首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Bisphosphonates (BPs) are potent inhibitors of osteoclast function, widely used to treat excessive bone resorption associated with bone metastases, that also have anti-tumor activity. Zoledronic acid (ZOL) represents a potential chemotherapeutic agent for the treatment of cancer. ZOL is the most potent nitrogen-containing BPs, and it inhibits cell growth and induces apoptosis in a variety of cancer cells. Recently we demonstrated that accumulation of isopentenyl pyrophosphate and the consequent formation of a new type of ATP analog (ApppI) after mevalonate pathway inhibition by nitrogen-containing BPs strongly correlates with ZOL-induced cell death in cancer cells in vitro. In this study we show that ZOL-induced apoptosis in HF28RA human follicular lymphoma cells occurs exclusively via the mitochondrial pathway, involves lysosomes, and is dependent on mevalonate pathway inhibition. To define the exact signaling pathway connecting them, we used modified HF28RA cell lines overexpressing either BclXL or dominant-negative caspase-9. In both mutant cells, mitochondrial and lysosomal membrane permeabilization (MMP and LMP) were totally prevented, indicating signaling between lysosomes and mitochondria and, additionally, an amplification loop for MMP and/or LMP regulated by caspase-9 in association with farnesyl pyrophosphate synthetase inhibition. Additionally, the lysosomal pathway in ZOL-induced apoptosis plays an additional/amplification role of the intrinsic pathway independently of caspase-3 activation. Moreover, we show a potential regulation by Bcl-XL and caspase-9 on cell cycle regulators of S-phase. Our findings provide a molecular basis for new strategies concomitantly targeting cell death pathways from multiple sites.  相似文献   

2.
In addition to being used to treat malaria, artemisinin (Art) can be used as an anti-inflammatory and antitumor agent. In this study, we evaluated the effects of Art on osteoclast formation and activation and on the development of breast cancer cells in bone. To evaluate the effect of Art on osteoclast differentiation in vitro, we treated bone marrow-derived macrophages (BMMs) with various concentrations of Art and evaluated the expression of genes and proteins involved in osteoclast formation. We also performed cell counting kit-8 assays to evaluate the toxicity of Art in BMMs and MDA-MB-231 cells. We also performed Transwell assays, wound-healing assays, colony formation assays, and cell apoptosis assays to evaluate the effect of Art in MDA-MB-231 cells. We also evaluated the effect of Art in an in vivo osteoclast bone resorption assay using a nude mouse model. We demonstrated that Art inhibits the differentiation and establishment of osteoclasts even though Art is not toxic to osteoclasts. In addition, Art reduced expression of genes involved in osteoclast formation and inhibited osteoclast bone resorption in a concentration-dependent manner. Based on our data, we believe that Art can inhibit proliferation of breast cancer cells by activating apoptosis pathways, and inhibit osteoclast formation and differentiation by inhibiting activation of cathepsin K, ATPase H+ transporting V0 subunit D2, nuclear factor of activated T cells 1, calcitonin receptor, and tartrate-resistant acid phosphatase and by inhibiting nuclear factor-κB activation.  相似文献   

3.
Tumor necrosis factor-α (TNF) enhances osteoclast formation and activity leading to bone loss in various pathological conditions, but its precise role in osteoclastogenesis remains controversial. Although several groups showed that TNF can promote osteoclastogenesis independently of the receptor activator of NF-κB (RANK) ligand (RANKL), others demonstrated that TNF-mediated osteoclastogenesis needs permissive levels of RANKL. Here, we independently reveal that although TNF cannot stimulate osteoclastogenesis on bone slices, it can induce the formation of functional osteoclasts on bone slices in the presence of permissive levels of RANKL or from bone marrow macrophages (BMMs) pretreated by RANKL. TNF can still promote the formation of functional osteoclasts 2 days after transient RANKL pretreatment. These data have confirmed that TNF-mediated osteoclastogenesis requires priming of BMMs by RANKL. Moreover, we investigated the molecular mechanism underlying the dependence of TNF-mediated osteoclastogenesis on RANKL. RANK, the receptor for RANKL, contains an IVVY535–538 motif that has been shown to play a vital role in osteoclastogenesis by committing BMMs to the osteoclast lineage. We show that TNF-induced osteoclastogenesis depends on RANKL to commit BMMs to the osteoclast lineage and RANKL regulates the lineage commitment through the IVVY motif. Mechanistically, the IVVY motif controls the lineage commitment by reprogramming osteoclast genes into an inducible state in which they can be activated by TNF. Our findings not only provide important mechanistic insights into the action of RANKL in TNF-mediated osteoclastogenesis but also establish that the IVVY motif may serve as an attractive therapeutic target for bone loss in various bone disorders.  相似文献   

4.
Bisphosphonates (BPs) include potent inhibitors of bone resorption used to treat osteoporosis and other bone diseases. BPs directly or indirectly induce apoptosis in osteoclasts, the bone resorbing cells, and this may play a role in inhibition of bone resorption. Little is known about downstream mediators of apoptosis in osteoclasts, which are difficult to culture. Using purified osteoclasts, we examined the effects of alendronate, risedronate, pamidronate, etidronate, and clodronate on apoptosis and signaling kinases. All BPs induce caspase-dependent formation of pyknotic nuclei and cleavage of Mammalian Sterile 20-like (Mst) kinase 1 to form the active 34-kDa species associated with apoptosis. Withdrawal of serum and of macrophage colony stimulating factor, necessary for survival of purified osteoclasts, or treatment with staurosporine also induce apoptosis and caspase cleavage of Mst1. Consistent with their inhibition of the mevalonate pathway, apoptosis and cleavage of Mst1 kinase induced by alendronate, risedronate, and lovastatin, but not clodronate, are blocked by geranylgeraniol, a precursor of geranylgeranyl diphosphate. Together these findings suggest that BPs act directly on the osteoclast to induce apoptosis and that caspase cleavage of Mst1 kinase is part of the apoptotic pathway. For alendronate and risedronate, these events seem to be downstream of inhibition of geranylgeranylation.  相似文献   

5.
Little is known about the effects of mechanical forces on osteoclastogenesis by bone marrow macrophages (BMMs) in the absence of mechanosensitive cells, including osteoblasts and fibroblasts. In this study, we examined the effects of mechanical force on osteoclastogenesis by applying centrifugal force to BMMs using a horizontal microplate rotor. Our findings, as measured by an in vitro model system, show that tumor necrosis factor (TNF)‐α is capable of inducing osteoclast differentiation from BMMs and bone resorption in the presence of macrophage‐colony stimulating factor (M‐CSF) and is further facilitated by receptor activator of nuclear factor‐kappaB (NF‐κB) ligand (RANKL). Application of force to BMMs accelerated TNF‐α‐induced osteoclastogenesis; this was inhibited either by anti‐TNF‐α or anti‐TNF‐α receptor but not by OPG. TNF‐α also increased c‐Fms expression at both mRNA and protein levels in BMMs. An anti‐c‐Fms antibody completely inhibited osteoclast differentiation and bone resorption induced by TNF‐α but partially blocked osteoclastogenesis stimulated in combination with RANKL. These results suggest that TNF‐α (in the presence of M‐CSF) is capable of inducing osteoclastogenesis from BMMs, and that osteoclastogenesis is significantly stimulated by force application through the activation of c‐Fms‐mediated signaling. Overall, the present study reveals the facilitating effect of mechanical force on osteoclastic differentiation from BMMs without the addition of mechanosensitive cells. J. Cell. Biochem. 111: 1260–1269, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Bisphosphonates are potent antiresorptive drugs commonly employed in the treatment of metabolic bone diseases. Despite their frequent use, the mechanisms of bisphosphonates on bone cells have largely remained unclear. Receptor activator of nuclear factor-kappaB ligand (RANKL) is essential for osteoclast formation and activation, whereas osteoprotegerin (OPG) neutralizes RANKL. Various osteotropic drugs have been demonstrated to modulate osteoblastic production of RANKL and OPG. In this study, we assessed the effects of the bisphosphonates pamidronate (PAM) and zoledronic acid (ZOL) on OPG mRNA steady-state levels (by semiquantitative RT-PCR) and protein production (by ELISA) in primary human osteoblasts (hOB). PAM increased OPG mRNA levels and protein secretion by hOB by up to 2- to 3-fold in a dose-dependent fashion with a maximum effect at 10(-6) M (P < 0.001) after 72 h. Similarly, ZOL enhanced OPG gene expression and protein secretion by hOB in a dose-dependent fashion with a maximum effect at 10(-8) M after 72 h, consistent with the higher biological potency of ZOL. Time course experiments indicated a stimulatory effect of PAM and ZOL on osteoblastic OPG protein secretion by 6-fold, respectively (P < 0.001). Pretreatment with PAM and ZOL prevented the inhibitory effects of the glucocorticoid dexamethasone on OPG mRNA and protein production. Analysis of cellular markers of osteoblastic differentiation revealed that PAM and ZOL induced type I collagen secretion and alkaline phosphatase activity by 2- and 4-fold, respectively (P < 0.0001 by ANOVA). In conclusion, our data suggest that bisphosphonates modulate OPG production by normal human osteoblasts, which may contribute to the inhibition of osteoclastic bone resorption. Since, OPG production increases with osteoblastic cell maturation, enhancement of OPG by bisphosphonates could be related to their stimulatory effects on osteoblastic differentiation.  相似文献   

7.
During osteoporosis, fat mass and obesity-associated protein (FTO) promotes the shift of bone marrow mesenchymal stem cells to adipocytes and represses osteoblast activity. However, the role and mechanisms of FTO on osteoclast formation and bone resorption remain unknown. In this study, we investigated the effect of FTO on RAW264.7 cells and bone marrow monocytes (BMMs)-derived osteoclasts in vitro and observed the influence of FTO on ovariectomized (OVX) mice model to mimic postmenopausal osteoporosis in vivo. Results found that FTO was up-regulated in BMMs from OVX mice. Double immunofluorescence assay showed co-localization of FTO with tartrate-resistant acid phosphatase (TRAP) in femurs of OVX mice. FTO overexpression enhanced TRAP-positive osteoclasts and F-actin ring formation in RAW264.7 cells upon RANKL stimulation. The expression of osteoclast differentiation-related genes, including nuclear factor of activated T cells c1 (NFATc1) and c-FOS, was upregulated in BMMs and RAW264.7 cells after FTO overexpression. FTO overexpression induced the phosphorylation and nuclear translocation of factor-kappa B (NF-κB) p65 in BMMs and RAW264.7 cells exposed to RANKL. ChIP and dual-luciferase assays revealed that FTO overexpression contributed to RANKL-induced binding of NF-κB to NFATc1 promoter. Rescue experiments suggested that FTO overexpression-mediated osteoclast differentiation was suppressed after intervention with a NF-κB inhibitor pyrrolidine dithiocarbamate. Further in vivo evidence revealed that FTO knockdown increased bone trabecula and bone mineral density, inhibited bone resorption and osteoclastogenesis in osteoporotic mice. Collectively, our research demonstrates that downregulated FTO inhibits bone resorption and osteoclastogenesis through NF-κB inactivation, which provides a novel reference for osteoporosis treatment.  相似文献   

8.
Old age and Cx43 deletion in osteocytes are associated with increased osteocyte apoptosis and osteoclastogenesis. We previously demonstrated that apoptotic osteocytes release elevated concentrations of the proinflammatory cytokine, high mobility group box 1 protein (HMGB1) and apoptotic osteocyte conditioned media (CM) promotes osteoclast differentiation. Further, prevention of osteocyte apoptosis blocks osteoclast differentiation and attenuates the extracellular release of HMGB1 and RANKL. Moreover, sequestration of HMGB1, in turn, reduces RANKL production/release by MLO-Y4 osteocytic cells silenced for Cx43 (Cx43def), highlighting the possibility that HMGB1 promotes apoptotic osteocyte-induced osteoclastogenesis. However, the role of HMGB1 signaling in osteocytes has not been well studied. Further, the mechanisms underlying its release and the receptor(s) responsible for its actions is not clear. We now report that a neutralizing HMGB1 antibody reduces osteoclast formation in RANKL/M-CSF treated bone marrow cells. In bone marrow macrophages (BMMs), toll-like receptor 4 (TLR4) inhibition with LPS-RS, but not receptor for advanced glycation end products (RAGE) inhibition with Azeliragon attenuated osteoclast differentiation. Further, inhibition of RAGE but not of TLR4 in osteoclast precursors reduced osteoclast number, suggesting that HGMB1 produced by osteoclasts directly affects differentiation by activating TLR4 in BMMs and RAGE in preosteoclasts. Our findings also suggest that increased osteoclastogenesis induced by apoptotic osteocytes CM is not mediated through HMGB1/RAGE activation and that direct HMGB1 actions in osteocytes stimulate pro-osteoclastogenic signal release from Cx43def osteocytes. Based on these findings, we propose that HMGB1 exerts dual effects on osteoclasts, directly by inducing differentiation through TLR4 and RAGE activation and indirectly by increasing pro-osteoclastogenic cytokine secretion from osteocytes.  相似文献   

9.
Bone metabolism and the immune system have a correlative relationship, and both are controlled by various common cytokines, such as IFNs and ILs, produced in the bone microenvironments. The suppressor of cytokine signaling-1 (SOCS1) and SOCS3 are negative regulators of such cytokines. Although SOCSs are shown to be induced during osteoclast differentiation, their physiological roles in osteoclast differentiation and function have not been clarified. Thus, we examined the roles of SOCS1 and SOCS3 in osteoclastogenesis using SOCS1- and SOCS3-deficient mice. IFN-gamma-mediated inhibition of osteoclast differentiation from bone marrow-derived monocytes (BMMs) was strongly enhanced in SOCS1-deficient BMMs, but was diminished in SOCS1-overexpressing BMMs. Moreover, LPS-induced osteoclastogenesis and bone destruction in vivo were suppressed in SOCS1(+/-) mice compared with those in wild-type mice, suggesting that SOCS1 antagonizes the inhibitory effect of IFN-gamma on osteoclastogenesis. SOCS3 did not alter the inhibitory effect of IFNs in osteoclastogenesis in both gain and loss of functional assays; however, the suppressive effect of IL-6 on osteoclast differentiation was greater in SOCS3-deficient BMMs than in wild-type BMMs in vitro. In addition, IL-6 significantly prevented LPS-induced bone destruction in SOCS3-deficient mice, although it failed in wild-type mice in vivo. In SOCS3-deficient BMMs, expression levels of TNF-receptor-associated factor-6 and IkappaB were drastically reduced and receptor activator of the NF-kappaB ligand-induced IkappaB phosphorylation was severely impaired in the presence of IL-6. These data suggest that both SOCS1 and SOCS3 regulate osteoclastogenesis by blocking the inhibitory effect of inflammatory cytokines on receptor activator of the NF-kappaB ligand-mediated osteoclast differentiation signals. Selective suppression of SOCS1 and SOCS3 in osteoclast precursors may be a possible therapeutic strategy for inflammatory bone destruction.  相似文献   

10.
Interleukin-3 (IL-3) is produced under various pathological conditions and is thought to be involved in the pathogenesis of inflammatory diseases; however, its function in bone homeostasis under normal conditions or nature of the downstream molecular targets remains unknown. Here we examined the effect of IL-3 on osteoclast differentiation from mouse and human bone marrow-derived macrophages (BMMs). Although IL-3 can induce osteoclast differentiation of multiple myeloma bone marrow cells, IL-3 greatly inhibited osteoclast differentiation of human BMMs isolated from healthy donors. These inhibitory effects of IL-3 were only observed at early time points (days 0 and 1). IL-3 inhibited the expression of c-Fos and NFATc1 in BMMs treated with RANKL. However, IL-3-mediated inhibition of osteoclast differentiation was not completely reversed by ectopic expression of c-Fos or NFATc1. Importantly, IL-3 induced inhibitor of DNA binding/differentiation (Id)1 in hBMMs, while Id2 were sustained during osteoclast differentiation of mBMMs treated with IL-3. Ectopic expression of NFATc1 in Id2-deficient BMMs completely reversed the inhibitory effect of IL-3 on osteoclast differentiation. Furthermore, inflammation-induced bone erosion was markedly inhibited by IL-3 administration. Taken together, our results suggest that IL-3 plays an inhibitory role in osteoclast differentiation by regulating c-Fos and Ids, and also exerts anti-bone erosion effects.  相似文献   

11.
Osteoclasts are large polykaryons that have the unique capacity to degrade bone and are generated by the differentiation of myeloid lineage progenitors. To identify the genes involved in osteoclast development, we performed microarray analysis, and we found that carboxypeptidase E (CPE), a prohormone processing enzyme, was highly upregulated in osteoclasts compared with their precursors, bone marrow-derived macrophages (BMMs). Here, we demonstrate a novel role for CPE in receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation. The overexpression of CPE in BMMs increases the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinuclear osteoclasts and the expression of c-Fos and nuclear factor of activated T cells c1 (NFATc1), which are key regulators in osteoclastogenesis. Furthermore, employing CPE knockout mice, we show that CPE deficiency attenuates osteoclast formation. Together, our data suggest that CPE might be an important modulator of RANKL-induced osteoclast differentiation.  相似文献   

12.
Postmenopausal women undergo rapid bone loss, which caused by the accelerated osteoclastic bone resorption. Receptor activator of nuclear factor kappa-B ligand (RANKL) plays critical and essential roles on varied stages of osteoclastogenesis. Oleanolic acid (OA), a naturally derived small compound, has been found suppress osteoclastogenesis in early stage of bone marrow macrophages (BMMs). However, whether OA also regulates the late stage of osteoclastogenesis remains unclear. Here, the regulatory effect of OA on the late stage of osteoclastogenesis was investigated in vitro using RANKL-pretreated BMMs and in vivo using osteoprotegerin (OPG) knockout mice. Our in vitro studies demonstrate that OA inhibits the late stage of osteoclastogenesis from RANKL-pretreated BMMs. For in vivo animal investigation, OA attenuates the bone loss phenotypes in OPG-knockout mice by decreasing the densities of osteoclast, which are in consistent with the finding with in vitro osteoclastogenesis. Mechanistic investigations found that OA largely inhibit the activity of c-Fos and Nuclear factor of activated T-cells c1 (NFATc1) with RANKL-pretreated BMMs and OPG-knockout mice. Furthermore, OA suppresses the activities of osteoclast genes, such as Tartrate resistant acid phosphatase (TRAP), CathepsinK (Ctsk), and Matrix metalloproteinase 9 (MMP9). Taken together these findings, they have not only defined an inhibitory effect of OA in the late stage of osteoclastogenesis but have also gained new molecular mechanisms underlying the process of osteoclast formation.  相似文献   

13.
Increasing evidence indicates that osteoarthritis (OA) is a musculoskeletal disease affecting the whole joint, including both cartilage and subchondral bone. Reactive oxygen species (ROS) have been demonstrated to be one of the important destructive factors during early‐stage OA development. The objective of this study was to investigate isorhamnetin (Iso) treatment on osteoclast formation and chondrocyte protection to attenuate OA by modulating ROS. Receptor activator of nuclear factor‐kappa B ligand (RANKL) was used to establish the osteoclast differentiation model in bone marrow macrophages (BMMs) in vivo. H2O2 was used to induce ROS, which could further cause chondrocyte apoptosis. We demonstrated that Iso suppressed RANKL‐induced ROS generation, which could mediate osteoclastogenesis. Moreover, we found that Iso inhibited osteoclast formation and function by suppressing the expression of osteoclastogenesis‐related genes and proteins. We proved that Iso inhibited RANKL‐induced activation of mitogen‐activated protein kinase activation of mitogen‐activated protein kinase (MAPK), nuclear factor‐kappa B (NF‐κB) and AKT signalling pathways in BMMs. In addition, Iso inhibited ROS‐induced chondrocyte apoptosis by regulating apoptosis‐related proteins. Moreover, Iso was administered to an anterior cruciate ligament transection (ACLT)‐induced OA mouse model. The results indicated that Iso exerted beneficial effects on inhibiting excessive osteoclast activity and chondrocyte apoptosis, which further remedied cartilage damage. Overall, our data showed that Iso is an effective candidate for treating OA.  相似文献   

14.
15.
16.
SHIP is an SH2-containing inositol-5-phosphatase expressed in hematopoietic cells. It hydrolyzes the PI3K product PI(3,4,5)P(3) and blunts the PI3K-initiated signaling pathway. Although the PI3K/Akt pathway has been shown to be important for osteoclastogenesis, the molecular events involved in osteoclast differentiation have not been revealed. We demonstrate that Akt induces osteoclast differentiation through regulating the GSK3β/NFATc1 signaling cascade. Inhibition of the PI3K by LY294002 reduces formation of osteoclasts and attenuates the expression of NFATc1, but not that of c-Fos. Conversely, overexpression of Akt in bone marrow-derived macrophages (BMMs) strongly induced NFATc1 expression without affecting c-Fos expression, suggesting that PI3K/Akt-mediated NFATc1 induction is independent of c-Fos during RANKL-induced osteoclastogenesis. In addition, we found that overexpression of Akt enhances formation of an inactive form of GSK3β (phospho-GSK3β) and nuclear localization of NFATc1, and that overexpression of a constitutively active form of GSK3β attenuates osteoclast formation through downregulation of NFATc1. Furthermore, BMMs from SHIP knockout mice show the increased expression levels of phospho-Akt and phospho-GSK3β, as well as the enhanced osteoclastogenesis, compared with wild type. However, overexpression of a constitutively active form of GSK3β attenuates RANKL-induced osteoclast differentiation from SHIP-deficient BMMs. Our data suggest that the PI3K/Akt/GSK3β/NFATc1 signaling axis plays an important role in RANKL-induced osteoclastogenesis.  相似文献   

17.
Parthenolide, a natural product derived from Feverfew, prevents septic shock and inflammation. We aimed to identify the effects of parthenolide on the RANKL (receptor activator of NF-κB ligand)-induced differentiation and bone resorbing activity of osteoclasts. In this study, parthenolide dose-dependently inhibited RANKL-mediated osteoclast differentiation in BMMs, without any evidence of cytotoxicity and the phosphorylation of p38, ERK, and IκB, as well as IκB degradation by RANKL treatment. Parthenolide suppressed the expression of NFATc1, OSCAR, TRAP, DC-STAMP, and cathepsin K in RANKL-treated BMMs. Furthermore, parthenolide down-regulated the stability of c-Fos protein, but could not suppress the expression of c-Fos. Overexpression of NFATc1 and c-Fos in BMMs reversed the inhibitory effect of parthenolide on RANKL-mediated osteoclast differentiation. Parthenolide also inhibited the bone resorbing activity of mature osteoclasts. Parthenolide inhibits the differentiation and bone-resolving activity of osteoclast by RANKL, suggesting its potential therapeutic value for bone destructive disorders associated with osteoclast-mediated bone resorption. [BMB Reports 2014; 47(8): 451-456]  相似文献   

18.
Osteoclasts are terminally differentiated from cells of monocyte/macrophage lineage by stimulation with TNF-related activation-induced cytokine (TRANCE) (receptor activator of NF-kappaB ligand/osteoprotegerin ligand/osteoclast differentiation factor/TNFSF11/CD254). In the present study, we attempted to determine when and how the cell fate of precursors becomes committed to osteoclasts following TRANCE stimulation. Although mouse bone marrow-derived macrophages (BMMs) were able to differentiate into either osteoclasts or dendritic cells, the cells no longer differentiated into dendritic cells after treatment with TRANCE for 24 h, indicating that their cell fate was committed to osteoclasts. Committed cells as well as BMMs were still quite weak in tartrate-resistant acid phosphatase activity, an osteoclast marker, and incorporated zymosan particles by phagocytosis. Interestingly, committed cells, but not BMMs, could still differentiate into osteoclasts even after incorporation of the zymosan particles. Furthermore, IL-4 and IFN-gamma, potent inhibitors of osteoclast differentiation, failed to inhibit osteoclast differentiation from committed cells, and blocking of TRANCE stimulation by osteoprotegerin resulted in cell death. Adhesion to culture plates was believed to be essential for osteoclast differentiation; however, committed cells, but not BMMs, differentiated into multinucleated osteoclasts without adhesion to culture plates. Although LPS activated the NF-kappaB-mediated pathway in BMMs as well as in committed cells, the mRNA expression level of TNF-alpha in the committed cells was significantly lower than that in BMMs. These results suggest that characteristics of the committed cells induced by TRANCE are distinctively different from that of BMMs and osteoclasts.  相似文献   

19.
Src‐like adaptor protein (SLAP) is a hematopoietic adaptor containing Src homology (SH)3 and SH2 motifs and a unique carboxy terminus. Unlike c‐Src, SLAP lacks a tyrosine kinase domain. We investigated the role of SLAP in osteoclast development and resorptive function. Employing SLAP‐deficient mice, we find lack of the adaptor enhances in vitro proliferation of osteoclast precursors in the form of bone marrow macrophages (BMMs), without altering their survival. Furthermore, osteoclastogenic markers appear more rapidly in SLAP?/? BMMs exposed to RANK ligand (RANKL). The accelerated proliferation of M‐CSF‐treated, SLAP‐deficient precursors is associated with enhanced ERK activation. SLAP's role as a mediator of M‐CSF signaling, in osteoclastic cells, is buttressed by complexing of the adaptor protein and c‐Fms in lipid rafts. Unlike c‐Src, SLAP does not impact resorptive function of mature osteoclasts but induces their early apoptosis. Thus, SLAP negatively regulates differentiation of osteoclasts and proliferation of their precursors. Conversely, SLAP decreases osteoclast death by inhibiting activation of caspase 3. These counterbalancing events yield indistinguishable bones of WT and SLAP?/? mice which contain equal numbers of osteoclasts in basal and stimulated conditions. J. Cell. Biochem. 110: 201–209, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
Osteoporosis affects approximately 200 million people and severely affects quality of life, but the exact pathological mechanisms behind this disease remain unclear. Various miRNAs have been shown to play a predominant role in the regulation of osteoclast formation. In this study, we explored the role of miR-134-5p in osteoclastogenesis both in vivo and in vitro. We constructed an ovariectomized (OVX) mouse model and performed microarray analysis using bone tissue from OVX mice and their control counterparts. Quantitative RT-PCR data from bone tissue and bone marrow macrophages (BMMs) confirmed the decreased expression of miR-134-5p in OVX mice observed in microarray analysis. In addition, a decrease in miR-134-5p was also observed during induced osteoclastogenesis of BMMs collected from C57BL/6N mice. Through transfection with miR-134-5p agomirs and antagomirs, we found that miR-134-5p knockdown significantly accelerated osteoclast formation and cell proliferation and inhibited apoptosis. Furthermore, a luciferase reporter assay showed that miR-134-5p directly targets the integrin surface receptor gene Itgb1. Cotransfection with Itgb1 siRNA reversed the effect of the miR-134-5p antagomir in promoting osteoclastogenesis. Moreover, the abundance levels of MAPK pathway proteins phosphorylated-p38 (p-p38) and phosphorylated-ERK (p-ERK) were significantly increased after transfection with the miR-134-5p antagomir but decreased after transfection with the miR-134-5p agomir or Itgb1 siRNA, which indicated a potential relationship between the miR-134-5p/Itgb1 axis and the MAPK pathway. Collectively, these results revealed that miR-134-5p inhibits osteoclast differentiation of BMMs both in vivo and in vitro and that the miR-134-5p/Itgb1/MAPK pathway might be a potential target for osteoporosis therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号