首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long noncoding RNAs (lncRNAs) are emerging as important regulators in molecular processes and may play vital roles in odontogenic differentiation of human dental pulp stem cells (hDPSCs). However, their functions remain to be elucidated. As lncRNA H19 is one of the most classical lncRNA, which plays essential roles in cellular differentiation, thus we explored the effects and mechanisms of H19 in odontogenic differentiation of hDPSCs. Stable overexpression and knockdown of H19 in hDPSCs were constructed using recombinant lentiviruses containing H19 and short hairpin-H19 expression cassettes, respectively. Alkaline phosphatase (ALP) assay, Alizarin red staining assay, von kossa staining, quantitative polymerase chain reaction (qPCR), Western blot analysis, and immunofluorescent staining results indicated that overexpression of H19 in hDPSCs positively regulates the odontogenic differentiation of hDPSCs, while knockdown of H19 in hDPSCs inhibits odontogenic differentiation of hDPSCs. Further, we found that H19 promotes the odontogenic differentiation of hDPSCs through S-adenosylhomocysteine hydrolase (SAHH) epigenetically regulates the methylation and expression of distal-less homeobox (DLX3) gene. Herein, for the first time, we determined that H19/SAHH axis epigentically regulates odontogenic differentiaiton of hDPSCs by inhibiting the DNA methyltransferase 3B (DNMT3B)-mediated methylation of DLX3. Our findings provide a new insight into how H19/SAHH axis play its role in odontogenic differentiation of hDPSCs, and would be helpful in developing therapeutic approaches for dentin regeneration based on stem cells.  相似文献   

2.
3.
The mineralization of dental pulp stem cells is an important factor in the tissue engineering of teeth, but the mechanism is not yet obvious. This study aimed to identify the effect of Stathmin on the proliferation and osteogenic/odontoblastic differentiation of human dental pulp stem cells (hDPSCs) and to explore whether the Shh signalling pathway was involved in this regulation. First, Stathmin was expressed in the cytoplasm and on the cell membranes of hDPSCs by cell immunofluorescence. Then, by constructing a lentiviral vector, the expression of Stathmin in hDPSCs was inhibited. Treatment with Stathmin shRNA (shRNA‐Stathmin group) inhibited the ability of hDPSCs to proliferate, as demonstrated by a CCK8 assay and flow cytometry analysis, and suppressed the osteogenic/odontoblastic differentiation ability, as demonstrated by alizarin red S staining and osteogenic/odontoblastic differentiation‐related gene (ALP, BSP, OCN, DSPP) activity, compared to that of hDPSCs from the control shRNA group. Molecular analyses showed that the Shh/GLI1 signalling pathway was inhibited when Stathmin was silenced, and purmorphamine, the Shh signalling pathway activator, was added to hDPSCs in the shRNA‐Stathmin group, real‐time PCR and Western blotting confirmed that expression of Shh and its downstream signalling molecules PTCH1, SMO and GLI1 increased significantly. After activating the Shh signalling pathway, the proliferation of hDPSCs increased markedly, as demonstrated by a CCK8 assay and flow cytometry analysis; osteogenic/odontoblastic differentiation‐related gene (ALP, BSP, OCN, DSPP) expression also increased significantly. Collectively, these findings firstly revealed that Stathmin‐Shh/GLI1 signalling pathway plays a positive role in hDPSC proliferation and osteogenic/odontoblastic differentiation.  相似文献   

4.
AIM: To evaluate adhesion, proliferation and differentiation of human dental pulp stem cells (hDPSCs) on four commercially available scaffold biomaterials.METHODS: hDPSCs were isolated from human dental pulp tissues of extracted wisdom teeth and established in stem cell growth medium. hDPSCs at passage 3-5 were seeded on four commercially available scaffold biomaterials, SureOss (Allograft), Cerabone (Xenograft), PLLA (Synthetic), and OSTEON II Collagen (Composite), for 7 and 14 d in osteogenic medium. Cell adhesion and morphology to the scaffolds were evaluated by scanning electron microscopy (SEM). Cell proliferation and differentiation into osteogenic lineage were evaluated using DNA counting and alkaline phosphatase (ALP) activity assay, respectively.RESULTS: All scaffold biomaterials except SureOss (Allograft) supported hDPSC adhesion, proliferation and differentiation. hDPSCs seeded on PLLA (Synthetic) scaffold showed the highest cell proliferation and attachment as indicated with both SEM and DNA counting assay. Evaluating the osteogenic differentiation capability of hDPSCs on different scaffold biomaterials with ALP activity assay showed high level of ALP activity on cells cultured on PLLA (Synthetic) and OSTEON II Collagen (Composite) scaffolds. SEM micrographs also showed that in the presence of Cerabone (Xenograft) and OSTEON II Collagen (Composite) scaffolds, the hDPSCs demonstrated the fibroblastic phenotype with several cytoplasmic extension, while the cells on PLLA scaffold showed the osteoblastic-like morphology, round-like shape.CONCLUSION: PLLA scaffold supports adhesion, proliferation and osteogenic differentiation of hDPSCs. Hence, it may be useful in combination with hDPSCs for cell-based reconstructive therapy.  相似文献   

5.
Adult human dental pulp stem cells (hDPSCs) are a unique population of precursor cells those are isolated from postnatal dental pulp and have the ability to differentiate into a variety of cell types utilized for the formation of a reparative dentin-like complex. Using LC-MS/MS proteomics approaches, we identified the proteins secreted from the differentiating hDPSCs in mineralization media. Lysyl oxidase-like 2 (LOXL2) was identified as a protein that was down-regulated in the hDPSCs that differentiate into odontoblast-like cells. The role of LOXL2 has not been studied in dental pulp stem cells. LOXL2 mRNA levels were reduced in differentiating hDPSCs, whereas the levels of other LOX family members including LOX, LOXL1, LOXL3, and LOXL4, are increased. The protein expression and secretion levels of LOXL2 were also decreased during odontogenic differentiation. Recombinant LOXL2 protein treatment to hDPSCs resulted in a dose-dependent decrease in the early differentiation and the mineralization accompanying with the lower levels of odontogenic markers such as DSPP, DMP-1 and ALP. These results suggest that LOXL2 has a negative effect on the differentiation of hDPSCs and blocking LOXL2 can promote the hDPSC differentiation to odontoblasts.  相似文献   

6.
7.
NG2+ cells have been proven to differentiate into odontoblasts in vivo, and their contribution to odontoblasts is significantly increased, especially after tooth injury. However, their characteristics in vitro, especially under an inflammatory environment, are still not fully understood. Therefore, this study aimed to explore their proliferation, migration, and odontoblastic differentiation ability after treatment with lipopolysaccharide (LPS) in vitro. In our study, NG2 + cells were isolated from the human dental pulp by magnetic‐activated cell sorting, and these isolated cells were proven to be NG2 + by immunostaining. When compared with human dental pulp cells (hDPCs), the NG2 + cells showed no significant differences in cell migration with or without LPS incubation, but their proliferative ability was weaker. When treated with LPS, NG2 + cells expressed elevated levels of pro‐inflammatory cytokines including interleukin‐1β (IL‐1β), IL‐6, IL‐8, and tumor necrosis factor‐α, and among these, the expression of IL‐1β and IL‐6 were higher than that of hDPCs. Their multipotent differentiation potential was confirmed by the induction of odontoblastic and adipogenic differentiation, and LPS increased their odontoblastic differentiation capacity. In the odontoblastic differentiation process, Wnt5a, BMP2, and BMP7 mRNA were increased, while the canonical Wnt‐related genes were decreased. In conclusion, the LPS stimulation promotes the migration, proliferative, and odontoblastic differentiation ability of NG2 + cells from the human dental pulp in vitro, and bone morphogenetic protein and the noncanonical Wnt pathway may be involved in their odontoblastic differentiation. These results indicated their special roles in tooth injury repair and potential application in pulp regeneration.  相似文献   

8.
9.
In addition to bone, the dentin‐pulp complex is also influenced by menopause, showing a decreased regenerative capacity. High levels of follicle‐stimulating hormone (FSH) during menopause could directly regulate bone metabolism. Here, the role of FSH in the odontogenic differentiation of the dentin‐pulp complex was investigated. Dental pulp stem cells (DPSCs) were isolated. CCK‐8 assays, cell apoptosis assays, Western blotting (WB), real‐time RT‐PCR, alkaline phosphatase activity assays, and Alizarin Red S staining were used to clarify the effects of FSH on the proliferation, apoptosis and odontogenic differentiation of the DPSCs. MAPK pathway‐related factors were explored by WB assays. FSH and its inhibitor were used in OVX rats combined with a direct pulp‐capping model. HE and immunohistochemistry were used to detect reparative dentin formation and related features. The results indicated that FSH significantly decreased the odontogenic differentiation of the DPSCs without affecting cell proliferation and apoptosis. Moreover, FSH significantly activated the JNK signalling pathway, and JNK inhibitor partly rescued the inhibitory effect of FSH on DPSC differentiation. In vivo, FSH treatment attenuated the dentin bridge formation and mineralization‐related protein expression in the OVX rats. Our findings indicated that FSH reduced the odontogenic capacity of the DPSCs and was involved in reparative dentinogenesis during menopause.  相似文献   

10.
Human adult dental pulp stem cells (hDPSCs) are a unique precursor population isolated from postnatal dental pulp and have the ability to regenerate a reparative dentin-like complex. In this study, we investigated the role of Asporin in hDPSCs, which was identified as a matrix protein in our previous dentin proteomic analysis. We isolated a clonogenic, highly proliferative population of cells from adult human dental pulp. These isolated hDPSCs were confirmed by fluorescence activated cell sorting (FACS) using stem cell-specific markers and have shown multilineage differentiation potential. The localization of Asporin was identified by immunohistochemistry in the globular calcification region in the junction of predentin and dentin. The gene and protein expression levels of Asporin were enhanced at the early stage of and then reduced during the late stage of differentiation of hDPSCs in mineralization media. ASPN knock-down using a lentiviral system suppressed the mineralization of hDPSCs. These results suggest that ASPN plays positive roles in the mineralization of hDPSCs and predentin to dentin.  相似文献   

11.
ObjectivesConditioned medium (CM) from 2D cell culture can mitigate the weakened regenerative capacity of the implanted stem cells. However, the capacity of 3D CM to prime dental pulp stem cells (DPSCs) for pulp regeneration and its protein profile are still elusive. We aim to investigate the protein profile of CM derived from 3D tooth germs, and to unveil its potential for DPSCs‐based pulp regeneration.Materials and MethodsWe prepared CM of 3D ex vivo cultured tooth germ organs (3D TGO‐CM) and CM of 2D cultured tooth germ cells (2D TGC‐CM) and applied them to prime DPSCs. Influences on cell behaviours and protein profiles of CMs were compared. In vivo pulp regeneration of CMs‐primed DPSCs was explored using a tooth root fragment model on nude mice.ResultsTGO‐CM enhanced DPSCs proliferation, migration, in vitro mineralization, odontogenic differentiation, and angiogenesis performances. The TGO‐CM group generated superior pulp structures, more odontogenic cells attachment, and enhanced vasculature at 4 weeks post‐surgery, compared with the TGC‐CM group. Secretome analysis revealed that TGO‐CM contained more odontogenic and angiogenic growth factors and fewer pro‐inflammatory cytokines. Mechanisms leading to the differential CM profiles may be attributed to the cytokine–cytokine receptor interaction and PI3K‐Akt signalling pathway.ConclusionsThe unique secretome profile of 3D TGO‐CM made it a successful priming cocktail to enhance DPSCs‐based early pulp regeneration.  相似文献   

12.
13.
Our previous study showed that knocking down integrin α5 (ITGA5) expression by using a lentiviral vector in human dental pulp stem cells (DPSCs) led to weakening proliferation and migration capacity while enhanced odontogenic differentiation. To seek for possible clinical application, we investigated the effect of the ITGA5 priming synthetic cyclic peptide (SCP; GA-CRRETAWAC-GA) on proliferation, migration, and the odontogenic differentiation of DPSCs. Remarkably, the involved mechanism was explored by isobaric tag for relative and absolute quantitation proteomic technique, and the in vivo effect of ITGA5 was investigated by nude mice subcutaneous transplantation of cell and hydroxyapatite/β-tricalcium phosphate complex. Results showed that SCP weakened the proliferation and migration capacity while enhanced odontogenic differentiation of DPSCs as lentivirus. The phosphorylation of FAK, PI3K/AKT, and MEK1/2/ERK1/2, along with IGF2/IGFBP2 and Wnt/β-catenin signaling pathway play an important role in this process. Proteomic Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed the key role of extracellular matrix (ECM) and ECM-receptor activity pathway were involved. ECM constituents, secreted protein acidic and cysteine-rich (SPARC), lumican, vitronectin, prolargin, decorin, collagen type VI α1 chain (COL6A1), COL6A2, COL14A1, and COL5A1 were upregulated in the ITGA5-silenced group. Inhibited expression of ITGA5 in DPSCs increased osteoid tissue formation and stronger related genes expression in vivo. In conclusion, the ITGA5 priming peptide could promote DPSCs odontogenic differentiation as lentivirus. Proteomics and bioinformatic analysis revealed that this may be due to the deposition of ECM and amplified ECM-receptor activity, which could fuel the application process of utilizing priming ITGA5 on dental clinical practice.  相似文献   

14.
The enteric nervous system (ENS) has to respond to continuously changing microenvironmental challenges within the gut and is therefore dependent on a neural stem cell niche to keep the ENS functional throughout life. In this study, we hypothesize that this stem cell niche is also affected during inflammation and therefore investigated lipopolysaccharides (LPS) effects on enteric neural stem/progenitor cells (NSPCs). NSPCs were derived from the ENS and cultured under the influence of different LPS concentrations. LPS effects upon proliferation and differentiation of enteric NSPC cultures were assessed using immunochemistry, flow cytometry, western blot, Multiplex ELISA and real‐time PCR. LPS enhances the proliferation of enteric NSPCs in a dose‐dependent manner. It delays and modifies the differentiation of these cells. The expression of the LPS receptor toll‐like receptor 4 on NSPCs could be demonstrated. Moreover, LPS induces the secretion of several cytokines. Flow cytometry data gives evidence for individual subgroups within the NSPC population. ENS‐derived NSPCs respond to LPS in maintaining at least partially their stem cell character. In the case of inflammatory disease or trauma where the liberation and exposure to LPS will be increased, the expansion of NSPCs could be a first step towards regeneration of the ENS. The reduced and altered differentiation, as well as the induction of cytokine signalling, demonstrates that the stem cell niche may take part in the LPS‐transmitted inflammatory processes in a direct and defined way.  相似文献   

15.
Pulp regeneration using human dental pulp stem cells (hDPSCs) maintains tooth vitality compared with conventional root canal therapy. Our previous study demonstrated that preameloblast-conditioned medium (PA-CM) from murine apical bud cells induces the odontogenic differentiation of hDPSCs and promoted dentin formation in mouse subcutaneous tissue. The purpose of the present study is to evaluate the effects of PA-CM with human whole pulp cells on pulp regeneration in an empty root canal space. Human pulp cells were seeded in the pulp cavities of 5 mm-thick human tooth segments with or without PA-CM treatment, and then transplanted subcutaneously into immunocompromised mice. In the pulp cell-only group, skeletal muscle with pulp-like tissue was generated in the pulp cavity. A reparative dentin-like structure with entrapped cells lined the existing dentin wall. However, in the PA-CM-treated group, only pulp-like tissue was regenerated without muscle or a reparative dentin-like structure. Moreover, human odontoblast-like cells exhibited palisade arrangement around the pulp, and typical odontoblast processes elongated into dentinal tubules. The results suggest that PA-CM can induce pulp regeneration of human pulp cells with physiological structures in an empty root canal space.  相似文献   

16.
Tissue engineering has emerged as a potential therapeutic option for dental problems in recent years. One of the policies in tissue engineering is to use both scaffolds and additive factors for enhancing cell responses. This study aims to evaluate and compare the effect of three types of biofactors on poly-caprolactone-poly-ethylene glycol-poly caprolactone (PCL-PEG-PCL) nanofibrous scaffold on human dental pulp stem cell (hDPSCs) engineering. The PCL-PEG-PCL copolymer was synthesized with ring opening polymerization method, and its nanofiber scaffold was prepared by electrospinning method. Nanofibrous scaffold-seeded hDPSCs were treated with sodium fluoride (NaF), melanocyte-stimulating hormone (MSH), or simvastatin (SIM). Non-treated nanofiber seeded cells were utilized as control. The viability, biocompatibility, adhesion, proliferation rate, morphology, osteo/odontogenic potential, and the expression of tissue-specific genes were studied. The results showed that significant higher results demonstrated significant higher adhesive behavior, viability, alizarin red activity, and dentin specific gene expression in MSH- and SIM-treated cells (p < 0.05). This study is unique; in that, it compares the effects of different treatments for optimization of dental tissue engineering.  相似文献   

17.
Postnatal dental pulp stem cells (DPSCs) represent a unique precursor population in the dental pulp, which have multipotential and harbor great potential for tissue engineering purposes. However, for therapy applications, transplanted cells are often exposed to unfavorable conditions such as cytokines released from necrotic or inflammatory cells in injured tissues. It is not clear how stem cells exposed to these conditions changes in their characteristics. In this study, the effects of pro-inflammatory cytokines, such as IL-1 and TNF, on DPSCs were investigated. Cells were treated with IL-1, TNF, or both for 3, 7, and 12 days. The cultures were evaluated for cell proliferation, ALP activity, and real-time PCR. We found that a short treatment (3 days) of pro-inflammatory cytokines induced the odontogenic differentiation of DPSCs. Furthermore, post 3 days treatment with pro-inflammatory cytokines, the cell-scaffold complexes were implanted subcutaneously in mice for 8 weeks. Histological analysis demonstrated that the cultures gave obviously mineralized tissue formation, especially for both IL-1 and TNF applied. These data suggest that IL-1 and TNF produced in the early inflammatory reaction may induce the mineralization of DPSCs.  相似文献   

18.
《Cytotherapy》2014,16(2):266-277
Background aimsEvaluation of cell viability is one of the most important steps of the quality control process for therapeutic use of cells. The aim of this study was to evaluate the long-term cell viability profile of human dental pulp stem cell (hDPSC) subcultures (beyond 10 passages) to determine which of these passages are suitable for clinical use and to identify the cell death processes that may occur in the last passages.MethodsFour different cell viability assays were combined to determine the average cell viability levels at each cell passage: trypan blue exclusion test, water-soluble tetrazolium 1 (WST-1), LIVE/DEAD Viability/Cytotoxicity Kit and electron probe x-ray microanalysis (EPXMA). Apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and caspase 4 and BCL7C Western blotting, and cell proliferation was analyzed by WST-1 and proliferating cell nuclear antigen protein detection.ResultshDPSCs showed high average cell viability levels from passages 11–14, with adequate cytoplasmic and mitochondrial functionality at these subcultures. A non-significant trend to decreased cell proliferation was found from passages 16–20. EPXMA and TUNEL analyses suggested that a pre-apoptotic process could be activated from passages 15–20 (P < 0.001), with a correlation with caspase 4 and BCL7C expression.ConclusionshDPSCs corresponding to passages 11–14 show adequate cell function, proliferation and viability. These cells could be considered as potentially useful for clinical applications.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号