首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present for the first time a microfluidic cell culture array for long-term cellular monitoring. The 10 x 10 array could potentially assay 100 different cell-based experiments in parallel. The device was designed to integrate the processes used in typical cell culture experiments on a single self-contained microfluidic system. Major functions include repeated cell growth/passage cycles, reagent introduction, and real-time optical analysis. The single unit of the array consists of a circular microfluidic chamber, multiple narrow perfusion channels surrounding the main chamber, and four ports for fluidic access. Human carcinoma (HeLa) cells were cultured inside the device with continuous perfusion of medium at 37 degrees C. The observed doubling time was 1.4 +/- 0.1 days with a peak cell density of approximately 2.5*10(5) cells/cm(2). Cell assay was demonstrated by monitoring the fluorescence localization of calcein AM from 1 min to 10 days after reagent introduction. Confluent cell cultures were passaged within the microfluidic chambers using trypsin and successfully regrown, suggesting a stable culture environment suitable for continuous operation. The cell culture array could offer a platform for a wide range of assays with applications in drug screening, bioinformatics, and quantitative cell biology.  相似文献   

2.
The purpose of this study was to demonstrate self-organizing in vitro multicellular tumor spheroid (MCTS) formation in a microfluidic system and to observe the behavior of MCTSs under controlled microenvironment. The employed microfluidic system was designed for simple and effective formation of MCTSs by generating nutrient and oxygen gradients. The MCTSs were composed of cancer cells, vascular endothelial cells, and type I collagen matrix to mimic the in vivo tumor microenvironment (TME). Cell culture medium was perfused to the microfluidic device loaded with MCTSs by a passive fluidic pump at a constant flow rate. The dose response to an MMPs inhibitor was investigated to demonstrate the effects of biochemical substances. The result of long-term stability of MCTSs revealed that continuous perfusion of cell culture medium is one of the major factors for the successful MCTS formation. A continuous flow of cell culture medium in the in vitro TME greatly affected both the proliferation of cancer cells in the micro-wells and the sustainability of the endothelial cell-layer integrity in the lumen of microfluidic channels. Addition of MMP inhibitor to the cell culture medium improved the stability of the collagen matrix by preventing the detachment and shrinkage of the collagen matrix surrounding the MCTSs. In summary, the present constant flow assisted microfluidic system is highly advantageous for long-term observation of the MCTS generation, tumorous tissue formation process and drug responses. MCTS formation in a microfluidic system may serve as a potent tool for studying drug screening, tumorigenesis and metastasis.  相似文献   

3.
用于药物筛选的微流控细胞阵列芯片   总被引:1,自引:0,他引:1  
细胞区域分布培养以及如何有效地对微流体进行操控是微流控阵列芯片在细胞药物研究中的关键技术。本研究介绍了一种利用SU-8负性光刻胶模具和PDMS制作双层结构的微流控细胞阵列芯片的方法,该芯片通过C型的坝结构将进样细胞拦截在芯片的细胞培养的固定区域,键合双层PDMS构成阀控制层,阀网络的开关作用成功实现了芯片通道内微流体的操控,同时芯片设计了药物浓度梯度网络,产生6个不同浓度的药物刺激细胞。通过对芯片3种共培养细胞活性的检测和药物伊立替康(CTP-11)对肝癌细胞的浓度梯度刺激等实验结果验证该芯片在细胞研究和药物筛选等方面的可行性。  相似文献   

4.
Cultured neuronal networks (CNNs) are a robust model to closely investigate neuronal circuits’ formation and monitor their structural properties evolution. Typically, neurons are cultured in plastic plates or, more recently, in microfluidic platforms with potentially a wide variety of neuroscience applications. As a biological protocol, cell culture integration with a microfluidic system provides benefits such as accurate control of cell seeding area, culture medium renewal, or lower exposure to contamination. The objective of this report is to present a novel neuronal network on a chip device, including a chamber, fabricated from PDMS, vinyl and glass connected to a microfluidic platform to perfuse the continuous flow of culture medium. Network growth is compared in chips and traditional Petri dishes to validate the microfluidic chip performance. The network assessment is performed by computing relevant topological measures like the number of connected neurons, the clustering coefficient, and the shortest path between any pair of neurons throughout the culture's life. The results demonstrate that neuronal circuits on a chip have a more stable network structure and lifespan than developing in conventional settings, and therefore this setup is an advantageous alternative to current culture methods. This technology could lead to challenging applications such as batch drug testing of in vitro cell culture models. From the engineering perspective, a device's advantage is the chance to develop custom designs more efficiently than other microfluidic systems.  相似文献   

5.
This article reports a pressure-driven perfusion culture chip developed for parallel drug cytotoxicity assay. The device is composed of an 8 x 5 array of cell culture microchambers with independent perfusion microchannels. It is equipped with a simple interface for convenient access by a micropipette and connection to an external pressure source, which enables easy operation without special training. The unique microchamber structure was carefully designed with consideration of hydrodynamic parameters and was fabricated out of a polydimethylsiloxane by using multilayer photolithography and replica molding. The microchamber structure enables uniform cell loading and perfusion culture without cross-contamination between neighboring microchambers. A parallel cytotoxicity assay was successfully carried out in the 8 x 5 microchamber array to analyze the cytotoxic effects of seven anticancer drugs. The pressure-driven perfusion culture chip, with its simple interface and well-designed microfluidic network, will likely become an advantageous platform for future high-throughput drug screening by microchip.  相似文献   

6.
We have developed a microfluidic platform modeled after the physiologic microcirculation for multiplexed tissue-like culture and high-throughput analysis. Each microfabricated culture unit consisted of three functional components: a 50 microm wide cell culture pocket, an artificial endothelial barrier with 2 microm pores, and a nutrient transport channel. This configuration enabled a high density of cancer cells to be maintained for over 1 week in a solid tumor-like morphology when fed with continuous flow. The microfluidic chip contained 16 parallel units for "flow cell" based experiments where live cells were exposed to a soluble factor and analyzed via fluorescence microscopy or flow-through biochemistry. Each fluidically independent tissue unit contained approximately 500 cells fed with a continuous flow of 10 nL/min. As a demonstration, the toxicity profile of the anti-cancer drug paclitaxel was collected on HeLa cells cultured in the microfluidic format and compared with a 384-well dish for up to 5 days of continuous drug exposure.  相似文献   

7.
Lin YS  Huang KS  Yang CH  Wang CY  Yang YS  Hsu HC  Liao YJ  Tsai CW 《PloS one》2012,7(3):e33184
This study demonstrated the fabrication of alginate microfibers using a modular microfluidic system for magnetic-responsive controlled drug release and cell culture. A novel two-dimensional fluid-focusing technique with multi-inlets and junctions was used to spatiotemporally control the continuous laminar flow of alginate solutions. The diameter of the manufactured microfibers, which ranged from 211 μm to 364 μm, could be well controlled by changing the flow rate of the continuous phase. While the model drug, diclofenac, was encapsulated into microfibers, the drug release profile exhibited the characteristic of a proper and steady release. Furthermore, the diclofenac release kinetics from the magnetic iron oxide-loaded microfibers could be controlled externally, allowing for a rapid drug release by applying a magnetic force. In addition, the successful culture of glioblastoma multiforme cells in the microfibers demonstrated a good structural integrity and environment to grow cells that could be applied in drug screening for targeting cancer cells. The proposed microfluidic system has the advantages of ease of fabrication, simplicity, and a fast and low-cost process that is capable of generating functional microfibers with the potential for biomedical applications, such as drug controlled release and cell culture.  相似文献   

8.
Although the recent advances in stem cell engineering have gained a great deal of attention due to their high potential in clinical research, the applicability of stem cells for preclinical screening in the drug discovery process is still challenging due to difficulties in controlling the stem cell microenvironment and the limited availability of high-throughput systems. Recently, researchers have been actively developing and evaluating three-dimensional (3D) cell culture-based platforms using microfluidic technologies, such as organ-on-a-chip and organoid-on-a-chip platforms, and they have achieved promising breakthroughs in stem cell engineering. In this review, we start with a comprehensive discussion on the importance of microfluidic 3D cell culture techniques in stem cell research and their technical strategies in the field of drug discovery. In a subsequent section, we discuss microfluidic 3D cell culture techniques for high-throughput analysis for use in stem cell research. In addition, some potential and practical applications of organ-on-a-chip or organoid-on-a-chip platforms using stem cells as drug screening and disease models are highlighted.  相似文献   

9.
Microfluidic cell culture devices have been used for drug development, chemical analysis, and environmental pollutant detection. Because of the decreased fluid volume and increased surface area to volume ratio, interactions between device surfaces and the fluid is a key element that affects the performance and detection accuracy of microfluidic devices, particularly if fluid is recirculated by a peristaltic pump. However, this issue has not been studied in detail in a microfluidic cell culture environment. In this study, chemical loss and contaminant leakage from various polymer surfaces in a microfluidic setup were characterized. The effects of hydrophilic coating with Poly (vinyl alcohol), Pluronic® F‐68, and multi‐layer ionic coating were measured. We observed significant surface adsorption of estradiol, doxorubicin, and verapamil with PharMed® BPT tubing, whereas PTFE/BPT and stainless steel/BPT hybrid tubing caused less chemical loss in proportion to the fraction of BPT tubing in the hybrid system. Contaminants leaching out of the BPT tubing were found to be estrogen receptor agonists as determined by estrogen‐induced green fluorescence expression in an estrogen responsive Ishikawa cell line and also caused interference with an estradiol enzyme‐linked immunosorbent assay (ELISA) assay. Stainless steel/BPT hybrid tubing caused the least interference with ELISA. In summary, polymer surface and chemical interactions inside microfluidic systems should not be neglected and require careful investigations when results from a microfluidic system are compared with results from a macroscale cell culture setup. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

10.
Microfluidics could provide suitable environments for cell culture because of the larger surface-to-volume ratio and fluidic behavior similar to the environments in vivo. Such microfluidic environments are now used to investigate cell-to-cell interactions and behaviors in vitro, emulating situations observed in vivo, for example, microscale blood vessels modeled by microfluidic channels. These emulated situations cannot be realized by conventional technologies. In our previous works, microfluidic channels composed of two PDMS (poly(dimethylsiloxane)) layers were successfully used for Hep G2 cell culture. To achieve physiologically meaningful functions in vitro, a culture with a larger number of cells and higher density must be performed. This will require bioreactors with larger surface areas for cell attachment and sufficient amounts of oxygen and nutrition supply. For those purposes, we fabricated a bioreactor by stacking 10 PDMS layers together, i.e., four cell culture chambers, and a chamber dedicated to the oxygen supply inserted in the middle of the 10-stacked layers. The oxygen supply chamber is separated from the microfluidic channels for the culture medium perfusion by thin 300-microm PDMS walls. The high gas permeability of PDMS allows oxygen supply to the microfluidic channels through the thin walls. On the basis of the measurement of glucose consumption and albumin production, it is shown that cellular activity exhibits a gradual increase and saturation throughout the culture. We clearly observed that in the case of the microfluidic bioreactor for large-scale cultures, the oxygen chamber is indispensable to achieve longer and healthy cultures. In the present bioreactor, the cell density was found to be about 3-4 x 10(7) cells/cm(3), which is in the same order of magnitude as the conventional macroscale bioreactors. Consequently, by stacking single culture chambers and oxygen chambers in between, we could have a scalable method to realize the microfluidic bioreactor for large-scale cultures.  相似文献   

11.
In this study, electrochemical immunoassay was introduced into the recently proposed microfluidic paper-based analytical device (μPADs). To improve the performance of electrochemical immunoassay on μPAD for point-of-care testing (POCT), a novel wax-patterned microfluidic paper-based three-dimensional electrochemical device (3D-μPED) was demonstrated based on the multi-walled carbon nanotubes (MWCNTs) modified μPAD. Using typical HRP-O-Phenylenediamine-H(2)O(2) electrochemical system, a sandwich immunoassay on this 3D-μPED for sensitive diagnosis of two tumor markers simultaneously in real clinical serum samples was developed with a linear range of 0.001-75.0 UmL(-1) for cancer antigen 125 and 0.05-50.0 ngmL(-1) for carcinoembryonic antigen. In addition, this 3D-μPED can be easily integrated and combined with the recently emerging paper electronics to further develop simple, sensitive, low-cost, disposable and portable μPAD for POCT, public health and environmental monitoring in remote regions, developing or developed countries.  相似文献   

12.
Microfluidics-based cell assays offer high levels of automation and integration, and allow multiple assays to be run in parallel, based on reduced sample volumes. These characteristics make them attractive for studies associated with drug discovery. Controlled delivery of drug molecules or other exogenous materials into cells is a critical issue that needs to be addressed before microfluidics can serve as a viable platform for drug screening and studies. In this study, we report the application of hydrodynamic focusing for controlled delivery of small molecules into cells immobilized on the substrate of a microfluidic device. We delivered calcein AM which was permeant to the cell membrane into cells, and monitored its enzymatic conversion into fluorescent calcein during and after the delivery. Different ratios of the sample flow to the side flow were tested to determine how the conditions of hydrodynamic focusing affected the delivery. A 3D numerical model was developed to help understand the fluid flow, molecular diffusion due to hydrodynamic focusing in the microfluidic channel. The results from the simulation indicated that the calcein AM concentration on the outer surface of a cell was determined by the conditions of hydrodynamic focusing. By comparing the results from the simulation with those from the experiment, we found that the calcein AM concentration on the cell outer surface correlated very well with the amount of the molecules delivered into the cell. This suggests that hydrodynamic focusing provides an effective way for potentially quantitative delivery of exogenous molecules into cells at the single cell or subcellular level. We expect that our technique will pave the way to high-throughput drug screening and delivery on a microfluidic platform.  相似文献   

13.
To facilitate drug discovery directed toward platelet-specific targets, we developed a platelet isolation and fluorophore-loading method that yields functionally responsive platelets in which we were able to detect agonist-induced calcium flux using a microfluidics-based screening platform. The platelet preparation protocol was designed to minimize preparation-induced platelet activation and to optimize signal strength. Measurement of platelet activation, as monitored by ratiometric determination of agonist-induced calcium flux in fluor-loaded human platelets, was optimized in a macrosample cuvette format in preparation for detection in a microfluidic chip-based assay. For the microfluidic device used in these studies, a cell density of 1 to 2 x 10(6) platelets per milliliter and a nominal flow rate of 5 to 10 nl per second provided optimal event resolution of 5 to 20 platelets traversing the detection volume per unit time. Platelets responded in a dose-dependent manner to adenosine diphosphate and protease-activating peptide (PAR) 1 thrombin receptor-activating peptide (TRAP). The work presented here constitutes proof-of-principle experiments demonstrating the enabling application of a microfluidic device to conduct high-throughput signaling studies and drug discovery screening against human platelet targets.  相似文献   

14.
Miniature bioreactors under parallel fed‐batch operations are not only useful screening tools for bioprocess development but also provide a suitable basis for eventual scale‐up. In this study, three feeding strategies were investigated: besides the established intermittent feeding by a liquid handler, an optimized microfluidic device and a new enzymatic release system were applied for parallel fed‐batch cultivation of Escherichia coli HMS174(DE3) and BL21(DE3) strains in stirred‐tank bioreactors on a 10 mL scale. Lower fluctuation in dissolved oxygen (DO) and higher optical densities were measured in fed‐batch processes applying the microfluidic device or the enzymatic glucose/fructose release system (conversion of intermittently added sucrose by an invertase), but no difference in dry cell weights (DCW) were observed. With all three feeding strategies high cell densities were realized on a milliliter scale with final optical density measured at 600 nm (OD600) of 114–133 and final DCW concentrations of 69–70 g L–1. The effect of feeding strategies on the expression of two heterologous proteins was investigated. Whereas no impact was observed on the expression of the spider silk protein eADF4(C16), the fluorescence of enhanced green fluorescence protein (eGFP) was reproducibly lower, if an intermittent glucose feed was applied. Thus, the impact of feeding strategy on expression is strongly dependent on the E. coli strain and/or expressed protein. As a completely continuous feed supply is difficult to realize in miniature bioreactors, the enzymatic release approach from this study can be easily applied in all microfluidic system to reduce fluctuations of glucose supply and DO concentrations.  相似文献   

15.
Drug resistance involves many biological processes, including cell growth, cell communication, and cell cooperation. In the last few decades, bacterial drug resistance studies have made substantial progress. However, a major limitation of the traditional resistance study still exists: most of the studies have concentrated on the average behavior of enormous amounts of cells rather than surveying single cells with different phenotypes or genotypes. Here, we report our study of beta-lactamase bacterial drug resistance in a well-designed microfluidic device, which allows us to conduct more controllable experiments, such as controlling the nutrient concentration, switching the culture media, performing parallel experiments, observing single cells, and acquiring time-lapse images. By using GFP as a beta-lactamase indicator and acquiring time-lapse images at the single-cell level, we observed correlations between the bacterial heterogeneous phenotypes and their behavior in different culture media. The feedback loop between the growth rate and the beta-lactamase production suggests that the beta-lactamase bacteria are more resistant in a rich medium than in a relatively poor medium. In the poorest medium, the proportion of dormant cells may increase, which causes a lower death rate in the same generation. Our work may contribute to assaying the antibiotic resistance of pathogenic bacteria in heterogeneous complex media.  相似文献   

16.
The monitoring and evaluation of cell behaviors under various concentrations of diffusible molecules or drugs are important in drug screening and in many other types of biological studies. In the current study, a novel polydimethylsiloxane (PDMS)-based microfluidic device was established for the real-time monitoring of drug-induced cytotoxicity using electric cell-substrate impedance sensing (ECIS). This device consists of the following three components: a drug gradient generator, planar air-bubble valves, and parallel cell culture cavities that are combined with impedance-sensing electrodes. The gradient generator allows for the simultaneous administration of multiple drug doses to test the functional cytotoxicity, and the incorporated impedance sensing enables the dynamic, automatic and quantitative measurement of in vitro dose-dependent drug responses. The air-bubble valve presented here allows the automatic closure of the valve without the need for any external valve-control instrument. As a proof-of-concept demonstration, this device was applied to dynamically monitor the effects of the anticancer drug cisplatin on apoptosis in four cancer cell lines, which may be useful for drug discovery and other biological studies that require automated analysis combined with concentration gradients.  相似文献   

17.

Background

Microfluidics is an enabling technology with a number of advantages over traditional tissue culture methods when precise control of cellular microenvironment is required. However, there are a number of practical and technical limitations that impede wider implementation in routine biomedical research. Specialized equipment and protocols required for fabrication and setting up microfluidic experiments present hurdles for routine use by most biology laboratories.

Results

We have developed and validated a novel microfluidic device that can directly interface with conventional tissue culture methods to generate and maintain controlled soluble environments in a Petri dish. It incorporates separate sets of fluidic channels and vacuum networks on a single device that allows reversible application of microfluidic gradients onto wet cell culture surfaces. Stable, precise concentration gradients of soluble factors were generated using simple microfluidic channels that were attached to a perfusion system. We successfully demonstrated real-time optical live/dead cell imaging of neural stem cells exposed to a hydrogen peroxide gradient and chemotaxis of metastatic breast cancer cells in a growth factor gradient.

Conclusion

This paper describes the design and application of a versatile microfluidic device that can directly interface with conventional cell culture methods. This platform provides a simple yet versatile tool for incorporating the advantages of a microfluidic approach to biological assays without changing established tissue culture protocols.  相似文献   

18.
We describe an in situ fluorescence optical detection system to demonstrate real‐time and non‐invasive detection of reaction products in a microfluidic device while under perfusion within a standard incubator. The detection system is designed to be compact and robust for operation inside a mammalian cell culture incubator for quantitative detection of fluorescent signal from microfluidic devices. When compared to a standard plate reader, both systems showed similar biphasic response curves with two linear regions. Such a detection system allows real‐time measurements in microfluidic devices with cells without perturbing the culture environment. In a proof‐of‐concept experiment, the cytochrome P450 1A1/1A2 activity of a hepatoma cell line (HepG2/C3A) was monitored by measuring the enzymatic conversion of ethoxyresorufin to resorufin. The hepatoma cell line was embedded in MatrigelTM construct and cultured in a microfluidic device with medium perfusion. The response of the cells, in terms of P450 1A1/1A2 activity, was significantly different in a plate well system and the microfluidic device. Uninduced cells showed almost no activity in the plate assay, while uninduced cells in MatrigelTM with perfusion in a microfluidic device showed high activity. Cells in the plate assay showed a significant response to induction with 3‐Methylcholanthrene while cells in the microfluidic device did not respond to the inducer. These results demonstrate that the system is a potentially useful method to measure cell response in a microfluidic system. Biotechnol. Bioeng. 2009; 104: 516–525 © 2009 Wiley Periodicals, Inc.  相似文献   

19.
The microenvironment of cells, which includes basement proteins, shear stress, and extracellular stimuli, should be taken into consideration when examining physiological cell behavior. Although microfluidic devices allow cellular responses to be analyzed with ease at the single-cell level, few have been designed to recover cells. We herein demonstrated that a newly developed microfluidic device helped to improve culture conditions and establish a clonality-validated human pluripotent stem cell line after tracing its growth at the single-cell level. The device will be a helpful tool for capturing various cell types in the human body that have not yet been established in vitro.  相似文献   

20.
Ko JM  Ju J  Lee S  Cha HC 《Protoplasma》2006,227(2-4):237-240
Summary. Several advances have been made in the use of microfluidic devices for insect and mammalian cell cultures, but no reports of their use for plant cell cultures have been published. We, therefore, conducted a plant cell culture in a microfluidic device using polydimethylsiloxane. Nicotiana tabacum protoplasts were cultured in a variously shaped polydimethylsiloxane channel containing Nitsch medium supplemented with 0.5 g of NLN-13 vitamin mixture, 2.0 mg of α-naphthaleneacetic acid, and 0.5 mg of 6-benzyladenine per liter and 9% mannitol. Protoplasts in the polydimethylsiloxane channel showed cell division and microcolony formation within 4 weeks. The use of a microfluidic channel is a novel technique in the field of plant cell culture. The results of this study will encourage the utilization of polydimethylsiloxane-based microfluidic devices in plant cell engineering and cell analysis. Correspondence and reprints: Department of Biology, Dankook University, 29 San Anseo-dong, Cheonan 300-714, South Korea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号