首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhamnolipids (RMLs) have more effectiveness for specific uses according to their homologue proportions. Thus, the novelty of this work was to compare mono-RMLs and di-RMLs physicochemical properties on microbial enhanced oil recovery (MEOR) applications. For this, RML produced by three strains of Pseudomonas aeruginosa containing different homologues proportion were used: a mainly mono-RMLs producer (mono-RMLs); a mainly di-RMLs producer (di-RMLs), and the other one that produces relatively balanced amounts of mono-RML and di-RML homologues (mono/di-RML). For mono-RML, the most abundant molecules were Rha-C10C10 (m/z 503.3), for di-RML were RhaRha-C10C10 (m/z 649.4) and for Mono/di-RML were Rha-C10C10 (m/z 503.3) and RhaRha-C10C10 (m/z 649.4). All RMLs types presented robustness under high temperature and variation of salinity and pH, and high ability for oil displacement, foam stability, wettability reversal and were classified as safe for environment according to the European Union Directive No. 67/548/EEC. For all these properties, it was observed a highlight for mono-RML. Mono-RML presented the lowest surface tension (26.40 mN/m), interfacial tension (1.14 mN/m), and critical micellar concentration (CMC 27.04 mg/L), the highest emulsification index (EI24 100%) and the best wettability reversal (100% with 25 ppm). In addition, mono-RML showed the best acute toxicity value (454 mg/L), making its application potential even more attractive. Based on the results, it was concluded that all RMLs homologues studied have potential for MEOR applications. However, results showed that mono-RML stood out and have the best mechanism of oil incorporation in micelles due their most effective surface-active physicochemical features.  相似文献   

2.
Coating of stainless steel with diamond-like carbon or certain fluoropolymers reduced or almost eliminated adhesion and biofilm growth of Staphylococcus epidermidis, Deinococcus geothermalis, Meiothermus silvanus and Pseudoxanthomonas taiwanensis. These species are known to be pertinent biofilm formers on medical implants or in the wet-end of paper machines. Field emission scanning electron microscopic analysis showed that Staph. epidermidis, D. geothermalis and M. silvanus grew on stainless steel using thread-like organelles for adhesion and biofilm formation. The adhesion threads were fewer in number on fluoropolymer-coated steel than on plain steel and absent when the same strains were grown in liquid culture. Psx. taiwanensis adhered to the same surfaces by a mechanism involving cell ghosts on which the biofilm of live cells grew. Hydrophilic (diamond-like carbon) or hydrophobic (fluoropolymer) coatings reduced the adherence of the four test bacteria on different steels. Selected topographic parameters, including root-mean-square roughness (S (q)), skewness (S (sk)) and surface kurtosis (S (ku)), were analysed by atomic force microscopy. The surfaces that best repelled microbial adhesion of the tested bacteria had higher skewness values than those only slightly repelling. Water contact angle, measured (theta (m)) or roughness corrected (theta (y)), affected the tendency for biofilm growth in a different manner for the four test bacteria.  相似文献   

3.
To investigate if corrosion inhibition by aerobic biofilms is a general phenomenon, carbon steel (SAE 1018) coupons were exposed to a complex liquid medium (Luria–Bertani) and seawater-mimicking medium (VNSS) containing fifteen different pure-culture bacterial suspensions representing seven genera. Compared to sterile controls, the mass loss in the presence of these bacteria (which are capable of developing a biofilm to various degrees) decreased by 2- to 15-fold. The extent of corrosion inhibition in LB medium depended on the nature of the biofilm: an increased proportion of live cells, observed with confocal scanning laser microscopy (CSLM) and image analysis, decreased corrosion. Corrosion inhibition in LB medium was greatest with Pseudomonas putida (good biofilm formation), while metal coupons exposed to Streptomyces lividans in LB medium (poor biofilm formation) corroded in a manner similar to the sterile controls. Pseudomonas mendocina KR1 reduced corrosion the most in VNSS. It appears that only a small layer of active, respiring cells is required to inhibit corrosion, and the corrosion inhibition observed is due to the attached biofilm. Received 09 December 1996/ Accepted in revised form 19 March 1997  相似文献   

4.
LecA (PA-IL) is a cytotoxic lectin and adhesin produced by Pseudomonas aeruginosa which binds hydrophobic galactosides with high specificity and affinity. By using a lecA-egfp translation fusion and immunoblot analysis of the biofilm extracellular matrix, we show that lecA is expressed in biofilm-grown cells. In static biofilm assays on both polystyrene and stainless steel, biofilm depth and surface coverage was reduced by mutation of lecA and enhanced in the LecA-overproducing strain PAO-P47. Biofilm surface coverage by the parent strain, PAO-P47 but not the lecA mutant on steel coupons was also inhibited by growth in the presence of either isopropyl-beta-D-thiogalactoside (IPTG) or p-nitrophenyl-alpha-D-galactoside (NPG). Furthermore, mature wild-type biofilms formed in the absence of these hydrophobic galactosides could be dispersed by the addition of IPTG. In contrast, addition of p-nitrophenyl-alpha-L-fucose (NPF) which has a high affinity for the P. aeruginosa LecB (PA-IIL) lectin had no effect on biofilm formation or dispersal. Planktonic growth of P. aeruginosa PAO1 was unaffected by the presence of IPTG, NPG or NPF, nor was the strain able to utilize these sugars as carbon sources, suggesting that the observed effects on biofilm formation were due to the competitive inhibition of LecA-ligand binding. Similar results were also obtained for biofilms grown under dynamic flow conditions on steel coupons, suggesting that LecA contributes to P. aeruginosa biofilm architecture under different environmental conditions.  相似文献   

5.
Generally speaking, a much higher concentration of biocide is needed to treat biofilms compared to the dosage used to for planktonic bacteria. With increasing restrictions of environmental regulations and safety concerns on large-scale biocide uses such as oil field applications, it is highly desirable to make more effective use of biocides. In this paper a green biocide enhancer ethylenediaminedisuccinate (EDDS) that is a biodegradable chelator, was found to enhance the efficacy of glutaraldehyde in its treatment of sulfate-reducing bacteria (SRB) biofilms. Experiments were carried out in 100 ml anaerobic vials with carbon steel coupons. The ATCC 14563 strain of Desulfovibrio desulfuricans was used. Biofilms on coupon surfaces were visualized using scanning electron microscopy (SEM). Experimental results showed that EDDS reduced the glutaraldehyde dosages considerably in the inhibition of SRB biofilm establishment and the treatment of established biofilms on carbon steel coupon surfaces.  相似文献   

6.
A bioreactor system operating in a continuous mode was designed to generate biofilms on polished and as-received surfaces of AISI 316 stainless steel coupons exposed for 36 d to a pure culture of marine Pseudomonas NCIMB 2021. Scanning electron microscopy (SEM) and atomic force microscopy were employed to determine the degree of surface colonisation and to examine corrosion damage of the steel. X-ray photoelectron spectroscopy analysis was carried out to characterise the chemistry of the passive layers on polished steel stored for a period of time, freshly re-polished coupons, and as-received steel. The effect of biofilms on the composition of layers formed on the steel specimens was evaluated. SEM revealed that the surfaces of polished and stored steel appeared to accumulate more biofilm compared to as-received specimens. Micropitting of steel occurred underneath the biofilm, regardless of surface finish. The concentration of elements in the passive layers differed significantly between freshly re-polished and as-received or polished and stored coupons. In the presence of Pseudomonas NCIMB 2021 biofilm, the composition of the passive layer on the as-received steel surface was considerably altered compared to unexposed steel or steel exposed to abiotic medium.  相似文献   

7.
The aim of present study was to investigate the microbial colonization of worn contact lenses (CLs) and to evaluate the inhibitory effect of pomelo (Citrus maxima) peels essential oil on the biofilm development on unworn CLs. The essential oil was isolated by steam distillation and analyzed by gas chromatography coupled with mass spectrometry, twenty compounds being isolated. The antimicrobial activity of pomelo oil was tested against S. epidermidis and P. aeruginosa strains, known for their ability to develop biofilms on prosthetic devices, by qualitative screening methods and quantitative assay of the minimal inhibitory concentrations (MIC) in order to evaluate the antibiofilm activity. Our study revealed that all worn CLs where 100% colonized by staphylococci and Enterobacteriaceae strains. The pomelo essential oil inhibited the development of bacterial biofilms formed by Gram-positive and Gram-negative microorganisms on soft CLs, its antibiofilm activity being specific and dependent on different physical parameters (contact time and temperature). The architecture of bacterial biofilms developed on soft contact lenses was analyzed using confocal scanning laser microscopy (CSLM).  相似文献   

8.
Carbon steels are widely used in the oil and gas industry from downhole tubing to transport trunk lines. Microbes form biofilms, some of which cause the so-called microbiologically influenced corrosion (MIC) of carbon steels. MIC by sulfate reducing bacteria (SRB) is often a leading cause in MIC failures. Electrogenic SRB sessile cells harvest extracellular electrons from elemental iron oxidation for energy production in their metabolism. A previous study suggested that electron mediators riboflavin and flavin adenine dinucleotide (FAD) both accelerated the MIC of 304 stainless steel by the Desulfovibrio vulgaris biofilm that is a corrosive SRB biofilm. Compared with stainless steels, carbon steels are usually far more prone to SRB attacks because SRB biofilms form much denser biofilms on carbon steel surfaces with a sessile cell density that is two orders of magnitude higher. In this work, C1018 carbon steel coupons were used in tests of MIC by D. vulgaris with and without an electron mediator. Experimental weight loss and pit depth data conclusively confirmed that both riboflavin and FAD were able to accelerate D. vulgaris attack against the carbon steel considerably. It has important implications in MIC failure analysis and MIC mitigation in the oil and gas industry.  相似文献   

9.
To better understand the impact of nitrate in Brazilian oil reservoirs under souring processes and corrosion, the goal of this study was to analyse the effect of nitrate on bacterial biofilms formed on carbon steel coupons using reactors containing produced water from a Brazilian oil platform. Three independent experiments were carried out (E1, E2 and E3) using the same experimental conditions and different incubation times (5, 45 and 80 days, respectively). In every experiment, two biofilm-reactors were operated: one was treated with continuous nitrate flow (N reactor), and the other was a control reactor without nitrate (C reactor). A Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis approach using the 16S rRNA gene was performed to compare the bacterial groups involved in biofilm formation in the N and C reactors. DGGE profiles showed remarkable changes in community structure only in experiments E2 and E3. Five bands extracted from the gel that represented the predominant bacterial groups were identified as Bacillus aquimaris, B. licheniformis, Marinobacter sp., Stenotrophomonas maltophilia and Thioclava sp. A reduction in the sulfate-reducing bacteria (SRB) most probable number counts was observed only during the longer nitrate treatment (E3). Carbon steel coupons used for biofilm formation had a slightly higher weight loss in N reactors in all experiments. When the coupon surfaces were analysed by scanning electron microscopy, an increase in corrosion was observed in the N reactors compared with the C reactors. In conclusion, nitrate reduced the viable SRB counts. Nevertheless, the nitrate dosing increased the pitting of coupons.  相似文献   

10.
The influence of electrode surface chemistry over biofilm growth was evaluated for photo‐bioelectrocatalytic fuel cell. A consortium of photosynthetic bacteria was grown onto different electrodes designed with polyethylenimine (PEI) and multiwall carbon nanotubes as hydrophilic and hydrophobic modifier, respectively. The designed electrodes were loaded with 0.08, 0.17, and 0.33 μg/cm2 of PEI to change the hydrophilicity. However, 0.56, 0.72, and 0.83 mg/cm2 of multiwall carbon nanotubes were used to alter the hydrophobicity of the electrodes. The surface chemistry of electrode and bio‐interaction was evaluated as a function of contact angle and biofilm formation. The results were compared with those obtained with a carbon paper electrode. The contact angle on the untreated electrode (carbon paper) was 118°, whereas for hydrophobic and hydrophilic electrodes, the maximum and minimum contact angles were 170° and 0°, respectively. Interestingly, the maximum biofilm growth (0.2275 g, wet basis) was observed on highly hydrophobic surface; however, the maximum electrochemical performance (246 mV) was shown by the most hydrophilic electrode surface. PEI‐based electrode with good biofilm formation showed comparatively higher electrogenic activity.  相似文献   

11.
A gramicidin-S-producing Bacillus brevis 18-3 biofilm was shown to reduce corrosion rates of mild steel by inhibiting both the sulfate-reducing bacterium Desulfosporosinus orientis and the iron-oxidizing bacterium Leptothrix discophora SP-6. When L. discophora SP-6 was introduced along with D. orientis to a non-antimicrobial-producing biofilm control, Paenibacillus polymyxa ATCC 10401, a corrosive synergy was created and mild steel coupons underwent more severe corrosion than when only D. orientis was present, showing a 2.3-fold increase via electrochemical impedance spectroscopy (EIS) and a 1.8-fold difference via mass-loss measurements. However, when a gramicidin-S-producing, protective B. brevis 18-3 biofilm was established on mild steel, the metal coupons were protected against the simultaneous attack of D. orientis and L. discophora SP-6. EIS data showed that the protective B. brevis 18-3 biofilm decreased the corrosion rate about 20-fold compared with the non-gramicidin-producing P. polymyxa ATCC 10401 biofilm control. The mass loss for the protected mild steel coupons was also significantly lower than that for the unprotected ones (4-fold decrease). Scanning electron microscope images corroborated the corrosion inhibition by the gramicidin-S-producing B. brevis biofilm on mild steel by showing that the metal surface remained untarnished, i.e., the polishing grooves were still visible after exposure to the simultaneous attack of the sulfate-reducing bacterium and the iron-oxidizing bacterium.  相似文献   

12.
Whereas the transfer of Listeria from surfaces to foods and vice versa has been well documented, little is known about the mechanism of bacterial transfer. The objective of this work is to gain a better understanding of the forces involved in listerial biofilms adhesion using atomic force microscopy (AFM). L. monocytogenes Scott A was grown as biofilms on stainless steel surfaces by inoculating stainless steel coupons with Listeria and incubating the coupons for 48 h at 32 °C with a diluted 1:20 tryptic soy broth. After growth, biofilms were equilibrated over saturated salt solutions at a constant relative humidity (%RH) before measurement of adhesion forces using AFM. The effects of contact time, loading force, and biofilm relative humidity (%RH) suggested that neither contact time, loading force nor biofilm %RH had a significant effect on biofilm adhesiveness at a cellular level (P > 0.05). In a second set of experiments, the influence of material type on biofilm adhesiveness was evaluated using two different colloidal probes (SiO2 and polyethylene). Results showed that the maximum pull-off force and retraction work needed to retract the cantilever for glass (−85.42 nN and 1.610−15 J, respectively) were significantly lower than those of polyethylene (−113.38 nN and 2.7 × 10–15 J, respectively; P < 0.001). The results of this study suggest that Listeria biofilms adhere more strongly to hydrophobic surfaces than hydrophilic surfaces when measured at a cellular level. These results provide important insights that could lead to new ways to remediate and avoid listerial biofilm formation in the food industry.  相似文献   

13.
Metallurgical features have been shown to play an important role in the attachment of microorganisms to metal surfaces. In the present study, the influence of the microstructure of as-received (AR) and heat-treated (HT) 1010 carbon steel on the initial attachment of bacteria was investigated. Heat treatment was carried out with the aim of increasing the grain size of the carbon steel coupons. Mirror-polished carbon steel coupons were immersed in a minimal medium inoculated with Escherichia coli (ATCC 25922) to investigate the early (15, 30 and 60?min) and relatively longer-term (4?h) stages of bacterial attachment. The results showed preferential colonisation of bacteria on the grain boundaries of the steel coupons. The bacterial attachment to AR steel coupons was relatively uniform compared to the HT steel coupons where an increased number of localised aggregates of bacteria were found. Quantitative analysis showed that the ratio of the total number of isolated (ie single) bacteria to the number of bacteria in aggregates was significantly higher on the AR coupons than the HT coupons. Longer-term immersion studies showed production of extracellular polymeric substances by the bacteria and corrosion at the grain boundaries on both types of steel coupon tested.  相似文献   

14.
The surface physicochemical properties of Listeria monocytogenes LO28 under different conditions (temperature and growth phase) were determined by use of microelectrophoresis and microbial adhesion to solvents. The effect of these parameters on adhesion and biofilm formation by L. monocytogenes LO28 on hydrophilic (stainless steel) and hydrophobic (polytetrafluoroethylene [PTFE]) surfaces was assessed. The bacterial cells were always negatively charged and possessed hydrophilic surface properties, which were negatively correlated with growth temperature. The colonization of the two surfaces, monitored by scanning electron microscopy, epifluorescence microscopy, and cell enumeration, showed that the strain had a great capacity to colonize both surfaces whatever the incubation temperature. However, biofilm formation was faster on the hydrophilic substratum. After 5 days at 37 or 20°C, the biofilm structure was composed of aggregates with a three-dimensional shape, but significant detachment took place on PTFE at 37°C. At 8°C, only a bacterial monolayer was visible on stainless steel, while no growth was observed on PTFE. The growth phase of bacteria used to inoculate surfaces had a significant effect only in some cases during the first steps of biofilm formation. The surface physicochemical properties of the strain are correlated with adhesion and surface colonization.  相似文献   

15.
The surface physicochemical properties of Listeria monocytogenes LO28 under different conditions (temperature and growth phase) were determined by use of microelectrophoresis and microbial adhesion to solvents. The effect of these parameters on adhesion and biofilm formation by L. monocytogenes LO28 on hydrophilic (stainless steel) and hydrophobic (polytetrafluoroethylene [PTFE]) surfaces was assessed. The bacterial cells were always negatively charged and possessed hydrophilic surface properties, which were negatively correlated with growth temperature. The colonization of the two surfaces, monitored by scanning electron microscopy, epifluorescence microscopy, and cell enumeration, showed that the strain had a great capacity to colonize both surfaces whatever the incubation temperature. However, biofilm formation was faster on the hydrophilic substratum. After 5 days at 37 or 20 degrees C, the biofilm structure was composed of aggregates with a three-dimensional shape, but significant detachment took place on PTFE at 37 degrees C. At 8 degrees C, only a bacterial monolayer was visible on stainless steel, while no growth was observed on PTFE. The growth phase of bacteria used to inoculate surfaces had a significant effect only in some cases during the first steps of biofilm formation. The surface physicochemical properties of the strain are correlated with adhesion and surface colonization.  相似文献   

16.
Abstract A screening of twenty-two marine isolates was made to examine their effects on corrosion of carbon steel ASTM A619. In batch cultures, sixteen of the isolates gave a lower corrosion than the control. Aerobic and anaerobic biofilm populations were formed by immersing iron coupons in natural seawater under aerobic and anaerobic conditions. The effects of the biofilms depended on a balance between the presence of oxygen and the type of population. An anaerobic population attached to the surface increased the corrosion rate if immersed in a suspension of Vibrio sp. DW1. The vibrio population probably 'protected' the anaerobic population from oxygen and may have provided nutrients, thereby creating conditions that allowed production of corrosive metabolites close to the metal. In contrast, coupons without a biofilm showed a decrease in the corrosion when immersed in the same vibrio suspension. The protective effect of a dense suspension of bacteria found earlier [5,6] was tested in situ in seawater. Iron coupons were immersed in dialysis bags with a suspension of Vibrio sp. DW1. Coupons immersed in dialysis bags with DW1 showed a lower degree of corrosion than coupons immersed in bags with seawater.  相似文献   

17.
Candida albicans biofilms form on indwelling medical devices (e.g., denture acrylic or intravenous catheters) and are associated with both oral and invasive candidiasis. Here, we determined whether surface modifications of polyetherurethane (Elasthane 80A [E80A]), polycarbonateurethane, and poly(ethyleneterephthalate) (PET) can influence fungal biofilm formation. Polyurethanes were modified by adding 6% polyethylene oxide (6PEO), 6% fluorocarbon, or silicone, while the PET surface was modified to generate hydrophilic, hydrophobic, cationic, or anionic surfaces. Formation of biofilm was quantified by determining metabolic activity and total biomass (dry weight), while its architecture was analyzed by confocal scanning laser microscopy (CSLM). The metabolic activity of biofilm formed by C. albicans on 6PEO-E80A was significantly reduced (by 78%) compared to that of biofilm formed on the nonmodified E80A (optical densities of 0.054 +/- 0.020 and 0.24 +/- 0.10, respectively; P = 0.037). The total biomass of Candida biofilm formed on 6PEO-E80A was 74% lower than that on the nonmodified E80A surface (0.46 +/- 0.15 versus 1.76 +/- 0.32 mg, respectively; P = 0.003). Fungal cells were easily detached from the 6PEO-E80A surface, and we were unable to detect C. albicans biofilm on this surface by CSLM. All other surface modifications allowed formation of C. albicans biofilm, with some differences in thearchitecture. Correlation between contact angle and biofilm formation was observed for polyetherurethane substrates (r = 0.88) but not for PET biomaterials (r = -0.40). This study illustrates that surface modification is a viable approach for identifying surfaces that have antibiofilm characteristics. Investigations into the clinical utility of the identified surfaces are warranted.  相似文献   

18.
Controlling bacterial biofilms is necessary for food safety and industrial processing in clean room environments. Our goal was to develop a method to quantitatively measure biofilm produced by pathogens under wet poultry production and processing conditions. Stainless steel and glass coupons were incubated in aqueous media containing reduced nutrients and exposed to Listeria monocytogenes under static temperature and humidity conditions. Samples were measured separately by biofilm assay and viable cell density, and then confirmed by spectrophotometry and microscopy. The biofilm assay resulted in different t groupings from the cell density. The mean from the biofilm assay was 0.50, and the error% was 0.595. The mean of the log10 density (cfu/cm2) was 5.90, and the standard deviation ranged from 0.127 to 0.438 on 24 coupons. The typical sequence of biofilm development, followed by microscopy of biofilm grown on glass coupons, exhibited a change from dispersed single cells to an all-over pattern of clumps with few dispersed cells. L. monocytogenes formed biofilms on all of the substrata tested. Bacterial counts from planktonic cultures at 24, 48, 72, and 144 h confirmed that L. monocytogenes remained viable throughout the experiment and reached equilibrium between 6 and 24 h. The cell density log10/ml was 8.01, 8.03, 7.69, and 6.66, respectively; and the standard deviation ranged from 0.156 to 0.394. The data will be used to grow stable biofilms of Listeria spp. collected from the food processing environment for further study. This is the first use of the crystal violet assay for measurement of bacterial biofilms on stainless steel under these conditions. The methods tested are applicable to other bacteria and substrata.  相似文献   

19.
Microbiological studies of spent nuclear fuel storage basins at Savannah River Site (SRS) were performed as a preliminary step to elucidate the potential for microbial-influenced corrosion (MIC) in these facilities. Total direct counts and culturable counts performed during a 2-year period indicated microbial densities of 104 to 107 cells/ml in water samples and on submerged metal coupons collected from these basins. Bacterial communities present in the basin transformed between 15% and 89% of the compounds present in Biolog™ plates. Additionally, the presence of several biocorrosion-relevant microbial groups (i.e., sulfate-reducing bacteria and acid-producing bacteria) was detected with commercially available test kits. Scanning electron microscopy and X-ray spectra analysis of osmium tetroxide-stained coupons demonstrated the development of microbial biofilm communities on some metal coupons submerged for 3 weeks in storage basins. After 12 months, coupons were fully covered by biofilms, with some deterioration of the coupon surface evident at the microscopical level. These results suggest that, despite the oligotrophic and radiological environment of the SRS storage basins and the active water deionization treatments commonly applied to prevent electrochemical corrosion in these facilities, these conditions do not prevent microbial colonization and survival. Such microbial densities and wide diversity of carbon source utilization reflect the ability of the microbial populations to adapt to these environments. The presumptive presence of sulfate-reducing bacteria and acid-producing bacteria and the development of biofilms on submerged coupons indicated that an environment for MIC of metal components in the storage basins may occur. However, to date, there has been no indication or evidence of MIC in the basins. Basin chemistry control and corrosion surveillance programs instituted several years ago have substantially abated all corrosion mechanisms. Received: 4 April 1998 / Accepted: 7 July 1998  相似文献   

20.
The variability of several groups of microorganisms on AISI 1020 carbon steel coupons as a function of seawater velocity in a water circulation loop was investigated. The metal probes as well as electrodes were fixed onto ducts connected to a 35l capacity tank, in order to study both biofilm formation and some electrochemical parameters. The experiments were carried out at different seawater velocities. The technique of the most probable number was used to enumerate bacterial aerobes and anaerobes as well as sulphate-reducing bacteria and iron-reducing bacteria. Fungi were quantified by counting the number of colony forming units. At velocities of 3.6 cm/s, which correspond to a laminar flow, the numbers of aerobic and anaerobic bacteria attached to the metal surfaces reached a maximum. Such values were markedly reduced at velocities of 17.4–26.0 and 34.8 cm/s. The corrosion rate at the start of the process was 1.4 mm/year, decaying to levels of about 0.4–0.6 mm/year over the experimental period. Analysis of loss of carbon steel coupons mass after 35 days of the process indicated a mean corrosion rate of approximately 2 mm/year. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号