首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Caffeic acid (3,4-dihydroxycinnamic acid) serves as a building block for thermoplastics and a precursor for biologically active compounds and was recently produced from glucose by microbial fermentation. To produce caffeic acid from inedible cellulose, separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) reactions were compared using kraft pulp as lignocellulosic feedstock. Here, a tyrosine-overproducing Escherichia coli strain was metabolically engineered to produce caffeic acid from glucose by introducing the genes encoding a 4-hydroxyphenyllactate 3-hydroxylase (hpaBC) from Pseudomonas aeruginosa and tyrosine ammonia lyase (fevV) from Streptomyces sp. WK-5344. Using the resulting recombinant strain, the maximum yield of caffeic acid in SSF (233 mg/L) far exceeded that by SHF (37.9 mg/L). In the SSF with low cellulase loads (≤2.5 filter paper unit/g glucan), caffeic acid production was markedly increased, while almost no glucose accumulation was detected, indicating that the E. coli cells experienced glucose limitation in this culture condition. Caffeic acid yield was also negatively correlated with the glucose concentration in the fermentation medium. In SHF, the formation of by-product acetate and the accumulation of potential fermentation inhibitors increased significantly with kraft pulp hydrolysate than filter paper hydrolysate. The combination of these inhibitors had synergistic effects on caffeic acid fermentation at low concentrations. With lower loads of cellulase in SSF, less potential fermentation inhibitors (furfural, 5-hydroxymethyfurfural, and 4-hydroxylbenzoic acid) accumulated in the medium. These observations suggest that glucose limitation in SSF is crucial for improving caffeic acid yield, owing to reduced by-product formation and fermentation inhibitor accumulation.

  相似文献   

2.
Solid-state fermentation (SSF) is a bioprocess that doesn’t need an excess of free water, and it offers potential benefits for microbial cultivation for bioprocesses and product development. In comparing the antibiotic production, few detailed reports could be found with lipolytic enzyme production by Streptomycetes in SSF. Taking this knowledge into consideration, we prefer to purify Actinomycetes species as a new source for lipase production. The lipase-producing strain Streptomyces sp. TEM 33 was isolated from soil and lipase production was managed by solid-state fermentation (SSF) in comparison with submerged fermentation (SmF). Bioprocess-affecting factors like initial moisture content, incubation time, and various carbon and nitrogen additives and the other enzymes secreted into the media were optimized. Lipase activity was measured as 1.74 ± 0.0005 U/g dry substrate (gds) by the p-nitrophenylpalmitate (pNPP) method on day 6 of fermentation with 71.43% final substrate moisture content. In order to understand the metabolic priority in SSF, cellulase and xylanase activity of Streptomyces sp. TEM33 was also measured. The microorganism degrades the wheat bran to its usable form by excreting cellulases and xylanases; then it secretes the lipase that is necessary for degrading the oil in the medium.  相似文献   

3.
High concentration of glycerol was used as the sole carbon source for efficient production of Monacolin K (MK) by solid-state fermentation (SSF) of Monascus purpureus 9901 using agricultural residue (bagasse), as an inert carrier. A comparative study showed that MK production in SSF was about 5.5 times higher than that of submerged fermentation when 26 % of glycerol was used, which may be due to the formation of glycerol concentration gradients in the inert carrier and less catabolite repression in SSF. For enhancement of MK yield in SSF, the effects of different influential variables, such as glycerol concentration, nitrogen source and its concentration, initial moisture content, inoculum size and particle size of bagasse, were systematically examined. All the factors mentioned above had an effect on the MK production in SSF to some extent. The maximal yield of MK (12.9 mg/g) was achieved with 26 % glycerol, 5 % soybean meal, 51 % initial moisture content, 20 % inoculum size and 1 mm particle size of bagasse. The results in this study may expand our understanding on the application of SSF using agricultural residue as carrier for production of useful microbial metabolites, especially the efficient conversion of high concentration of glycerol to MK by Monascus purpureus.  相似文献   

4.
The mass distribution regularity in substrate of solid-state fermentation (SSF) has rarely been reported due to the heterogeneity of solid medium and the lack of suitable instrument and method, which limited the comprehensive analysis and enhancement of the SSF performance. In this work, the distributions of water, biomass, and fermentation product in different medium depths of SSF were determined using near-infrared spectroscopy (NIRS) and the developed models. Based on the mass distribution regularity, the effects of gas double-dynamic on heat transfer, microbial growth and metabolism, and product distribution gradient were systematically investigated. Results indicated that the maximum temperature of substrate and the maximum carbon dioxide evolution rate (CER) were 39.5 °C and 2.48 mg/(h g) under static aeration solid-state fermentation (SASSF) and 33.9 °C and 5.38 mg/(h g) under gas double-dynamic solid-state fermentation (GDSSF), respectively, with the environmental temperature for fermentation of 30 ± 1 °C. The fermentation production (cellulase activity) ratios of the upper, middle, and lower levels were 1:0.90:0.78 at seventh day under SASSF and 1:0.95:0.89 at fifth day under GDSSF. Therefore, combined with NIRS analysis, gas double-dynamic could effectively strengthen the solid-state fermentation performance due to the enhancement of heat transfer, the stimulation of microbial metabolism and the increase of the homogeneity of fermentation products.  相似文献   

5.
Abstract

Sequential optimization of propionate production using apple pomace was studied. All experiments were performed in a static flask in anaerobic conditions. Effect of apple pomace as nitrogen source against conventional N sources (yeast extract, peptone) was studied. The double increase was observed in propionic acid production while using yeast extract and peptone (0.29?±?0.01?g/g), as against the use of only apple pomace extract (APE) (0.14?±?0.01?g/g). Intensification of propionic acid fermentation was also achieved by increasing the pH control frequency of the culture medium from 24-(0.29?±?0.01?g/g) to 12-hour intervals (30?°C) (0.30?±?0.02?g/g) and by increasing the temperature of the culture from 30 to 37?°C (12-hour intervals of pH control) (0.32?±?0.01?g/g). An important factor in improving the parameters of fermentation was the addition of biotin to the medium. The 0.2?mg/L dose of biotin allowed to attain 7.66?g/L propionate with a yield of 0.38?±?0.03?g/g (12-hour intervals of pH control, 37?°C).  相似文献   

6.
It was desired to study efficient and simplified methods to convert organosolv-pretreated horticultural waste (HW) to ethanol fuel using cellulase produced under solid-state fermentation (SSF). The unprocessed cellulase crude (72.2 %) showed better reducing sugar yield using filter paper than the commercial enzyme blend (68.7 %). Enzymatic hydrolysis of organosolv-pretreated HW using the crude cellulase with 20 % solid content, enzyme loading of 15 FPU/g HW at 50 °C, and pH 5.5 resulted in a HW hydrolysate containing 25.06 g/L glucose after 72 h. Fermentation of the hydrolysate medium produced 12.39 g/L ethanol with 0.49 g/g yield from glucose and 0.062 g/g yield from HW at 8 h using Saccharomyces cerevisiae. This study proved that crude cellulase complex produced under SSF and organosolv pretreatment can efficiently convert woody biomass to ethanol without any commercial cellulase usage.  相似文献   

7.
Ethanol production by recombinant Escherichia coli strain FBR5 from dilute acid pretreated wheat straw (WS) by separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) was studied. The yield of total sugars from dilute acid (0.5% H2SO4) pretreated (160 °C, 10 min) and enzymatically saccharified (pH 5.0, 45 °C, 72 h) WS (86 g/l) was 50.0 ± 1.4 g/l. The hydrolyzate contained 1,184 ± 19 mg furfural and 161 ± 1 mg hydroxymethyl furfural per liter. The recombinant E. coli FBR5 could not grow at all at pH controlled at 4.5 to 6.5 in the non-abated wheat straw hydrolyzate (WSH) at 35 °C. However, it produced 21.9 ± 0.3 g ethanol from non-abated WSH (total sugars, 44.1 ± 0.4 g/l) in 90 h including the lag time of 24 h at controlled pH 7.0 and 35 °C. The bioabatement of WS was performed by growing Coniochaeta ligniaria NRRL 30616 in the liquid portion of the pretreated WS aerobically at pH 6.5 and 30 °C for 15 h. The bacterium produced 21.6 ± 0.5 g ethanol per liter in 40 h from the bioabated enzymatically saccharified WSH (total sugars, 44.1 ± 0.4 g) at pH 6.0. It produced 24.9 ± 0.3 g ethanol in 96 h and 26.7 ± 0.0 g ethanol in 72 h per liter from bioabated WSH by batch SSF and fed-batch SSF, respectively. SSF offered a distinct advantage over SHF with respect to reducing total time required to produce ethanol from the bioabated WS. Also, fed-batch SSF performed better than the batch SSF with respect to shortening the time requirement and increase in ethanol yield.  相似文献   

8.
The extensive use of synthetic plastics has caused serious waste disposal problems in our environment. Poly-3-hydroxybutyrates (PHB) are eco-friendly bacterial polyesters which are produced under unbalanced nutrient conditions. Few reports are available on PHB production by solid state fermentation (SSF). We have developed a novel SSF bioprocess in which polyurethane foam (PUF) is used as a physical inert support for the production of PHB by Bacillus sphaericus NII 0838. Media engineering for optimal PHB production was carried out using response surface methodology (RSM) adopting a Box–Behnken design. The factors optimized by RSM were inoculum size, pH and (NH4)2SO4 concentration. Under optimized conditions—6.5 % inoculum size, 1.7 % (w/v) (NH4)2SO4 and pH 9.0—PHB production and biomass were 0.169?±?0.03 and 0.4?±?0.002 g/g PUF, respectively. This is the first report on PHB production by SSF using PUF as an inert support. Our results demonstrate that SSF can be used as an alternative strategy for the production of PHB.  相似文献   

9.
Lipase production by Trichoderma harzianum was evaluated in submerged fermentation (SF) and solid-state fermentation (SSF) using a variety of agro-industrial residues. Cultures in SF showed the highest activity (1.4 U/mL) in medium containing 0.5 % (w/v) yeast extract, 1 % (v/v) olive oil and 2.5 C:N ratio. This paper is the first to report lipase production by T. harzianum in SSF. A 1:2 mixture of castor oil cake and sugarcane bagasse supplemented with 1 % (v/w) olive oil showed the best results among the cultures in SSF (4 U/g ds). Lipolytic activity was stable in a slightly acidic to neutral pH, maintaining 50 % activity after 30 min at 50 °C. Eighty percent of the activity remained after 1 h in 25 % (v/v) methanol, ethanol, isopropanol or acetone. Activity was observed with vegetable oils (olive, soybean, corn and sunflower) and long-chain triacylglycerols (triolein), confirming the presence of a true lipase. The results of this study are promising because they demonstrate an enzyme with interesting properties for application in catalysis produced by fermentation at low cost.  相似文献   

10.
In this work, corncob acid hydrolysate and its simulated medium whose sugar composition was the same as the corncob acid hydrolysate were used as fermentation substrate for lipid production by oleaginous yeast Trichosporon dermatis. On the corncob acid hydrolysate, after 7 days of fermentation, the biomass, lipid content, lipid yield, and lipid coefficient of T. dermatis were 17.3 g/L, 40.2%, 7.0 g/L, and 16.5%, respectively. Interestingly, during the lipid fermentation on the corncob acid hydrolysate, glucose, xylose, arabinose, and even acetic acid could be well utilized as carbon sources by T. dermatis. Surprisingly, the lipid yield (7.0 g/L) of T. dermatis on the corncob acid hydrolysate was much higher than that (3.8 g/L) on the simulated medium, in spite of the fact that the lipid coefficient (17.4%) on the simulated medium was a little higher. This phenomenon further showed that lignocellulosic acid hydrolysate was a suitable substrate for lipid fermentation by T. dermatis. This work would help the comprehensive utilization of lignocellulosic biomass for lipid production.  相似文献   

11.
Powdered activated carbon-treated lignocellulosic syrup prepared from energy cane bagasse was evaluated as a potential feedstock in the production of fumaric acid by Rhizopus oryzae ATCC® 20344?. Energy cane bagasse was pretreated with dilute ammonia and enzymatically hydrolyzed with commercially available enzymes, Cellic® CTec2 and HTec2. The collected hydrolysate samples were subjected to powdered activated carbon adsorption for the removal of non-sugar compounds (i.e., organic acids, furaldehydes, total phenolic compounds) and concentrated to a final 65°Bx syrup (mostly xylose and glucose sugars). The use of lignocellulosic syrup, the effect of nitrogen source, medium additives, and initial pH in the seed culture medium on fungal morphology were investigated. The carbon to nitrogen (C/N) ratio in the acid production medium was also optimized for maximum yields in fumaric acid production. Optimum seed culture medium conditions (2.0 g/L urea, 3.0 pH) produced the desired compact, smooth, and uniform fungal pellets. Optimum acid production medium conditions (400 C/N ratio, 0.2 g/L urea) resulted in a fumaric acid production of 34.20 g/L, with a yield of 0.43 g/g and a productivity of 0.24 g/L/h. These results were comparable to those observed with the control medium (pure glucose and xylose). The present study demonstrated that lignocellulosic syrup processed from dilute ammonia pretreated energy cane bagasse has potential as a renewable carbon source for fumaric acid fermentation by Rhizopus oryzae ATCC® 20344?.  相似文献   

12.
Microalgal biomass was hydrolyzed using a solid acid catalyst with the aid of liquid acid. The use of solid acid as the main catalyst instead of liquid acid was to omit subsequent neutralization and/or desalination steps, which are commonly required in using the resulting hydrolysates for microbial fermentation. The hydrolysis of 10 g/L of lipid-extracted Chlorella vulgaris containing 12.2% carbohydrates using 7.6 g/L Amberlyst 36 and 0.0075 N nitric acid at 150°C resulted in 1.08 g/L of mono-sugars with a yield of 88.5%. For hydrolysis of higher concentrations of the biomass over 10 g/L, the amount of Amberlyst 36 needed to be increased in proportion to the biomass concentration to maintain similar levels of hydrolysis performance. Increasing the solid acid concentration protected the surface of the solid acid from being severely covered by cell debris during the reaction. A hydrolysate of lipid-extracted C. vulgaris 50 g/L was used, with no post-treatment of desalination, for the cultivation of Klebsiella oxytoca producing 2,3-butanediol. Cell growth in the hydrolysate was found to be almost the same as in the conventional medium with the same monosaccharide composition, confirming its fermentation compatibility. It was noticeable that the yield of 2,3-butanediol with the hydrolysate was observed to be 2.6 times higher than that with the conventional medium. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2729, 2019  相似文献   

13.
The dynamics of bacterial communities play an important role in solid-state fermentation (SSF). Poly-γ-glutamic acid (γ-PGA) was produced by Bacillus amyloliquefaciens C1 in SSF using dairy manure compost and monosodium glutamate production residuals as basic substrates. The production of γ-PGA reached a maximum of 0.6% after 20 days fermentation. Real-time polymerase chain reaction showed the amount of total bacteria reached 3.95 × 109 16S rDNA copies/g sample after 30 days, which was in good accordance with the 4.80 × 109 CFU/g obtained by plate counting. Denaturing gradient gel electrophoresis profile showed a reduction of microbial diversity during fermentation, while the inoculum, B. amyloliquefaciens C1, was detected as the dominant organism through the whole process. In the mesophilic phase of SSF, Proteobacteria was the dominant microbial, which was replaced by Firmicutes and Actinobacteria in the thermophilic phase. The molecular analysis of the bacterial diversity has significant potential for instructing the maturing process of SSF to produce γ-PGA at a large-scale level, which could be a benefit in the production of high quality and stable SSF products.  相似文献   

14.
Corncob is a potential feedstock in Thailand that can be used for fermentable sugar production through dilute sulfuric acid pretreatment and enzymatic hydrolysis. To recover high amounts of monomeric sugars from corncob, the sulfuric pretreatment conditions were optimized by using response surface methodology with three independent variables: sulfuric acid concentration, temperature, and time. The highest response of total sugars, 48.84 g/L, was found at 122.78°C, 4.65 min, and 2.82% (v/v) H2SO4. With these conditions, total sugars from the confirmation experiment were 46.29 g/L, with 5.51% error from the predicted value. The hydrolysate was used as a substrate for acetone–butanol–ethanol fermentation to evaluate its potential for microbial growth. The simultaneous saccharification and fermentation (SSF) showed that C. beijerinckii TISTR 1461 can generate acetone–butanol–ethanol products at 11.64 g/L (5.29 g/L acetone, 6.26 g/L butanol, and 0.09 g/L ethanol) instantly using sugars from the hydrolysed corncob with Novozymes 50013 cellulase enzyme without an overliming process.  相似文献   

15.
A novel agro-residue, tea stalks, was tested for the production of tannase under solid-state fermentation (SSF) using Aspergillus niger JMU-TS528. Maximum yield of tannase was obtained when SSF was carried out at 28 °C, pH 6.0, liquid-to-solid ratio (v/w) 1.8, inoculum size 2 ml (1?×?108 spores/ml), 5 % (w/v) ammonium chloride as nitrogen source and 5 % (w/v) lactose as additional carbon source. Under optimum conditions, tannase production reached 62 U/g dry substrate after 96 h of fermentation. Results from the study are promising for the economic utilization and value addition of tea stalks.  相似文献   

16.
Pyrolysate obtained from the pyrolysis of waste cotton is a source of fermentable sugars that could be fermented into bioethanol fuel and other chemicals via microbial fermentation. However, pyrolysate is a complex mixture of fermentable and non-fermentable substrates causing inhibition of the microbial growth. The aim of this study was to detoxify the hydrolysate and then ferment it into bio-ethanol fuel in shake flasks and fermenter applying yeast strain Saccharomyces cerevisiae 2.399. Pyrolysate was hydrolyzed to glucose with 0.2 M sulfuric acid, neutralized with Ba(OH)2 followed by treatment with ethyl acetate and activated carbon to remove fermentation inhibitors. The effect of various fermentation parameters such as inoculum concentration, pH and hydrolysate glucose was evaluated in shake flasks for optimum ethanol fermentation. With respect to inoculum concentration, 20% v/v inoculum i.e. 8.0 × 108–1.2 × 109 cells/mL was the optimum level for producing 8.62 ± 0.33 g/L ethanol at 9 h of fermentation with a maximum yield of 0.46 g ethanol/g glucose. The optimum pH for hydrolysate glucose fermentation was found to be 6.0 that produced 8.57 ± 0.66 g/L ethanol. Maximum ethanol concentration, 14.78 g/L was obtained for 4% hydrolysate glucose concentration after 16 h of fermentation. Scale-up studies in stirred fermenter produced much higher productivity (1.32 g/L/h–1) compared to shake flask fermentation (0.92 g/L/h–1). The yield of ethanol reached a maximum of 91% and 89% of the theoretical yield of ethanol in shake flasks and fermenter, respectively. The complex of integrated models of development was applied, that has been successfully tested previously for the mathematical analysis of the fermentation processes.  相似文献   

17.
This study investigated the saccharification of orange peel wastes with crude enzymes from Aspergillus japonicus PJ01. Pretreated orange peel powder was hydrolyzed by submerged fermentation (SmF) and solid-state fermentation (SSF) crude enzymes, the results showed that 4 % (w/v) of solid loading, undiluted crude enzymes, and 45 °C were suitable saccharification conditions. The hydrolysis kinetics showed that the apparent Michaelis–Menten constant \(K_{{\text{m}_{app} }}\) and maximal reaction rate \(V_{{\max_{app} }}\) were 73.32 g/L and 0.118 g/(L min) for SmF enzyme, and 41.45 g/L and 0.116 g/(L min) for SSF enzyme, respectively. After 48 h of hydrolysis, the saccharification yields were 58.5 and 78.7 %, the reducing sugar concentrations were 14.9 and 20.1 mg/mL by SmF and SSF enzymes. Material balance showed that the SmF enzymatic hydrolysate was enriched galacturonic acid > arabinose > galactose > xylose, and the SSF enzymatic hydrolysate was enriched galacturonic acid > xylose > galactose > arabinose.  相似文献   

18.
Two processes for ethanol production from wheat straw have been evaluated — separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF). The study compares the ethanol yield for biomass subjected to varying steam explosion pretreatment conditions: temperature and time of pretreatment was 200°C or 217°C and at 3 or 10 min. A rinsing procedure with water and NaOH solutions was employed for removing lignin residues and the products of hemicellulose degradation from the biomass, resulting in a final structure that facilitated enzymatic hydrolysis. Biomass loading in the bioreactor ranged from 25 to 100 g l−1 (dry weight). The enzyme-to-biomass mass ratio was 0.06. Ethanol yields close to 81% of theoretical were achieved in the two-step process (SHF) at hydrolysis and fermentation temperatures of 45°C and 37°C, respectively. The broth required addition of nutrients. Sterilisation of the biomass hydrolysate in SHF and of reaction medium in SSF can be avoided as can the use of different buffers in the two stages. The optimum temperature for the single-step process (SSF) was found to be 37°C and ethanol yields close to 68% of theoretical were achieved. The SSF process required a much shorter overall process time (≈30 h) than the SHF process (96 h) and resulted in a large increase in ethanol productivity (0.837 g l−1 h−1 for SSF compared to 0.313 g l−1 h−1 for SHF). Journal of Industrial Microbiology & Biotechnology (2000) 25, 184–192. Received 02 December 1999/ Accepted in revised form 20 July 2000  相似文献   

19.
Hydrolysate was tested as substrate for hydrogen production by extreme thermophilic mixed culture (70°C) in both batch and continuously fed reactors. Hydrogen was produced at hydrolysate concentrations up to 25% (v/v), while no hydrogen was produced at hydrolysate concentration of 30% (v/v), indicating that hydrolysate at high concentrations was inhibiting the hydrogen fermentation process. In addition, the lag phase for hydrogen production was strongly influenced by the hydrolysate concentration, and was prolonged from approximately 11 h at the hydrolysate concentrations below 20% (v/v) to 38 h at the hydrolysate concentration of 25% (v/v). The maximum hydrogen yield as determined in batch assays was 318.4 ± 5.2 mL‐H2/g‐sugars (14.2 ± 0.2 mmol‐H2/g‐sugars) at the hydrolysate concentration of 5% (v/v). Continuously fed, and the continuously stirred tank reactor (CSTR), operating at 3 day hydraulic retention time (HRT) and fed with 20% (v/v) hydrolysate could successfully produce hydrogen. The hydrogen yield and production rate were 178.0 ± 10.1 mL‐H2/g‐sugars (7.9 ± 0.4 mmol H2/g‐sugars) and 184.0 ± 10.7 mL‐H2/day Lreactor (8.2 ± 0.5 mmol‐H2/day Lreactor), respectively, corresponding to 12% of the chemical oxygen demand (COD) from sugars. Additionally, it was found that toxic compounds, furfural and hydroxymethylfurfural (HMF), contained in the hydrolysate were effectively degraded in the CSTR, and their concentrations were reduced from 50 and 28 mg/L, respectively, to undetectable concentrations in the effluent. Phylogenetic analysis of the mixed culture revealed that members involved hydrogen producers in both batch and CSTR reactors were phylogenetically related to the Caldanaerobacter subteraneus, Thermoanaerobacter subteraneus, and Thermoanaerobacterium thermosaccharolyticum. Biotechnol. Bioeng. 2010;105: 899–908. © 2009 Wiley Periodicals, Inc.  相似文献   

20.
Palm kernel cake (PKC), the residue obtained after extraction of palm oil from oil palm seeds and tamarind seed powder (TSP) obtained after removing the fruit pulp from tamarind fruit pod were tested for the production of tannase under solid-state fermentation (SSF) using Aspergillus niger ATCC 16620. The fungal strain was grown on the substrates without any pretreatment. In PKC medium, a maximum enzyme yield of 13.03 IU/g dry substrate (gds) was obtained when SSF was carried out at 30 degrees C, 53.5% initial substrate moisture, 33 x 10(9) spores/5 g substrate inoculum size and 5% tannic acid as additional carbon source after 96 h of fermentation. In TSP medium, maximum tannase yield of 6.44 IU/gds was obtained at 30 degrees C, 65.75% initial substrate moisture, 11 x 10(9) spores/5 g substrate inoculum, 1% glycerol as additional carbon source and 1% potassium nitrate as additional nitrogen source after 120 h of fermentation. Results from the study are promising for the economic utilization and value addition of these important agro residues, which are abundantly available in many tropical and subtropical countries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号