首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantum chemical calculations using the density functional theory (B3LYP/6-31G* DFT) and semi-empirical AM1 methods were performed on ten pyridine derivatives used as corrosion inhibitors for mild steel in acidic medium to determine the relationship between molecular structure and their inhibition efficiencies. Quantum chemical parameters such as total negative charge (TNC) on the molecule, energy of highest occupied molecular orbital (E HOMO), energy of lowest unoccupied molecular orbital (E LUMO) and dipole moment (μ) as well as linear solvation energy terms, molecular volume (Vi) and dipolar-polarization (π*) were correlated to corrosion inhibition efficiency of ten pyridine derivatives. A possible correlation between corrosion inhibition efficiencies and structural properties was searched to reduce the number of compounds to be selected for testing from a library of compounds. It was found that theoretical data support the experimental results. The results were used to predict the corrosion inhibition of 24 related pyridine derivatives.  相似文献   

2.
A series of chalcone derivatives, 1 – 15 , were prepared by Claisen? Schmidt condensation and evaluated for their cytotoxicities on tumor cell lines and also against proteolytic enzymes such as cathepsins B and K. Of the compounds synthesized, (E)‐3‐(3,4‐dimethoxyphenyl)‐1‐phenylprop‐2‐en‐1‐one ( 12 ), (E)‐3‐(4‐chlorophenyl)‐1‐phenylprop‐2‐en‐1‐one ( 13 ), (E)‐3‐(4‐methoxyphenyl)‐1‐phenylprop‐2‐en‐1‐one ( 14 ), and (E)‐3‐(4‐nitrophenyl)‐1‐phenylprop‐2‐en‐1‐one ( 15 ) showed significant cytotoxicities. The most effective compound was 15 , which showed high cytotoxic activity with an IC50 value lower than 1 μg/ml, and no selectivity on the tumor cells evaluated. Substituents at C(4) of ring B were found to be essential for cytotoxicity. In addition, it was also demonstrated that some of these chalcones are moderate inhibitors of cathepsin K and have no activity against cathepsin B.  相似文献   

3.
Monoamine oxidase B (MAO-B) and nitric oxide synthase (NOS) have both been implicated in the pathology of neurodegenerative diseases. In an attempt to design dual-target-directed drugs that inhibit both these enzymes, a series of pteridine-2,4-dione analogues were synthesised. The compounds were found to be relatively weak NOS inhibitors but showed promising MAO-B activity with 6-amino-5-[(E)-3-(3-chloro-phenyl)-prop-2-en-(E)-ylideneamino]-1,3-dimethyl-1H-pyrimidine-2,4-dione and 6-[(E)-2-(3-chloro-phenyl)-vinyl]-1,3-dimethyl-1H-pteridine-2,4-dione inhibiting MAO-B with IC50 values of 0.602 and 0.314 μM, respectively. The pteridine-2,4-dione analogues thus show promise as scaffolds for the development of potent reversible MAO-B inhibitors and as observed in earlier studies, the most potent inhibitors were obtained with 3-chlorostyryl substitution.  相似文献   

4.
(E)-3,4-dihydroxystyryl aralkyl sulfones and sulfoxides have been reported as novel multifunctional neuroprotective agents in previous studies, which as phenolic compounds display antioxidative and antineuroinflammatory properties. To further enhance the neuroprotective effects and study structure-activity relationship of the derivatives, we synthesized their acetylated derivatives, (E)-3,4-diacetoxystyryl sulfones and sulfoxides, and examined their neuroprotective effects in vitro models of Parkinson’s disease. The results indicate that (E)-3,4-diacetoxystyryl sulfones and sulfoxides can significantly inhibit kinds of neuron cell injury induced by toxicities, including 6-OHDA, NO, and H2O2. More important, they show higher antineuroinflammatory properties and similar antioxidative properties to corresponding un-acetylated compounds. Thus, we suggest that (E)-3,4-diacetoxystyryl sulfones and sulfoxides may have potential for the treatment of neurodegenerative disorders, especially Parkinson’s disease.  相似文献   

5.
In order to study the structure–activity relationship of Flavokawain B Mannich-based derivatives as acetylcholinesterase (AChE) inhibitors in our recent investigation, 20 new nitrogen-containing chalcone derivatives (4?a–8d) were designed, synthesized, and evaluated for AChE inhibitory activity in vitro. The results suggested that amino alkyl side chain of chalcone dramatically influenced the inhibitory activity against AChE. Among them, compound 6c revealed the strongest AChE inhibitory activity (IC50 value: 0.85?μmol/L) and the highest selectivity against AChE over BuChE (ratio: 35.79). Enzyme kinetic study showed that the inhibition mechanism of compound 6c against AChE was a mixed-type inhibition. The molecular docking assay showed that this compound can both bind with the catalytic site and the peripheral site of AChE.  相似文献   

6.
Based on our previous docking model, in order to carry out more rational drug design, totally 82 vinyl sulfonyl fluorides, including some 2-(hetero)arylethenesulfonyl fluorides and 1,3-dienylsulfonyl fluorides derivatives as potential human telomerase inhibitors were designed and synthesised. The in vitro anticancer activity assay showed that compound 57 (1E,3E)-4-(4-((E)-2-(fluorosulfonyl)vinyl)phenyl)buta-1,3-diene-1-sulfonyl fluoride exhibited high activity against A375 and MDA-MB-231 cell lines with IC50 1.58 and 3.22?µM, but it manifested obvious un-toxic effect against GES-1 and L-02 with IC50 with IC50 values less than 2.00?mM. By the modified TRAP assay, some compounds including 57 exhibited potent inhibitory activities against telomerase with IC50 values of 0.71–0.97?µM.  相似文献   

7.
Literature reports that chalcones inhibit the monoamine oxidase (MAO) enzymes, mostly with specificity for the MAO-B isoform, while nitrocatechol compounds are established inhibitors of catechol–O-methyltransferase (COMT). Based on this, nitrocatechol derivatives of chalcone have been proposed to represent dual-target-directed compounds that may inhibit both MAO-B and COMT. Both these enzymes play key roles in the metabolism of dopamine and levodopa, and inhibitors are thus relevant to the treatment of Parkinson’s disease. The present study expands on the discovery of dual MAO-B/COMT inhibitors by synthesising additional nitrocatechol derivatives of chalcones which include heterocyclic derivatives, and converting them to the corresponding pyrazoline derivatives. The newly synthesised chalcone and pyrazoline compounds were evaluated as inhibitors of human MAO and rat COMT, and the inhibition potencies were expressed as IC50 values. A pyrazoline derivative, compound 8b, was the most potent COMT inhibitor with an IC50 value of 0.048 μM. This is more potent than the reference COMT inhibitor, entacapone, which has an IC50 value of 0.23 μM. The results indicated that the pyrazoline derivatives (IC50 = 0.048–0.21 µM) are more potent COMT inhibitors than the chalcones (IC50 = 0.14–0.29 µM). Unfortunately, the chalcone and pyrazoline derivatives were weak MAO inhibitors with IC50 values > 41.4 µM. This study concludes that the nitrocatechol derivatives investigated here are promising COMT inhibitors, while not being suitable as MAO inhibitors. Using molecular docking, potential binding modes and interactions of selected inhibitors with COMT are proposed.  相似文献   

8.
A new series of sulfonamide derivatives of pyrazolo[4,3-e][1,2,4]triazine with chiral amino group has been synthesized and characterized. The compounds were tested for their tyrosinase and urease inhibitory activity. Evaluation of prepared derivatives demonstrated that compounds (8b) and (8j) are most potent mushroom tyrosinase inhibitors whereas all of the obtained compounds showed higher urease inhibitory activity than the standard thiourea. The compounds (8a), (8f) and (8i) exhibited excellent enzyme inhibitory activity with IC50 0.037, 0.044 and 0.042?μM, respectively, while IC50 of thiourea is 20.9?μM.  相似文献   

9.
In our previous work, two dopamine derivatives with benzothiazole fragment were isolated and identified from Polyrhachis dives (P. dives). Based on their characteristic structure, we used them as lead compound to carry out structural optimization and subsequent fungicidal evaluation. Here 20 dopamine derivatives with benzothiazole fragment were designed and synthesized by a facile method, and their structures were characterized by 1H-NMR, 13CNMR and HMRS. In bioassays, most of the title compounds possess potential fungicidal activities against Altenaia alternala (A. alternala) and Botrytis cinerea (B. cinerea). Especially, (E)-N-(2-(benzo[d]thiazol-6-yl)ethyl)-3-(p-tolyl)acrylamide and (E)-N-(2-(benzo[d]thiazol-6-yl)ethyl)-3-(4-(trifluoromethyl)phenyl)acrylamide displayed 29.3 mg/L and 10.7 mg/L EC50 value against A. alternala, respectively, which possessed equivalent fungicidal activities level to hymexazol.  相似文献   

10.
Robert T. Furbank 《Planta》1988,176(4):433-440
The relationship between the redox state of the primary electron acceptor of photosystem II (QA) and the rate of O2 evolution in isolated mesophyll chloroplasts from Zea mays L. is examined using pulse-modulated chlorophyll a fluorescence techniques. A linear relationship between photochemical quenching of chlorophyll fluorescence (qQ) and the rate of O2 evolution is evident under most conditions with either glycerate 3-phosphate or oxaloacetate as substrates. There appears to be no effect of the transthylakoid pH gradient on the rate of electron transfer from photosystem II into QA in these chloroplasts. However, the proportion of electron transport occurring through cyclic-pseudocyclic pathways relative to the non-cyclic pathway appears to be regulated by metabolic demand for ATP. The majority of non-photochemical quenching in these chloroplasts at moderate irradiances appeared to be energy-dependent quenching.Abbreviations and symbols PSII photosystem II - Fm maximum fluorescence obtained on application of a saturating light pulse - Fo basal fluorescence recorded in the absence of actinic light (i.e. all PSII traps are open) - Fv Fm-Fo - qQ photochemical quenching - qNP non-photochemical quenching - qE energy-dependent quenching of chlorophyll fluorescence  相似文献   

11.
Cinnamic anhydrides have been shown to be more than reactive reagents, but they also act as inhibitors of the enzyme acetylcholinesterease (AChE). Thus, out of a set of 33 synthesised derivatives, several of them were mixed type inhibitors for AChE (from electric eel). Thus, (E)-3-(2,4-dimethoxyphenyl)acrylic anhydride (2c) showed Ki = 8.30 ± 0.94 µM and Ki′ = 9.54 ± 0.38 µM, and for (E)-3-(3-chlorophenyl)acrylic anhydride (2u) Ki = 8.23 ± 0.93 µM and Ki′ = 13.07 ± 0.46 µM were measured. While being not cytotoxic to many human cell lines, these compounds showed an unprecedented and noteworthy inhibitory effect for AChE but not for butyrylcholinesterase (BChE).  相似文献   

12.
Cathepsins have been found to have important physiological roles. The implication of cathepsin L in various types of cancers is well established. In a search for selective cathepsin L inhibitors as anticancer agents, a series of 2-cyanoprrolidine peptidomimetics, carrying a nitrile group as warhead, were designed. Two series of compounds, one with a benzyl moiety and a second with an isobutyl moiety at P2 position of the enzyme were synthesized. The synthesized compounds were evaluated for inhibitory activity against human cathepsin L and cathepsin B. Although, none of the compounds showed promising inhibitory activity, (E)N-{(S)1-[(S)2-cyano-1-pyrrolidinecarbonyl]-3-methylbutyl}-2,3-diphenylacrylamide (24) with an isobutyl moiety at P2 was found to show selectivity as a cathepsin L inhibitor (Ki 5.3 μM for cathepsin L and Ki > 100 μM for cathepsin B). This compound could act as a new lead for the further development of improved inhibitors within this inhibitor type.  相似文献   

13.
The antenna proteins in photosystem II (PSII) not only promote energy transfer to the photosynthetic reaction center (RC) but provide also an efficient cation sink to re-reduce chlorophyll a if the electron transfer (ET) from the Mn-cluster is inhibited. Using the newest PSII dimer crystal structure (3.0 Å resolution), in which 11 β-carotene molecules (Car) and 14 lipids are visible in the PSII monomer, we calculated the redox potentials (Em) of one-electron oxidation for all Car (Em(Car)) by solving the Poisson-Boltzmann equation. In each PSII monomer, the D1 protein harbors a previously unlocated Car (CarD1) in van der Waals contact with the chlorin ring of ChlZ(D1). Each CarD1 in the PSII dimer complex is located in the interface between the D1 and CP47 subunits, together with another four Car of the other PSII monomer and several lipid molecules. The proximity of Car bridging between CarD1 and plastoquinone/QA may imply a direct charge recombination of Car+QA. The calculated Em(CarD1) and Em(ChlZ(D1)) are, respectively, 83 and 126 mV higher than Em(CarD2) and Em(ChlZ(D2)), which could explain why CarD2+ and ChlZ(D2)+ are observed rather than the corresponding CarD1+ and ChlZ(D1)+.  相似文献   

14.
Wen  Xiaogang  Yang  Zhipan  Ding  Shunhua  Yang  Huixia  Zhang  Lixin  Lu  Congming  Lu  Qingtao 《Photosynthesis research》2021,150(1-3):159-177

Deg1 protease functions in protease and chaperone of PSII complex components, but few works were performed to study the effects of Deg1 on electron transport activities on the donor and acceptor side of PSII and its correlation with the photoprotection of PSII during photoinhibition. Therefore, we performed systematic and comprehensive investigations of electron transfers on the donor and acceptor sides of photosystem II (PSII) in the Deg1-reduced transgenic lines deg1-2 and deg1-4. Both the maximal quantum efficiency of PSII photochemistry (Fv/Fm) and the actual PSII efficiency (ΦPSII) decreased significantly in the transgenic plants. Increases in nonphotochemical quenching (NPQ) and the dissipated energy flux per reaction center (DI0/RC) were also shown in the transgenic plants. Along with the decreased D1, CP47, and CP43 content, these results suggested photoinhibition under growth light conditions in transgenic plants. Decreased Deg1 caused inhibition of electron transfer on the PSII reducing side, leading to a decline in the number of QB-reducing centers and accumulation of QB-nonreducing centers. The Tm of the Q band shifted from 5.7 °C in the wild-type plant to 10.4 °C and 14.2 °C in the deg1-2 and deg1-4 plants, respectively, indicating an increase in the stability of S2QA¯ in transgenic plants. PSIIα in the transgenic plants largely reduced, while PSIIβ and PSIIγ increased with the decline in the Deg1 levels in transgenic plants suggesting PSIIα centers gradually converted into PSIIβ and PSIIγ centers in the transgenic plants. Besides, the connectivity of PSIIα and PSIIβ was downregulated in transgenic plants. Our results reveal that downregulation of Deg1 protein levels induced photoinhibition in transgenic plants, leading to loss of PSII activities on both the donor and acceptor sides in transgenic plants. These results give a new insight into the regulation role of Deg1 in PSII electron transport.

  相似文献   

15.
Dimethomorph is a kind of cinnamamide fungicide with high fungicidal activities for oomycete diseases. The commercially available dimethomorph is a mixture of two isomers, in which (Z)-dimethomorph possessing higher activity and (E)-dimethomorph possessing lower activity. Herein, we reported the design, synthesis and fungicidal activities of a series of novel indole-modified cinnamamide derivatives, which used the indole group to ‘fix’ the cis-styrene group in (Z)-dimethomorph. The modification of the molecular structure of cinnamamide compounds could be beneficial to improve its practical application performance. Tested the fungicidal activities, it was found that compounds 8j , 9a , 9e , 9i and 9j showed excellent in vivo fungicidal activities (80–100 %) against Pseudoperonospora cubensis at a concentration of 100 mg L−1, while dimethomorph and flumorph were noneffective. Moreover, parts of synthesized indole-modified cinnamamide derivatives 8 ( 8a , 8c , 8d and 8j ) and 9 ( 9c and 9j ) exhibited the same in vivo fungicidal activities against Phytophthora infestans with dimethomorph or flumorph at a concentration of 50 mg L−1 with 100 % inhibition. The biological assay results indicated that indole-modified cinnamamide derivatives have promising applications in the prevention and treatment of Phytophthora infestans.  相似文献   

16.
A series of (E)-1-(substituted benzylidene)-4-(3-isopropylphenyl)thiosemicarbazone derivatives were synthesized and characterized by FT-IR spectrum, elemental analysis, NMR spectrum, HR-MS spectrum, and X-ray single crystal diffraction technology. The crystal structures and packing of (E)-1-(4-fluorobenzylidene)-4-(3-isopropylphenyl)thiosemicarbazone and (E)-1-(3-fluorobenzylidene)-4-(3-isopropylphenyl)thiosemicarbazone were maintained through the intramolecular hydrogen bond (N3-H6⋅⋅⋅N1) and intermolecular hydrogen bonds (N2-H4⋅⋅⋅S1, C14-H14⋅⋅⋅F1 and C7-H7⋅⋅⋅S1). The results obtained by employing the DPPH free radicals scavenging assay indicated that (E)-1-(4-methoxylbenzylidene)-4-(3-isopropylphenyl)thiosemicarbazone had a more significant antioxidant activity compared with other compounds. The results measured by adopting the disc diffusion method elucidated that (E)-1-(4-trifluoromethylbenzylidene)-4-(3-isopropylphenyl)thiosemicarbazone possessed a more prominent antifungal activity than other compounds. Molecular docking showed that (E)-1-(4-chlorobenzylidene)-4-(3-isopropylphenyl)thiosemicarbazone had the highest affinity with receptor protein (1NMT). Moreover, the drug-likeness characteristic, physicochemical properties, pharmacokinetic profiles, and bioactivity scores of all the compounds were predicted through in silico studies. The results illustrated that (E)-1-(4-fluorobenzylidene)-4-(3-isopropylphenyl)thiosemicarbazone had the drug-likeness characteristic and all the compounds were considered as moderately biological active molecules.  相似文献   

17.
As part of an effort to generate broad-spectrum inhibitors of rhinovirus replication, novel series of (E)-3-[(E)-3-phenylallylidene]chroman-4-ones 1ae, (E)-3-(3-phenylprop-2-yn-1-ylidene)chroman-4-ones 2a and 2b, (Z)-3-[(E)-3-phenylallylidene]chromans 3ae, and (E)-3-(3-phenylprop-1-en-1-yl)-2H-chromenes 4ad were designed and synthesized. All the compounds were tested in vitro for their efficacy against infection by human rhinovirus (HRV) 1B and 14, two representative serotypes for rhinovirus group B and A, respectively. Most of the analogues were found to be potent and selective inhibitors of both HRVs, although HRV 1B was generally more susceptible than HRV 14. Mechanism of action studies of (E)-6-chloro-3-(3-phenylprop-1-en-1-yl)-2H-chromene 4b, the most potent compound on HRV 1B infection, suggested that 4b behaves as a capsid-binder probably acting at the uncoating level.  相似文献   

18.
This study investigated a set of new potential antidiabetes agents. Derivatives of usnic acid were designed and synthesized. These analogs and nineteen benzylidene analogs from a previous study were evaluated for enzyme inhibition of α-glucosidase. Analogs synthesized using the Dakin oxidative method displayed stronger activity than the pristine usnic acid (IC50>200 μM). Methyl (2E,3R)-7-acetyl-4,6-dihydroxy-2-(2-methoxy-2-oxoethylidene)-3,5-dimethyl-2,3-dihydro-1-benzofuran-3-carboxylate ( 6b ) and 1,1′-(2,4,6-trihydroxy-5-methyl-1,3-phenylene)di(ethan-1-one) ( 6e ) were more potent than an acarbose positive control (IC50 93.6±0.49 μM), with IC50 values of 42.6±1.30 and 90.8±0.32 μM, respectively. Most of the compounds synthesized from the benzylidene series displayed promising activity. (9bR)-2,6-Bis[(2E)-3-(2-chlorophenyl)prop-2-enoyl]-3,7,9-trihydroxy-8,9b-dimethyldibenzo[b,d]furan-1(9bH)-one ( 1c ), (9bR)-3,7,9-trihydroxy-8,9b-dimethyl-2,6-bis[(2E)-3-phenylprop-2-enoyl]dibenzo[b,d]furan-1(9bH)-one ( 1g ), (9bR)-2-acetyl-6-[(2E)-3-(2-chlorophenyl)prop-2-enoyl]-3,7,9-trihydroxy-8,9b-dimethyldibenzo[b,d]furan-1(9bH)-one ( 2d ), (9bR)-2-acetyl-6-[(2E)-3-(3-chlorophenyl)prop-2-enoyl]-3,7,9-trihydroxy-8,9b-dimethyldibenzo[b,d]furan-1(9bH)-one ( 2e ), (6bR)-8-acetyl-3-(4-chlorophenyl)-6,9-dihydroxy-5,6b-dimethyl-2,3-dihydro-1H-[1]benzofuro[2,3-f][1]benzopyran-1,7(6bH)-dione ( 3e ), (6bR)-8-acetyl-6,9-dihydroxy-5,6b-dimethyl-3-phenyl-2,3-dihydro-1H-[1]benzofuro[2,3-f][1]benzopyran-1,7(6bH)-dione ( 3h ), (6bR)-3-(2-chlorophenyl)-8-[(2E)-3-(2-chlorophenyl)prop-2-enoyl]-6,9-dihydroxy-5,6b-dimethyl-2,3-dihydro-1H-[1]benzofuro[2,3-f][1]benzopyran-1,7(6bH)-dione ( 4b ), and (9bR)-6-acetyl-3,7,9-trihydroxy-8,9b-dimethyl-2-[(2E)-3-phenylprop-2-enoyl]dibenzo[b,d]furan-1(9bH)-one ( 5c ) were the most potent α-glucosidase enzyme inhibitors, with IC50 values of 7.0±0.24, 15.5±0.49, 7.5±0.92, 10.9±0.56, 1.5±0.62, 15.3±0.54, 19.0±1.00, and 12.3±0.53 μM, respectively.  相似文献   

19.
In vitro regeneration of black nightshade (Solanum nigrum L.) plants was achieved through callus-mediated shoot organogenesis followed by 30 d indoor ex vitro adaptation to nutritional stress under environmental ambience and thereafter 6-d outdoor acclimatization in pots prior to field establishment. Relevant physiological parameters including pigment content, chlorophyll a fluorescence, net photosynthetic rate (P N), transpiration rate (E), and stomatal conductance (g s) of in vitro-regenerated plants were investigated during the course of ex vitro adaptation. During the first 4 d of indoor transplantation to potting substrate, there was a marginal reduction in the leaf chlorophyll and carotenoid contents but P N and E were strongly reduced. The stomatal conductance and E/P N ratio were significantly higher in plants up to 20 d of indoor adaptation than those of comparable age grown naturally from seeds. The shape of the OJIP fluorescence transient varied significantly with acclimatization, and the maximum change was observed at 2.0 ms. The 2.0 ms variable fluorescence (V j), 30 ms relative fluorescence (M 0), photon trapping probability (TR0/Abs), and photosystem II (PSII) trapping rate (TR0/RC) showed initial disturbance and subsequent stabilization during 30 d of indoor acclimatization. Energy dissipation (DI0/RC) and electron transport probability (ET0/TR0) showed an initial phase of increase during the 4 d after plants were transplanted outdoors. During the 6-d outdoor acclimatization after transfer of plants to soil, no significant change in total chlorophylls and carotenoids, E, and g s were observed, but P N improved after reduction on the first d. The OJIP-derived parameters experienced change on the first d but were stabilized quickly thereafter. There was no significant difference between outdoor acclimatized plants and those of the seed-grown plants of comparable age with respect to photosynthetic and fluorescence parameters. Direct transfer of plants without indoor acclimatization, however, showed a completely different trend with respect to P N, E, and OJIP fluorescence transients. The bearing of this study on optimizing micropropagation is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号