首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glioblastoma is one of the most fatal cancers, characterized by a strong vascularized phenotype. YKL-40, a secreted glycoprotein, is overexpressed in patients with glioblastomas and has potential as a novel tumor biomarker. The molecular mechanisms of YKL-40 in glioblastoma development, however, are poorly understood. Here, we aimed to elucidate the role YKL-40 plays in the regulation of VEGF expression, tumor angiogenesis, and radioresistance. YKL-40 up-regulated VEGF expression in glioblastoma cell line U87, and both YKL-40 and VEGF synergistically promote endothelial cell angiogenesis. Interestingly, long term inhibition of VEGF up-regulated YKL-40. YKL-40 induced coordination of membrane receptor syndecan-1 and integrin αvβ5, and triggered a signaling cascade through FAK(397) to ERK-1 and ERK-2, leading to elevated VEGF and enhanced angiogenesis. In addition, γ-irradiation of U87 cells increased YKL-40 expression that protects cell death through AKT activation and also enhances endothelial cell angiogenesis. Blockade of YKL-40 activity or expression decreased tumor growth, angiogenesis, and metastasis in xenografted animals. Immunohistochemical analysis of human glioblastomas revealed a correlation between YKL-40, VEGF, and patient survival. These findings have shed light on the mechanisms by which YKL-40 promotes tumor angiogenesis and malignancy, and thus provide a therapeutic target for tumor treatment.  相似文献   

2.
Vascular endothelial growth factor (VEGF) is the master regulator of angiogenesis, whose best‐understood mechanism is sprouting. However, therapeutic VEGF delivery to ischemic muscle induces angiogenesis by the alternative process of intussusception, or vascular splitting, whose molecular regulation is essentially unknown. Here, we identify ephrinB2/EphB4 signaling as a key regulator of intussusceptive angiogenesis and its outcome under therapeutically relevant conditions. EphB4 signaling fine‐tunes the degree of endothelial proliferation induced by specific VEGF doses during the initial stage of circumferential enlargement of vessels, thereby limiting their size and subsequently enabling successful splitting into normal capillary networks. Mechanistically, EphB4 neither inhibits VEGF‐R2 activation by VEGF nor its internalization, but it modulates VEGF‐R2 downstream signaling through phospho‐ERK1/2. In vivo inhibitor experiments show that ERK1/2 activity is required for EphB4 regulation of VEGF‐induced intussusceptive angiogenesis. Lastly, after clinically relevant VEGF gene delivery with adenoviral vectors, pharmacological stimulation of EphB4 normalizes dysfunctional vascular growth in both normoxic and ischemic muscle. These results identify EphB4 as a druggable target to modulate the outcome of VEGF gene delivery and support further investigation of its therapeutic potential.  相似文献   

3.
Tumor neovascularization is targeted by inhibition of vascular endothelial growth factor (VEGF) or the receptor to prevent tumor growth, but drug resistance to angiogenesis inhibition limits clinical efficacy. Inhibition of the phosphoinositide 3 kinase pathway intermediate, mammalian target of rapamycin (mTOR), also inhibits tumor growth and may prevent escape from VEGF receptor inhibitors. mTOR is assembled into two separate multi-molecular complexes, mTORC1 and mTORC2. The direct effect of mTORC2 inhibition on the endothelium and tumor angiogenesis is poorly defined. We used pharmacological inhibitors and RNA interference to determine the function of mTORC2 versus Akt1 and mTORC1 in human endothelial cells (EC). Angiogenic sprouting, EC migration, cytoskeleton re-organization, and signaling events regulating matrix adhesion were studied. Sustained inactivation of mTORC1 activity up-regulated mTORC2-dependent Akt1 activation. In turn, ECs exposed to mTORC1-inhibition were resistant to apoptosis and hyper-responsive to renal cell carcinoma (RCC)-stimulated angiogenesis after relief of the inhibition. Conversely, mTORC1/2 dual inhibition or selective mTORC2 inactivation inhibited angiogenesis in response to RCC cells and VEGF. mTORC2-inactivation decreased EC migration more than Akt1- or mTORC1-inactivation. Mechanistically, mTORC2 inactivation robustly suppressed VEGF-stimulated EC actin polymerization, and inhibited focal adhesion formation and activation of focal adhesion kinase, independent of Akt1. Endothelial mTORC2 regulates angiogenesis, in part by regulation of EC focal adhesion kinase activity, matrix adhesion, and cytoskeletal remodeling, independent of Akt/mTORC1.  相似文献   

4.
5.
Angiogenesis, a process of new blood vessel growth, contributes to various pathophysiologies such as cancer, diabetic retinopathy and atherosclerosis. Accumulating evidence suggests that cardiovascular diseases are associated with increased oxidative stress in blood vessels. Reactive oxygen species (ROS) such as superoxide and H2O2 cause blood vessels to thicken, produce inflammation in the vessel wall, and thus are regarded as “risk factors” for vascular disease, whereas ROS also act as signaling molecules in many aspects of growth factor-mediated physiological responses. Recent reports suggest that ROS play an important role in angiogenesis; however, its underlying molecular mechanisms remain unknown. Vascular endothelial growth factor (VEGF) induces angiogenesis by stimulating endothelial cell (EC) proliferation and migration primarily through the receptor tyrosine kinase VEGF receptor2 (Flk1/KDR). VEGF binding initiates tyrosine phosphorylation of KDR, which results in activation of downstream signaling enzymes including ERK1/2, Akt and eNOS, which contribute to angiogenic-related responses in EC. Importantly, the major source of ROS in EC is a NAD(P)H oxidase and EC express all the components of phagocytic NAD(P)H oxidase including gp91phox, p22phox, p47phox, p67phox and the small G protein Rac1. We have recently demonstrated that ROS derived from NAD(P)H oxidase are critically important for VEGF signaling in vitro and angiogenesis in vivo. Furthermore, a peptide hormone, angiotensin II, a major stimulus for vascular NAD(P)H oxidase, also plays an important role in angiogenesis. Because EC migration and proliferation are primary features of the process of myocardial angiogenesis, we would like to focus on the recent progress that has been made in the emerging area of NAD(P)H oxidase-derived ROS-dependent signaling in ECs, and discuss the possible roles in angiogenesis. Understanding these mechanisms may provide insight into the components of NAD(P)H oxidase as potential therapeutic targets for treatment of angiogenesis-dependent diseases such as cancer and atherosclerosis and for promoting myocardial angiogenesis in ischemic heart diseases. (Mol Cell Biochem 264: 85–97, 2004)  相似文献   

6.
7.
Integrin alpha x (ITGAX), a member of the integrin family, usually serves as a receptor of the extracellular matrix. Recently, accumulating evidence suggests that ITGAX may be involved in angiogenesis in dendritic cells. Herein, we report a direct role of ITGAX in angiogenesis during tumor development. Overexpression of ITGAX in human umbilical vein endothelial cells (HUVECs) enhanced their proliferation, migration, and tube formation and promoted xenograft ovarian tumor angiogenesis and growth. Further study showed that overexpression of ITGAX activated the PI3k/Akt pathway, leading to the enhanced expression of c-Myc, vascular endothelial growth factor-A (VEGF-A), and VEGF receptor 2 (VEGFR2), whereas, the treatment of cells with PI3K inhibitor diminished these effects. Besides, c-Myc was observed to bind to the VEGF-A promoter. By Co-Immunoprecipitation (Co-IP) assay, we manifested the interaction between ITGAX and VEGFR2 or the phosphorylated VEGFR2. Immunostaining of human ovarian cancer specimens suggested that endothelial cells of micro–blood vessels displayed strong expression of VEGF-A, c-Myc, VEGFR2, and the PI3K signaling molecules. Also, overexpression of ITGAX in HUVECs could stimulate the spheroid formation of ovarian cancer cells. Our study uncovered that ITGAX stimulates angiogenesis through the PI3K/Akt signaling–mediated VEGFR2/VEGF-A overexpression during cancer development.  相似文献   

8.

Purpose

Obstructive sleep apnea (OSA) is a common disorder affecting 15–24% of the adults and is associated with increased risk of hypertension and atherosclerosis. The exact mechanisms underlying hypertension in OSA are not entirely clear. YKL-40/Chitinase-3-like protein-1 is a circulating moiety with roles in injury, repair and angiogenesis that is dysregulated in atherosclerosis and a number of other diseases. We sought to determine the role of YKL-40 in endothelial dysfunction and hypertension in OSA.

Methods

We studies 23 normotensive OSA (N-OSA) and 14 hypertensive OSA (H-OSA) without diabetes and apparent cardiovascular disease. Endothelial-dependent nitric oxide-mediated vasodilatory capacity was assessed by flow-mediated vasodilation (FMD). YKL-40, vascular endothelial growth factor (VEGF) and the soluble form of VEGF receptor-1or sFlt-1 were measured in plasma using ELISA methodology.

Results

N-OSA subjects aged 49.1±2.3 years and H-OSA aged 51.3±1.9 years with BMI 36.1±1.6 and 37.6±1.9 kg/m2, respectively. The apnea-hypopnea index (AHI) was 41±5 events/hr in N-OSA and 46±6 in H-OSA with comparable degree of oxygen desaturations during sleep. FMD was markedly impaired in H-OSA (8.3%±0.8) compared to N-OSA (13.2%±0.6, P<0.0001). Plasma YKL-40 was significantly elevated in H-OSA (55.2±7.9 ng/ml vs. 35.6±4.2 ng/ml in N-OSA, P = 0.02) and had an inverse relationship with FMD (r = −0.52, P = 0.013). There was a significant positive correlation between sFlt-1/VEGF, a measure of decreased VEGF availability, and YKL-40 (r = 0.42, P = 0.04).

Conclusion

The levels of plasma YKL-40 were elevated in H-OSA group and inversely correlated with the endothelial-dependent vasodilatory capacity whereas there was a positive correlation between sFlt-1/VEGF and YKL-40. These findings suggest that YKL-40 is dysregulated, in part, due to perturbation of VEGF signaling, and may contribute to endothelial dysfunction and hypertension in OSA.  相似文献   

9.
摘要 目的:研究三维能量多普勒超声联合血清人附睾蛋白4(HE4)、胸苷激酶1(TK1)、甲壳质酶蛋白40(YKL-40)对绝经后出血患者子宫内膜癌的预测价值。方法:选择我院2019年10月~2022年10月收治的150例绝经后出血患者。将其按照病理检查结果的差异分为子宫内膜癌组31例与子宫内膜良性增生组119例。对所有患者均开展三维能量多普勒超声检查,并检测血清HE4、TK1、YKL-40水平。以受试者工作特征曲线(ROC)分析三维能量多普勒超声联合血清HE4、TK1、YKL-40水平预测绝经后出血患者子宫内膜癌的效能。结果:子宫内膜癌组血流指数(FI)、血管形成指数(VI)、血管形成-血流指数(VFI)以及由该三参数构建的综合指数I相较于子宫内膜良性增生组均更高(均P<0.05)。子宫内膜癌组血清HE4、TK1、YKL-40水平相较于子宫内膜良性增生组均更高(均P<0.05)。经ROC曲线分析发现:三维能量多普勒超声联合血清HE4、TK1、YKL-40水平预测绝经后出血患者子宫内膜癌的曲线下面积(AUC)、灵敏度、特异度以及约登指数均高于上述四项单独预测。结论:三维能量多普勒超声联合血清HE4、TK1、YKL-40水平预测绝经后出血患者子宫内膜癌的效能较佳。  相似文献   

10.
We previously demonstrated that cyclic stretch of cardiac myocytes activates paracrine signaling via vascular endothelial growth factor (VEGF) leading to angiogenesis. The present study tested the hypothesis that cyclic stretch upregulates tyrosine kinase receptors in rat coronary microvascular endothelial cells (RCMEC) and human umbilical vein endothelial cells (HUVEC). VEGF receptor-2 (Flk-1) protein levels increased in HUVEC and RCMEC in a time-dependent manner, but the increase occurred much earlier in RCMEC than in HUVEC. The enhancement of Flk-1 protein level was not inhibited by addition of VEGF neutralizing antibodies, indicating that VEGF is not involved in stretch-induced Flk-1 expression. VEGF receptor-1 (Flt-1) protein and mRNA were not changed by stretch. However, Tie-2 and Tie-1 protein levels increased in RCMEC. Angiopoietin-1 and -2, the ligands for Tie-2, increased in cardiac myocytes subjected to cyclic stretch but were not affected by stretch in endothelial cells (EC). Stretch or incubation of RCMEC with VEGF increased cell proliferation moderately, whereas stretch + VEGF had an additive effect on proliferation. Mechanical stretch induces upregulation of the key tyrosine kinase receptors Flk-1, Tie-2, and Tie-1 in vascular EC, which underlies the increase in sensitivity of EC to growth factors and, therefore, facilitates angiogenesis. These in vitro findings support the concept that stretch of cardiac myocytes and EC plays a key role in coronary angiogenesis.  相似文献   

11.
Excessive generation of reactive oxygen species (ROS) in cancer cells is associated with cancer development, but the underlying mechanisms and therapeutic significance remain elusive. In this study, we reported that levels of ROS and p22phox expression are greatly increased in human prostate cancer tissues, and knockdown of p22phox by specific small interfering RNA (siRNA) decreased ROS levels in prostate cancer cells. We also showed that stable downregulation of p22phox in prostate cancer cells inhibited cell proliferation and colony formation, which was mediated by AKT and extracellular signal-regulated kinase (ERK)1/2 signaling pathways and their downstream molecules hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF). The NADPH oxidase subunit NOX1 was also elevated in prostate cancer cells, and was involved in activation of AKT/ERK/HIF-1/VEGF pathway and regulation of cell proliferation. Knockdown of p22phox resulted in inhibition of tumor angiogenesis and tumor growth in nude mice. These findings reveal a new function of p22phox in tumor angiogenesis and tumor growth, and suggest that p22phox is a potential novel target for prostate cancer treatment.  相似文献   

12.
The inflammatory prostaglandin E2 (PGE2) cytokine plays a key role in the development of colon cancer. Several studies have shown that PGE2 directly induces the growth of colon cancer cells and furthermore promotes tumor angiogenesis by increasing the production of the vascular endothelial growth factor (VEGF). The signaling intermediaries implicated in these processes have however not been fully characterized. In this report, we show that the mechanistic target of rapamycin complex 1 (mTORC1) plays an important role in PGE2-induced colon cancer cell responses. Indeed, stimulation of LS174T cells with PGE2 increased mTORC1 activity as observed by the augmentation of S6 ribosomal protein phosphorylation, a downstream effector of mTORC1. The PGE2 EP4 receptor was responsible for transducing the signal to mTORC1. Moreover, PGE2 increased colon cancer cell proliferation as well as the growth of colon cancer cell colonies grown in matrigel and blocking mTORC1 by rapamycin or ATP-competitive inhibitors of mTOR abrogated these effects. Similarly, the inhibition of mTORC1 by downregulation of its component raptor using RNA interference blocked PGE2-induced LS174T cell growth. Finally, stimulation of LS174T cells with PGE2 increased VEGF production which was also prevented by mTORC1 inhibition. Taken together, these results show that mTORC1 is an important signaling intermediary in PGE2 mediated colon cancer cell growth and VEGF production. They further support a role for mTORC1 in inflammation induced tumor growth.  相似文献   

13.
Vascular endothelial growth factor (VEGF) stimulates angiogenesis by binding to VEGF receptor 2 (VEGFR2) on endothelial cells (ECs). Downstream activation of the extracellular related kinases 1/2 (ERK1/2) is important for angiogenesis to proceed. Receptor internalization has been implicated in VEGFR2 signaling, but its role in the activation of ERK1/2 is unclear. To explore this question we utilized pitstop and dynasore, two small molecule inhibitors of endocytosis. First, we confirmed that both inhibitors block the internalization of VEGFR2 in ECs. We then stimulated ECs with VEGF in the presence and absence of the inhibitors and examined VEGFR2 signaling to ERK1/2. Activation of VEGFR2 and C-Raf still occurred in the presence of the inhibitors, whereas the activation of MEK1/2 and ERK1/2 was abrogated. Therefore, although internalization is not required for activation of either VEGFR2 or C-Raf in ECs stimulated with VEGF, internalization is necessary to activate the more distal kinases in the cascade. Importantly, inhibition of internalization also prevented activation of ERK1/2 when ECs were stimulated with other pro-angiogenic growth factors, namely fibroblast growth factor 2 and hepatocyte growth factor. In contrast, the same inhibitors did not block ERK1/2 activation in fibroblasts or cancer cells stimulated with growth factors. Finally, we show that these small molecule inhibitors of endocytosis block angiogenesis in vitro and in vivo. Therefore, receptor internalization may be a generic requirement for pro-angiogenic growth factors to activate ERK1/2 signaling in human ECs, and targeting receptor trafficking may present a therapeutic opportunity to block tumor angiogenesis.  相似文献   

14.
Inducing of dental pulp stem cells (DPSCs) into endothelial cells (ECs) to prevascularize pulp tissue constructs may offer a novel and viable approach for enhancing pulp regeneration. However, there are numerous challenges in current methods for the acquisition of sufficient translational ECs. It was known that Sema4D/PlexinB1 signaling exerts profound effects on enhancing vascular endothelial growth factor (VEGF) secretion and angiogenesis. Whether Sema4D/PlexinB1 could regulate endothelial differentiation of DPSCs is not yet investigated. In this study, when DPSCs were treated with Sema4D (2 μg/mL), ECs-specific (VEGFR1, VEGFR2, CD31, and vWF), and angiogenic genes and proteins were significantly upregulated. The induced ECs exhibited similar endothelial vessel formation ability to that of human umbilical vein endothelial cells (HUVECs). Furthermore, phosphorylation of AKT increased dramatically within 5 minutes (from 0.93 to 21.8), while p-ERK1/2 was moderately elevated (from 0.94 to 2.65). In summary, our results demonstrated that Sema4D/PlexinB1 signaling induces endothelial differentiation of DPSCs. The interactions of Sema4D, VEGF, ANGPTL4, ANG1, and HIF-1α may play a crucial role in mediating the differentiation process.  相似文献   

15.
16.
Angiogenesis, a process of new blood vessel growth, contributes to various pathophysiologies such as cancer, diabetic retinopathy and atherosclerosis. Accumulating evidence suggests that cardiovascular diseases are associated with increased oxidative stress in blood vessels. Reactive oxygen species (ROS) such as superoxide and H2O2 cause blood vessels to thicken, produce inflammation in the vessel wall, and thus are regarded as "risk factors" for vascular disease, whereas ROS also act as signaling molecules in many aspects of growth factor-mediated physiological responses. Recent reports suggest that ROS play an important role in angiogenesis; however, its underlying molecular mechanisms remain unknown. Vascular endothelial growth factor (VEGF) induces angiogenesis by stimulating endothelial cell (EC) proliferation and migration primarily through the receptor tyrosine kinase VEGF receptor2 (Flk1/KDR). VEGF binding initiates tyrosine phosphorylation of KDR, which results in activation of downstream signaling enzymes including ERK1/2, Akt and eNOS, which contribute to angiogenic-related responses in EC. Importantly, the major source of ROS in EC is a NAD(P)H oxidase and EC express all the components of phagocytic NAD(P)H oxidase including gp91phox, p22phox, p47phox, p67phox and the small G protein Rac1. We have recently demonstrated that ROS derived from NAD(P)H oxidase are critically important for VEGF signaling in vitro and angiogenesis in vivo. Furthermore, a peptide hormone, angiotensin II, a major stimulus for vascular NAD(P)H oxidase, also plays an important role in angiogenesis. Because EC migration and proliferation are primary features of the process of myocardial angiogenesis, we would like to focus on the recent progress that has been made in the emerging area of NAD(P)H oxidase-derived ROS-dependent signaling in ECs, and discuss the possible roles in angiogenesis. Understanding these mechanisms may provide insight into the components of NAD(P)H oxidase as potential therapeutic targets for treatment of angiogenesis-dependent diseases such as cancer and atherosclerosis and for promoting myocardial angiogenesis in ischemic heart diseases.  相似文献   

17.
18.
19.
《Cytotherapy》2021,23(9):810-819
Background aimsThe vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor (VEGFR) signaling pathway plays an important role in angiogenesis and lymphangiogenesis, which are closely related to tumor cell growth, survival, tissue infiltration and metastasis. Blocking/interfering with the interaction between VEGF and VEGFR to inhibit angiogenesis/lymphangiogenesis has become an important means of tumor therapy.MethodsHere the authors designed a novel chimeric antigen receptor (CAR) lentiviral vector expressing the VEGF-C domain targeting both VEGFR-2 and VEGFR-3 (VEGFR-2/3 CAR) and then transduced CD3-positive T cells with VEGFR-2/3 CAR lentivirus.ResultsAfter co-culturing with target cells, VEGFR-2/3 CAR T cells showed potent cytotoxicity against both VEGFR-2- and VEGFR-3-positive breast cancer cells, with increased simultaneous secretion of interferon gamma, tumor necrosis factor alpha and interleukin-2 cytokines. Moreover, CAR T cells were able to destroy the tubular structures formed by human umbilical vein endothelial cells and significantly inhibit the growth, infiltration and metastasis of orthotopic mammary xenograft tumors in a female BALB/c nude mice model.ConclusionsThe authors’ results indicate that VEGFR-2/3 CAR T cells targeting both VEGFR-2 and VEGFR-3 have significant anti-tumor activity, which expands the application of conventional CAR T-cell therapy.  相似文献   

20.
Background information. Endothelial cells play a major role in angiogenesis, the process by which new blood vessels arise from a pre‐existing vascular bed. VEGF‐A (vascular endothelial growth factor‐A) is a key regulator of angiogenesis during both development and in adults. HGF (hepatocyte growth factor) is a pleiotropic cytokine that may promote VEGF‐A‐driven angiogenesis, although the signalling mechanisms underlying this co‐operation are not completely understood. Results. We analysed the effects of the combination of VEGF‐A and HGF on the activation of VEGFR‐2 (VEGF receptor‐2) and c‐met receptors, and on the stimulation of downstream signalling pathways in endothelial cells. We found that VEGFR‐2 and c‐met do not physically associate and do not transphosphorylate each other, suggesting that co‐operation involves signalling events more distal from receptor activation. We demonstrate that the VEGF isoform VEGF‐A165 and HGF stimulate a similar set of MAPKs (mitogen‐activated protein kinases), although the kinetics and strengths of the activation differ depending on the growth factor and pathway. An enhanced activation of the signalling was observed when endothelial cells were stimulated by the combination of VEGF‐A165 and HGF. Moreover, the combination of VEGF‐A and HGF results in a statistically significant synergistic activation of ERK1/2 (extracellular‐signal‐regulated kinase 1/2) and p38 kinases. We demonstrated that VEGF‐A165 and HGF activate FAK (focal adhesion kinase) with different kinetics and stimulate the recruitment of phosphorylated FAK to different subsets of focal adhesions. VEGF‐A165 and HGF regulate distinct morphogenic aspects of the cytoskeletal remodelling that are associated with the preferential activation of Rho or Rac respectively, and induce structurally distinct vascular‐like patterns in vitro in a Rho‐ or Rac‐dependent manner. Conclusions. Under angiogenic conditions, combining VEGF‐A with HGF can promote neovascularization by enhancing intracellular signalling and allowing more finely regulated control of the signalling molecules involved in the regulation of the cytoskeleton and cellular migration and morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号