共查询到20条相似文献,搜索用时 0 毫秒
1.
I. S. Winney J. Schroeder S. Nakagawa Y.‐H. Hsu M. J. P. Simons A. Sánchez‐Tójar M.‐E. Mannarelli T. Burke 《Journal of evolutionary biology》2018,31(1):75-87
How has evolution led to the variation in behavioural phenotypes (personalities) in a population? Knowledge of whether personality is heritable, and to what degree it is influenced by the social environment, is crucial to understanding its evolutionary significance, yet few estimates are available from natural populations. We tracked three behavioural traits during different life‐history stages in a pedigreed population of wild house sparrows. Using a quantitative genetic approach, we demonstrated heritability in adult exploration, and in nestling activity after accounting for fixed effects, but not in adult boldness. We did not detect maternal effects on any traits, but we did detect a social brood effect on nestling activity. Boldness, exploration and nestling activity in this population did not form a behavioural syndrome, suggesting that selection could act independently on these behavioural traits in this species, although we found no consistent support for phenotypic selection on these traits. Our work shows that repeatable behaviours can vary in their heritability and that social context influences personality traits. Future efforts could separate whether personality traits differ in heritability because they have served specific functional roles in the evolution of the phenotype or because our concept of personality and the stability of behaviour needs to be revised. 相似文献
2.
3.
A C++ Template Library for Efficient Forward-Time Population Genetic Simulation of Large Populations
Kevin R. Thornton 《Genetics》2014,198(1):157-166
fwdpp is a C++ library of routines intended to facilitate the development of forward-time simulations under arbitrary mutation and fitness models. The library design provides a combination of speed, low memory overhead, and modeling flexibility not currently available from other forward simulation tools. The library is particularly useful when the simulation of large populations is required, as programs implemented using the library are much more efficient than other available forward simulation programs. 相似文献
4.
Diogo P. Godinho Miguel A. Cruz Maud Charlery de la Masselire Jssica Teodoro‐Paulo Ctia Eira Inês Fragata Leonor R. Rodrigues Flore Zl Sara Magalhes 《Ecology and evolution》2020,10(14):7291-7305
Laboratory studies are often criticized for not being representative of processes occurring in natural populations. One reason for this is the fact that laboratory populations generally do not capture enough of the genetic variation of natural populations. This can be mitigated by mixing the genetic background of several field populations when creating laboratory populations. From these outbred populations, it is possible to generate inbred lines, thereby freezing and partitioning part of their variability, allowing each genotype to be characterized independently. Many studies addressing adaptation of organisms to their environment, such as those involving quantitative genetics or experimental evolution, rely on inbred or outbred populations, but the methodology underlying the generation of such biological resources is usually not explicitly documented. Here, we developed different procedures to circumvent common pitfalls of laboratory studies, and illustrate their application using two haplodiploid species, the spider mites Tetranychus urticae and Tetranychus evansi. First, we present a method that increases the chance of capturing high amounts of variability when creating outbred populations, by performing controlled crosses between individuals from different field‐collected populations. Second, we depict the creation of inbred lines derived from such outbred populations, by performing several generations of sib‐mating. Third, we outline an experimental evolution protocol that allows the maintenance of a constant population size at the beginning of each generation, thereby preventing bottlenecks and diminishing extinction risks. Finally, we discuss the advantages of these procedures and emphasize that sharing such biological resources and combining them with available genetic tools will allow consistent and comparable studies that greatly contribute to our understanding of ecological and evolutionary processes. 相似文献
5.
Previous studies of arctic nesting geese suggest that laying is limited by the size of a female's body reserves and that larger eggs contain more nutrients. These observations imply a life-history trade-off between egg size and clutch size which may give rise to a negative genetic correlation between the two characters. We estimated the genetic correlation between egg weight and clutch size using measurements from mothers and their daughters in a wild population of Lesser Snow Geese Anser caerulescens caerulescens. Between 65 and 80 % of the variance in egg weight is attributable to differences between individuals, and heritability of egg weight is about 60 %. In contrast, 10–20 % of the variance in clutch size is attributable to differences between individuals, and heritability of clutch size is about 15 %. The genetic correlation coefficient between egg weight and clutch size ranges from 0.09 to 0.32 and does not differ significantly from zero. We discuss the possible reasons for the lack of the expected negative genetic correlation. 相似文献
6.
K. M. Purcell A. Hitch S. Martin P. L. Klerks P. L. Leberg 《Journal of evolutionary biology》2012,25(12):2623-2632
Saltwater intrusion into estuaries creates stressful conditions for nektonic species. Previous studies have shown that Gambusia affinis populations with exposure to saline environments develop genetic adaptations for increased survival during salinity stress. Here, we evaluate the genetic structure of G. affinis populations, previously shown to have adaptations for increased salinity tolerance, and determine the impact of selection and gene flow on structure of these populations. We found that gene flow was higher between populations experiencing different salinity regimes within an estuary than between similar marsh types in different estuaries, suggesting the development of saline‐tolerant phenotypes due to local adaptation. There was limited evidence of genetic structure along a salinity gradient, and only some of the genetic variation among sites was correlated with salinity. Our results suggest limited structure, combined with selection to saltwater intrusion, results in phenotypic divergence in spite of a lack of physical barriers to gene flow. 相似文献
7.
Rmi Charg Gabriele Sorci Michel Saint Jalme Loïc Lesobre Yves Hingrat Frdric Lacroix Cline Teplitsky 《Evolutionary Applications》2014,7(5):521-532
Supportive breeding is one of the last resort conservation strategies to avoid species extinction. Management of captive populations is challenging because several harmful genetic processes need to be avoided. Several recommendations have been proposed to limit these deleterious effects, but empirical assessments of these strategies remain scarce. We investigated the outcome of a genetic management in a supportive breeding for the Houbara Bustard. At the phenotypic level, we found an increase over generations in the mean values of gamete production, body mass and courtship display rate. Using an animal model, we found that phenotypic changes reflected genetic changes as evidenced by an increase in breeding values for all traits. These changes resulted from selection acting on gamete production and to a lesser extent on courtship display. Selection decreased over years for female gametes, emphasizing the effort of managers to increase the contribution of poor breeders to offspring recruited in the captive breeding. Our results shed light on very fast genetic changes in an exemplary captive programme that follows worldwide used recommendations and emphasizes the need of more empirical evidence of the effects of genetic guidelines on the prevention of genetic changes in supportive breeding. 相似文献
8.
Marta Szulkin Nicolas Bierne Patrice David 《Evolution; international journal of organic evolution》2010,64(5):1202-1217
Owing to the remarkable progress of molecular techniques, heterozygosity‐fitness correlations (HFCs) have become a popular tool to study the impact of inbreeding in natural populations. However, their underlying mechanisms are often hotly debated. Here we argue that these “debates” rely on verbal arguments with no basis in existing theory and inappropriate statistical testing, and that it is time to reconcile HFC with its historical and theoretical fundaments. We show that available data are quantitatively and qualitatively consistent with inbreeding‐based theory. HFC can be used to estimate the impact of inbreeding in populations, although such estimates are bound to be imprecise, especially when inbreeding is weak. Contrary to common belief, linkage disequilibrium is not an alternative to inbreeding, but rather comes with some forms of inbreeding, and is not restricted to closely linked loci. Finally, the contribution of local chromosomal effects to HFC, while predicted by inbreeding theory, is expected to be small, and has rarely if ever proven statistically significant using adequate tests. We provide guidelines to safely interpret and quantify HFCs, and present how HFCs can be used to quantify inbreeding load and unravel the structure of natural populations. 相似文献
9.
Jarvis JP Cropp SN Vaughn TT Pletscher LS King-Ellison K Adams-Hunt E Erickson C Cheverud JM 《Journal of evolutionary biology》2011,24(10):2139-2152
It is well known that standard population genetic theory predicts decreased additive genetic variance (V(a) ) following a population bottleneck and that theoretical models including interallelic and intergenic interactions indicate such loss may be avoided. However, few empirical data from multicellular model systems are available, especially regarding variance/covariance (V/CV) relationships. Here, we compare the V/CV structure of seventeen traits related to body size and composition between control (60 mating pairs/generation) and bottlenecked (2 mating pairs/generation; average F = 0.39) strains of mice. Although results for individual traits vary considerably, multivariate analysis indicates that V(a) in the bottlenecked populations is greater than expected. Traits with patterns and amounts of epistasis predictive of enhanced V(a) also show the largest deviations from additive expectations. Finally, the correlation structure of weekly weights is not significantly different between control and experimental lines but correlations between necropsy traits do differ, especially those involving the heart, kidney and tail length. 相似文献
10.
William G. Hill 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2010,365(1537):73-85
Quantitative genetics, or the genetics of complex traits, is the study of those characters which are not affected by the action of just a few major genes. Its basis is in statistical models and methodology, albeit based on many strong assumptions. While these are formally unrealistic, methods work. Analyses using dense molecular markers are greatly increasing information about the architecture of these traits, but while some genes of large effect are found, even many dozens of genes do not explain all the variation. Hence, new methods of prediction of merit in breeding programmes are again based on essentially numerical methods, but incorporating genomic information. Long-term selection responses are revealed in laboratory selection experiments, and prospects for continued genetic improvement are high. There is extensive genetic variation in natural populations, but better estimates of covariances among multiple traits and their relation to fitness are needed. Methods based on summary statistics and predictions rather than at the individual gene level seem likely to prevail for some time yet. 相似文献
11.
Ritland K 《Molecular ecology》2011,20(17):3494-3495
The genus Aquilegia consists of 60–70 perennial plant species widely distributed throughout the northern hemisphere. Its flowers have a delicate and ornamental appearance that makes them a favourite of gardeners. In this genus, adaptive radiations for both floral and vegetative traits have occurred. These adaptive radiations, and the key phylogenetic placement of Aquilegia between Arabidopsis and rice, make this genus a ‘model system’ for plant evolution ( Kramer 2009 ). In this issue, Castellanos et al. (2011) use a marker‐based method to infer heritability for floral and vegetative traits in two Aquilegia species. Layered on top of this are estimates of the strength of natural selection. This novel joint estimation of heritability and selection in the wild showed that vegetative traits, compared to floral traits, have the highest evolutionarily potential. Evolutionary potential is the most important quantity to measure in wild populations. It combines inheritance and strength of selection and predicts the potential for populations to adapt to changing environments. The combination of molecular techniques with species in natural environments makes this work a model for molecular ecological investigations. 相似文献
12.
Ale? Hrdli?ka produced a tremendous amount of data in his career, much of which was published in a series of catalogs by the US National Museum. The Gulf States catalog, for example, contains raw craniometric data for over 700 individuals from the state of Florida alone. However, many of these skeletons are poorly sourced by Hrdli?ka, thus limiting their utility in modern bioarchaeological analyses where context is critical. In particular, the age of the skeletal material is often based solely on associated material culture and information on the sites themselves is not presented by Hrdli?ka. To address this impasse we attempted radiocarbon dates for 10 of the largest Florida sites published in the Gulf States catalog. In addition, archival data in the form of unpublished field notes and personal correspondence were accessed to better contextualize the radiocarbon dates and to provide some guidance on the degree of temporal variability at the sites. Eight AMS radiocarbon dates were successful. Archival data was of variable quality per site. In some cases very little is known about the provenience of the specimens. In other cases, however, individual burials could be allocated to specific strata within specific mounds. The relevance of using published raw data is discussed with respect to the Howells and Boas Immigrant datasets and the impact the dissemination of these resources has had on the discipline. Am J Phys Anthropol 145:163–167, 2011. © 2011 Wiley‐Liss, Inc. 相似文献
13.
Nieuwhof GJ Conington J Bűnger L Haresign W Bishop SC 《Animal : an international journal of animal bioscience》2008,2(9):1289-1296
Footrot is a costly endemic disease of sheep. This study investigates the potential to decrease its prevalence through selective breeding for decreased lesion score. Pedigreed mule and Scottish Blackface (SBF) ewes were scored for lesions on each hoof on a 0 to 4 scale for up to 2 (SBF ewes) or 4 (mules) times over 2 years. One score was obtained for SBF lambs. An animal was deemed to have lesions (severe lesions) if at least one hoof had a score of at least 1 (2). The prevalence of lesions was 34% in lambs, 17% in SBF ewes and 51% in mules. The heritability of lesions (severe lesions) analysed as repeated measurements of the same trait in a threshold model was 0.19 (0.26) in SBF ewes and 0.12 (0.19) in mules. Estimates for the sum and maximum of scores as well as the number of feet affected were much lower, as were estimates for permanent animal effects (i.e. non-genetic effects associated with an animal). When successive scores on the same animal were analysed as correlated traits, heritability estimates for most traits tended to be higher, except for severe footrot in mules where estimates varied greatly over time. The phenotypic correlations between successive scores in SBF ewes were close to 0, genetic correlations were moderately positive (0.18 to 0.55). Correlations in mules were generally of a similar size, but some genetic correlations were higher (up to 0.92). There was a clear trend for heritabilities for lesions and severe lesions to increase with higher prevalence of lesions, even when analysed in a threshold model. Heritability estimates for traits that combine scores over several events in mules, identifying the more persistently affected animals, ranged from 0.12 to 0.23 with the highest estimates for the average number of feet that were (severely) affected in animals scored for a minimum at two events. The heritability of all lesion traits in lambs was estimated as 0. It is concluded that selection for lower lesions is possible in ewes but not lambs, and that a simple binary score at an animal level is at least as effective as a comprehensive score at hoof level. Given the low repeatability of lesion scores, repeated measures over time will improve effectiveness of selection. Selection across environments (flocks, seasons) with different prevalences of lesions scores will need to take account of variation in the heritability. 相似文献
14.
Sardi ML Ramírez Rozzi F González-José R Pucciarelli HM 《American journal of physical anthropology》2005,128(4):747-756
The most compelling models concerning the peopling of the Americas consider that modern Amerindians share a common biological pattern, showing affinities with populations of the Asian Northeast. The aim of the present study was to assess the degree of variation of craniofacial morphology of South American Amerindians in a worldwide context. Forty-three linear variables were analyzed on crania derived from American, Asian, Australo-Melanesian, European, South-Saharan African, and Polynesian regions. South America was represented by seven Amerindian samples. In order to understand morphologic diversity among Amerindians of South America, variation was estimated using regions and local populations as units of analysis. Variances and F(ST) values were calculated for each unit, respectively. Both analyses indicated that morphologic variation in Southern Amerindians is extremely high: an F(ST) of 0.01531 was obtained for Southern Amerindians, and values from 0.0371-0.1205 for other world regions. Some aspects linked to the time and mode of the peopling of the Americas and various microevolutionary processes undergone by Amerindians are discussed. Some of the alternatives proposed to explain this high variation include: a greater antiquity of the peopling than what is mostly accepted, a peopling by several highly differentiated waves, an important effect of genetic drift, and gene flow with Paleoamericans. A combination of some of these alternatives explains at least some of the variation. 相似文献
15.
16.
Peter M. Visscher 《Genetics》2016,202(2):377-379
17.
18.
J. E. Brommer I. K. Hanski J. Kekkonen R. A. Väisänen 《Journal of evolutionary biology》2014,27(4):737-747
Bergmann's rule predicts that individuals are larger in more poleward populations and that this size gradient has an adaptive basis. Hence, phenotypic divergence in size traits between populations (PST) is expected to exceed the level of divergence by drift alone (FST). We measured 16 skeletal traits, body mass and wing length in 409 male and 296 female house sparrows Passer domesticus sampled in 12 populations throughout Finland, where the species has its northernmost European distributional margin. Morphometric differentiation across populations (PST) was compared with differentiation in 13 microsatellites (FST). We find that twelve traits phenotypically diverged more than FST in both sexes, and an additional two traits diverged in males. The phenotypic divergence exceeded FST in several traits to such a degree that findings were robust also to strong between‐population environmental effects. Divergence was particularly strong in dimensions of the bill, making it a strong candidate for the study of adaptive molecular genetic divergence. Divergent traits increased in size in more northern populations. We conclude that house sparrows show evidence of an adaptive latitudinal size gradient consistent with Bergmann's rule on the modest spatial scale of ca. 600 km. 相似文献
19.
20.
Were neandertal and modern human cranial differences produced by natural selection or genetic drift?
Most evolutionary explanations for cranial differences between Neandertals and modern humans emphasize adaptation by natural selection. Features of the crania of Neandertals could be adaptations to the glacial climate of Pleistocene Europe or to the high mechanical strains produced by habitually using the front teeth as tools, while those of modern humans could be adaptations for articulate speech production. A few researchers have proposed non-adaptive explanations. These stress that isolation between Neandertal and modern human populations would have lead to cranial diversification by genetic drift (chance changes in the frequencies of alleles at genetic loci contributing to variation in cranial morphology). Here we use a variety of statistical tests founded on explicit predictions from quantitative- and population-genetic theory to show that genetic drift can explain cranial differences between Neandertals and modern humans. These tests are based on thirty-seven standard cranial measurements from a sample of 2524 modern humans from 30 populations and 20 Neandertal fossils. As a further test, we compare our results for modern human cranial measurements with those for a genetic dataset consisting of 377 microsatellites typed for a sample of 1056 modern humans from 52 populations. We conclude that rather than requiring special adaptive accounts, Neandertal and modern human crania may simply represent two outcomes from a vast space of random evolutionary possibilities. 相似文献