The classical conversion site in precursors of regulatory peptides is a sequence of two basic amino acids. During recent years, however, a group of monobasic cleavage sites has emerged. In certain cell systems it has been shown that the monobasic cleavage mechanism is both a specific mechanism which only attacks a particular basic residue, and a distinct mechanism which can be separated from the dibasic cleaving mechanism within the same cell. The vast majority of monobasic cleavages occur at single arginines although cleavage after a lysine residue has also been demonstrated. There is no 'consensus sequence' of amino acids surrounding the single basic residue which is the apparent signal for proteolytic processing. However, in approximately one third of the cases, a proline residue is found either just before or just after the basic residue. On the basis of this 'proline-directed arginyl cleavage' it is discussed how the conformation of the peptide backbone might be important for this type of cleavage. Finally, it is suggested that tissue-specific expression of different processing enzymes, e.g. dibasic and monobasic specific forms, might explain the tissue-specific processing of precursors like the pro-opiomelanocortin and the CKK and somatostatin precursor.  相似文献   

14.
Treatment of a 128 kDa mouse nardilysin with trypsin initially produced an active 105 kDa N-terminally cleaved form. Continued trypsin digestion occurred at the C-terminus, producing inactive core species of approximately 92, 76.5, and 62 kDa. Protease V8 digestion generated a stable approximately 105 kDa form, nardilysin(V8), that was cleaved near the N-terminal trypsin site. The approximately 105 kDa nardilysin(V8) exhibited the same K(m) as did the uncleaved enzyme for substrates of the type Abz-GGFX(1)X(2)X(3)VGQ-EDDnp, where X residues were varied. However, k(cat) for nardilysin(V8) was 5-6 times greater. Both uncleaved nardilysin and nardilysin(V8) are inhibited by NaCl; however, nardilysin(V8) exhibits an IC(50) of approximately 2 mM compared to an IC(50) of approximately 50 mM for uncleaved nardilysin. Nardilysin(V8) is more sensitive to inhibition by phosphate buffer. Treatment of nardilysin(V8) with trypsin generated primarily the 92 kDa form which was inactive. Attempts to express nardilysin as a 105 kDa truncated N-terminal form or as a C-terminally truncated form led to inactive proteins.  相似文献   

15.
Proteolytic processing of somatostatin precursor produces several peptides including somatostatin-14 (S-14), somatostatin-28 (S-28), and somatostatin-28 (1-12) (S-28(1-12)). The subcellular sites at which these cleavages occur were identified by quantitative evaluation of these products in enriched fractions of the biosynthetic secretory apparatus of rat cortical or hypothalamic cells. Each of the major cellular compartments was obtained by discontinuous gradient centrifugation and was characterized both by specific enzyme markers and electron microscopy. The prosomatostatin-derived fragments were measured by radioimmunoassay after chromatographic separation. Two specific antibodies were used, allowing the identification of either S-28(1-12) or S-14 which results from peptide bond hydrolysis at a monobasic (arginine) and a dibasic (Arg-Lys) cleavage site, respectively. These antibodies also revealed prosomatostatin-derived forms containing at their COOH terminus the corresponding dodeca- and tetradecapeptide sequences. Whereas the reticulum-enriched fractions contained the highest levels of prosomatostatin, the proportion of precursor was significantly lower in the Golgi apparatus. In the latter fraction, other processed forms were also present, i.e. S-14 and S-28(1-12) together with the NH2-terminal domain (1-76) of prosomatostatin (pro-S(1-76). Inhibition of the intracellular transport either by monensin or by preincubation at reduced temperature resulted in an increase of prosomatostatin-derived peptides in the Golgi-enriched fractions. Finally, immunogold labeling using antibodies raised against S-28(1-12) and S-14 epitopes revealed the presence of these forms almost exclusively in the Golgi-enriched fraction mainly at the surface of saccules and vesicles. Together these data demonstrate that in rat neural cells, prosomatostatin proteolytic processing at both monobasic and dibasic sites is initiated at the level of the Golgi apparatus.  相似文献   

16.
N Brakch  M Rholam  C Nault  G Boileau  P Cohen 《FEBS letters》1991,282(2):363-367
Neuro 2A cells infected with a retroviral vector carrying human prosomatostatin cDNA expressed and processed correctly the precursor into somatostatins-14 and -28 [(1989) EMBO J. 8, 2911-2916]. In order to study the mechanisms by which the active hormone sequences arise, site directed mutagenesis was performed on either the dibasic (ArgLys) or monobasic (Arg) cleavage sites involved in the production of somatostatins-14 and -28, respectively. Radioimmunochemical analysis of the somatostatin-related products indicated that replacement of either Arg-2-Lys-1 by Asn-2-Asn-1 or of Arg-15 by Asn-15 resulted in the exclusive production of either somatostatin-28 or -14, respectively. Moreover only prosomatostatin[1-76] was detected and no somatostatin-28[1-12] could be measured in cell extracts. Selective suppression of either somatostatin-14 or somatostatin-28 release by mutation did not affect the level of production of the other hormone but resulted in a correlative increase of unprocessed prosomatostatin. It is concluded that in this cell type (i) somatostatin-14 is exclusively generated by dibasic cleavage at the Arg-2-Lys-1 site of the intact precursor with concomitant production of prosomatostatin[1-76], and (ii) no direct interactions between the monobasic and dibasic processing domains occur.  相似文献   

17.
The subsite specificity of rat nardilysin was investigated using fluorogenic substrates of the type 2-aminobenzoyl-GGX(1)X(2)RKX(3)GQ-ethylenediamine-2,4- dinitrophenyl, where P(2), P(2)', and P(3) residues were varied. (The nomenclature of Schechter and Berger (Schechter, I., and Berger, A. (1967) Biochem. Biophys. Res. Commun. 27, 157-162) is used where cleavage of a peptide occurs between the P(1) and P(1)' residues, and adjacent residues are designated P(2), P(3), P(2)', P(3)', etc.) There was little effect on K(m) among different residues at any of these positions. In contrast, residues at each position affected k(cat), with P(2) residues having the greatest effect. The S(3), S(2), and S(2)' subsites differed in their amino acid preference. Tryptophan and serine, which produced poor substrates at the P(2) position, were among the best P(2)' residues. The specificity at P(3) was generally opposite that of P(2). Residues at P(2), and to a lesser extent at P(3), influenced the cleavage site. At the P(2) position, His, Phe, Tyr, Asn, or Trp produced cleavage at the amino side of the first basic residue. In contrast, a P(2) Ile or Val produced cleavage between the dibasic pair. Other residues produced intermediate effects. The pH dependence for substrate binding showed that the enzyme prefers to bind a protonated histidine. A comparison of the effect of arginine or lysine at the P(1)' or P(1) position showed that there is a tendency to cleave on the amino side of arginine and that this cleavage produces the highest k(cat) values.  相似文献   

18.
Nardilysin (NRDc), a metallopeptidase of the M16 family, presents, in vitro, cleavage specificity for basic residues. Depending on the cell type, it is cytoplasmic, exported or cell surface associated. As a new receptor for heparin-binding EGF-like growth factor (HB-EGF), NRDc was recently shown to be involved in cellular migration and proliferation. Since for those processes its enzymatic activity is not required, it is now evident that nardilysin fulfills at least two distinct functions, i.e. an HB-EGF modulator and a peptidase.  相似文献   

19.
A recombinant plasmid containing the rat prodynorphin cDNA was introduced into the mouse anterior pituitary corticotroph cell line AtT-20. These cells normally express and posttranslationally process proopiomelanocortin, but not prodynorphin. Stable transformants were isolated and analyzed for the expression and processing of prodynorphin. The stably transformed AtT-20 cells that expressed a 1.3-kilobase prodynorphin mRNA also expressed prodynorphin protein and processed it to dynorphin peptides. The peptides included leucine-enkephalin, beta-neoendorphin, dynorphin-A8, and dynorphin-B, as identified by gel filtration and reverse phase HPLC followed by RIA using peptide-specific antisera. These results demonstrate that AtT-20 cells efficiently and accurately process prodynorphin at both dibasic sites and monobasic cleavage sites, indicating that the AtT-20 cells contain enzymes capable of cleaving the precursor not only at dibasic residues but also at monobasic residues. The release of prodynorphin-derived peptides paralleled secretion of endogenous proopiomelanocortin-derived peptides when stimulated by CRF, a natural secretagogue for ACTH.  相似文献   

20.
An immunological approach was used to investigate the specificity of protease cleavage sites on proANF. Cleavage of 35S-cysteine biosynthetically-labeled proANF by whole serum, thrombin and kallikrein was examined. Reaction products were immunoprecipitated with two antibodies directed to different epitopes: a previously characterized antibody directed toward the carboxy-terminus of ANF103–126, which cross reacts with proANF, ANF99–126 and ANF103–126, and a newly prepared antisera to synthetic ANF99–105, which uniquely recognizes ANF99–126, but not proANF or ANF103–126. With increasing time of incubation with rat serum, proANF is sequentially cleaved at the C-terminus of a monobasic Pro-Arg dipeptide sequence to form ANF99–126, and then at the C-terminus of a dibasic Arg-Arg dipeptide sequence to yield ANF103–126. This cleavage activity of serum is blocked by leupeptin (40 μg/ml), but not by hirudin (100 nM), a specific inhibitor of thrombin, or by aprotinin (200 KIU/ml), a kallikrein inhibitor. When 100-fold purified serum cleavage enzyme was used in place of crude serum, similar results were obtained. Thrombin cleaves proANF only at the monobasic site to produce ANF99–126 while kallikrein cleaves only at the dibasic site to produce ANF103–126. As expected, the generation of these cleavage products can be inhibited by hirudin or aprotinin respectively. These data indicate that the substrate specificity of the serum cleavage activity is broader than that of thrombin or kallikrein, and that cleavage of proANF by serum proteases may be influenced by conformational restraints. The methods developed here should help in the future characterization of the physiological proANF cleaving enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号