首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Background

Alkaptonuria, caused by a deficiency of homogentisate 1,2-dioxygenase, results in the accumulation of homogentisic acid (2,5-dihydroxyphenylacetic acid, HGA) in the urine. Alkaptonuria is suspected when the urine changes color after it is left to stand at room temperature for several hours to days; oxidation of homogentisic acid to benzoquinone acetic acid underlies this color change, which is accelerated by the addition of alkali. In an attempt to develop a facile screening test for alkaptonuria, we added alkali to urine samples obtained from patients with alkaptonuria and measured the absorbance spectra in the visible light region.

Methods

We evaluated the characteristics of the absorption spectra of urine samples obtained from patients with alkaptonuria (n = 2) and compared them with those of urine specimens obtained from healthy volunteers (n = 5) and patients with phenylketonuria (n = 3), and also of synthetic homogentisic acid solution after alkalization. Alkalization of the urine samples and HGA solution was carried out by the addition of NaOH, KOH or NH4OH. The sample solutions were incubated at room temperature for 1 min, followed by measurement of the absorption spectra.

Results

Addition of alkali to alkaptonuric urine yielded characteristic absorption peaks at 406 nm and 430 nm; an identical result was obtained from HGA solution after alkalization. The absorbance values at both 406 nm and 430 nm increased in a time-dependent manner. In addition, the absorbance values at these peaks were greater in strongly alkaline samples (NaOH- KOH-added) as compared with those in weakly alkaline samples (NH4OH-added). In addition, the peaks disappeared following the addition of ascorbic acid to the samples.

Conclusions

We found two characteristic peaks at 406 nm and 430 nm in both alkaptonuric urine and HGA solution after alkalization. This new quick and easy method may pave the way for the development of an easy method for the diagnosis of alkaptonuria.  相似文献   

2.
The function of neutrophil protease 3 (PR3) is poorly understood despite of its role in autoimmune vasculitides and its possible involvement in cell apoptosis. This makes it different from its structural homologue neutrophil elastase (HNE). Endogenous inhibitors of human neutrophil serine proteases preferentially inhibit HNE and to a lesser extent, PR3. We constructed a single-residue mutant PR3 (I217R) to investigate the S4 subsite preferences of PR3 and HNE and used the best peptide substrate sequences to develop selective phosphonate inhibitors with the structure Ac-peptidylP(O-C6H4-4-Cl)2. The combination of a prolyl residue at P4 and an aspartyl residue at P2 was totally selective for PR3. We then synthesized N-terminally biotinylated peptidyl phosphonates to identify the PR3 in complex biological samples. These inhibitors resisted proteolytic degradation and rapidly inactivated PR3 in biological fluids such as inflammatory lung secretions and the urine of patients with bladder cancer. One of these inhibitors revealed intracellular PR3 in permeabilized neutrophils and on the surface of activated cells. They hardly inhibited PR3 bound to the surface of stimulated neutrophils despite their low molecular mass, suggesting that the conformation and reactivity of membrane-bound PR3 is altered. This finding is relevant for autoantibody binding and the subsequent activation of neutrophils in granulomatosis with polyangiitis (formerly Wegener disease). These are the first inhibitors that can be used as probes to monitor, detect, and control PR3 activity in a variety of inflammatory diseases.  相似文献   

3.
Despite many years of research efforts and continued progress in the identification of urine markers for detection of bladder cancer, none of the markers described to date has been able to replace cystoscopy and urine cytology, the current gold standards for diagnosis. Here, we present a comprehensive gel-based proteomic study in which we have analyzed the presence and origin of fibrinogen (FG) and its degradation products (FDPs) in the urine of patients with and without urothelial carcinoma (UCs), with the aim of evaluating the potential of two-dimensional (2D) gel FDP profiling for detecting bladder cancer. A total of 151 urine samples collected from patients with Ucs of varying degrees of atypia and stages of invasion were compared with a control group consisting of 34 healthy volunteers with no clinical history of bladder cancer. The level and degree of degradation of FG in the urine were determined by 2D gel Western blotting in combination with enhanced chemilumenscence detection. Elevated levels of urine FG/FDPs were found in 99% of patients bearing superficial tumors, in 97% of the cases with early invasive disease, and in 96% of patients with highly invasive tumors. 2D gel profiling of urine FG/FDPs showed that the FG chains exhibited differential susceptibility to in situ proteolysis, with the α-chain being the most susceptible and the γ-chain the most resistant. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identified peptide sequence regions in several of the most representative and common FDPs, which can be of value for producing novel specific antibodies to detect FG/FDPs in the urine. In addition, we present evidence indicating that FG is not produced by normal or malignant urothelium, although it is present both in the stroma of malignant tissue and tumor lesions. Taken together, the data indicate that increased levels of FG/FDPs amounts in the urine are a characteristic feature of bladder cancer, and emphasize the value of 2D gel profiling of urine FG/FDPs for detecting low-grade, noninvasive UCs.  相似文献   

4.
Bladder cancer is clinically characterized by high recurrent rate and poor prognosis and thereby patients need regular re-examinations which are invasive, unpleasant, and expensive. A noninvasive and less expensive method for detecting and monitoring bladder cancer would thus be advantageous. In this study, by using the two-dimensional electrophoresis (2-DE) approach with subsequent mass spectrometry (MS), we demonstrated the increased expression of apolipoprotein-A1 (Apo-A1) in individual urine from patients with bladder cancer, which was confirmed by Western blot results. A further analysis of the urinary Apo-A1 levels by an enzyme-linked immunosorbent assay yielded results that were consistent with the Western blot, and suggested Apo-A1 could provide diagnostic utility to distinguish patients with bladder cancer from healthy controls at 19.21 ng/ml. Further validation assay in a larger number of urine samples (n = 379) showed that Apo-A1 could be used as a biomarker to diagnosis bladder cancer with a sensitivity and specificity of 89.2% and 84.6% respectively. Moreover, the application of exfoliative urinary cytology in combination with the urine Apo-A1 detection could significantly increased the sensitivity in detecting bladder cancer. Our data showed a significant relationship of expressed Apo-A1 was established between bladder cancer and normal controls. Apo-A1 could be a potential biomarker for the diagnosis of bladder cancer.  相似文献   

5.
目的:探讨膀胱癌患者尿液膀胱特异性核基质蛋白(bladder cancer specific nuclear matrix proteins,BLCA)-1/-4水平及其临床应用价值。方法:本研究纳入38例膀胱癌患者、40例正常对照组。采集受试者尿液样本,通过竞争性酶联免疫吸附法(enzymelinked immunosorbent assay,ELISA)定量分析尿液中BLCA-1和BLCA-4的水平,绘制受试者工作曲线,确定cut-off值。结果:膀胱癌患者尿液BLCA-1/-4水平均显著高于对照组(P0.001);当cut-off值取0.859 ng/mL时,BLCA-1诊断膀胱癌的敏感性和特异性分别为71%(27/38)、90%(36/40)。肌层浸润性膀胱癌患者尿液BLCA-1较非肌层浸润性膀胱癌患者水平显著升高(P0.001),但不同分级膀胱癌患者尿液BLCA-4水平无显著差异(P0.05)。高级别膀胱癌患者尿液BLCA-4水平较低级别膀胱癌患者显著升高(P0.05),但不同分期膀胱癌患者尿液BLCA-4水平无显著差异(P0.05)。以cut-off为0.859 ng/mL时,BLCA-1诊断膀胱癌的敏感性和特异性分别为71%(27/38)、90%(36/40)。以cut-off为0.620 ng/mL时,BLCA-4诊断膀胱癌的敏感性和特异性分别为76.3%(29/38)、97.5%(39/40)。联合检测尿液BLCA-1和BLCA-4诊断膀胱癌的敏感性和特异性分别为84.2%(32/38)和100%(40/40),准确度为0.923(77/78),阳性预测值为100%(32/32),阴性预测值为86.9%(40/46)以及YOUDEN指数分别为0.842。结论:膀胱癌患者尿液BLCA-1和BLCA-4水平显著升高,且敏感性和特异性均较高。联合检测尿液BLCA-1和BLCA-4较单一检测用于诊断膀胱癌的临床应用价值更高。  相似文献   

6.
Only in recent years have phospholipase A2 enzymes (PLA2s) emerged as cancer targets. In this work, we report the first detection of elevated PLA2 activities in plasma from patients with colorectal, lung, pancreatic, and bladder cancers as compared to healthy controls. Independent sets of clinical plasma samples were obtained from two different sites. The first set was from patients with colorectal cancer (CRC; n = 38) and healthy controls (n = 77). The second set was from patients with lung (n = 95), bladder (n = 31), or pancreatic cancers (n = 38), and healthy controls (n = 79). PLA2 activities were analyzed by a validated quantitative fluorescent assay method and subtype PLA2 activities were defined in the presence of selective inhibitors. The natural PLA2 activity, as well as each subtype of PLA2 activity was elevated in each cancer group as compared to healthy controls. PLA2 activities were increased in late stage vs. early stage cases in CRC. PLA2 activities were not influenced by sex, smoking, alcohol consumption, or body-mass index (BMI). Samples from the two independent sites confirmed the results. Plasma PLA2 activities had approximately 70% specificity and sensitivity to detect cancer. The marker and targeting values of PLA2 activity have been suggested.  相似文献   

7.
In this work, we report on a relationship between urinary selenium and the development of cervical uterine cancer. A simple chemical method was developed to concentrate trace amounts of selenium from relatively large urine samples by use of small activated carbon filters. When these filters are irradiated with thermal neutrons, selenium can be determined either by 77mSe (t 1/2=17.5 s) or 75Se (t 1/2=120 d). In this article, we report the results for 82 urine samples from women with cervical uterine cancer in several stages of development and from healthy controls. These results show a statistically significant increase of selenium excretion in cancer patients as compared to controls. Urinary selenium excretion is highest for patients in the intermediate stages of the disease.  相似文献   

8.
Bladder cancer is one of the leading lethal cancers worldwide. With the high risk of recurrence for bladder cancer following the initial diagnoses, lifelong monitoring of patients is necessary. The lack of adequate sensitivity and specificity of current noninvasive monitoring approaches including urine cytology, other urine tests, and imaging, underlines the importance of studies that focus on the detection of more reliable biomarkers for this cancer. The emerging area of metabolomics, which deals with the analysis of a large number of small molecules in a single step, promises immense potential for discovering metabolite markers for screening and monitoring treatment response and recurrence in patients with bladder cancer. Since naturally-occurring canine transitional cell carcinoma of the urinary bladder is very similar to human invasive bladder cancer, spontaneous canine transitional cell carcinoma has been applied as a relevant animal model of human invasive transitional cell carcinoma. In this study, we have focused on profiling the metabolites in urine from dogs with transitional cell carcinoma and healthy control dogs combining nuclear magnetic resonance spectroscopy and statistical analysis methods. 1H NMR-based metabolite profiling analysis was shown to be an effective approach for differentiating samples from dogs with transitional cell carcinoma and healthy controls based on a partial least square-discriminant analysis of the NMR spectra. In addition, there were significant differences in the levels of six individual metabolites between samples from dogs with transitional cell carcinoma and the control group based on the Student's t-test. These metabolites were selected to build a separate partial least square‐discriminant analysis model that was then used to test the classification accuracy. The result showed good classification between transitional cell carcinoma and control groups with the area under the receiver operating characteristic curve of 0.85. The sensitivity and specificity of the model were 86% and 78%, respectively. These results suggest that urine metabolic profiling may have potential for early detection of bladder cancer and of bladder cancer recurrence following treatment, and may enhance our understanding of the mechanisms involved.  相似文献   

9.
Bladder cancer is diagnosed by cystoscopy, a costly and invasive procedure that is associated with patient discomfort. Analysis of tumor-specific markers in DNA from sediments of voided urine has the potential for non-invasive detection of bladder cancer; however, the sensitivity is limited by low fractions and small numbers of tumor cells exfoliated into the urine from low-grade tumors. The purpose of this study was to improve the sensitivity for non-invasive detection of bladder cancer by size-based capture and enrichment of tumor cells in urine. In a split-sample set-up, urine from a consecutive series of patients with primary or recurrent bladder tumors (N = 189) was processed by microfiltration using a membrane filter with a defined pore-size, and sedimentation by centrifugation, respectively. DNA from the samples was analyzed for seven bladder tumor-associated methylation markers using MethyLight and pyrosequencing assays. The fraction of tumor-derived DNA was higher in the filter samples than in the corresponding sediments for all markers (p<0.000001). Across all tumor stages, the number of cases positive for one or more markers was 87% in filter samples compared to 80% in the corresponding sediments. The largest increase in sensitivity was achieved in low-grade Ta tumors, with 82 out of 98 cases positive in the filter samples (84%) versus 74 out of 98 in the sediments (75%). Our results show that pre-analytic processing of voided urine by size-based filtration can increase the sensitivity for DNA-based detection of bladder cancer.  相似文献   

10.

Background

Non muscle invasive bladder cancer (NMIBC) has the highest recurrence rate of any malignancy and as many as 70% of patients experience relapse. Aberrant DNA methylation is present in all bladder tumors and can be detected in urine specimens. Previous studies have identified DNA methylation markers that showed significant diagnostic value. We evaluated the significance of the biomarkers for early detection of tumor recurrence in urine.

Methodology/Principal Findings

The methylation levels of EOMES, HOXA9, POU4F2, TWIST1, VIM, and ZNF154 in urine specimens were measured by real-time PCR (MethyLight). We analyzed 390 urine sediments from 184 patients diagnosed with NMIBC. Urine from 35 age-matched control individuals was used to determine the methylation baseline levels. Recurrence was diagnosed by cystoscopy and verified by histology. Initially, we compared urine from bladder cancer patients and healthy individuals and detected significant hypermethylation of all six markers (P<0.0001) achieving sensitivity in the range 82%–89% and specificity in the range 94%–100%. Following, we validated the urinary hypermethylation for use in recurrence surveillance and found sensitivities of 88–94% and specificities of 43–67%. EOMES, POU4F2, VIM and ZNF154 were more frequently methylated in urine from patients with higher grade tumors (P≤0.08). Univariate Cox regression analysis showed that five markers were significantly associated with disease recurrence; HOXA9 (HR = 7.8, P = 0.006), POU4F2 (HR = 8.5, P = 0.001), TWIST1 (HR = 12.0, P = 0.015), VIM (HR = 8.0, P = 0.001), and ZNF154 (HR = 13.9, P<0.001). Interestingly, for one group of patients (n = 15) we found that hypermethylation was consistently present in the urine samples despite the lack of tumor recurrences, indicating the presence of a field defect.

Conclusion/Significance

Methylation levels of EOMES, HOXA9, POU4F2, TWIST1, VIM, and ZNF154 in urine specimens are promising diagnostic biomarkers for bladder cancer recurrence surveillance.  相似文献   

11.
BackgroundThrombomodulin (TM) is a surface glycoprotein and expressed in many cancers. The aim of the present study was to detect the expression levels of TM in plasma and urine of bladder cancer patients and to compare these levels to the clinicopathological data of the patients as well as the ploidy status of their exfoliated urinary cells. We studied the levels of TM in plasma and urine samples of 57 bladder cancer patients and 10 controls using the (ELISA) assay and compared the results to the ploidy status of the cells taken from the patents urine samples as well as their clinicopathological profile.ResultsUrinary TM was significantly down regulated while plasma TM was significantly up regulated in bladder cancer patients. Plasma TM was significantly higher in SCC than TCC patients. The sensitivity and specificity of urinary TM were 90% and 86%, respectively. While the sensitivity and specificity of plasma TM were 76% and 80%, respectively.ConclusionUrinary TM is significantly down regulated, while plasma TM is significantly up regulated in bladder cancer as compared to the control group. Urinary TM has superior sensitivity and specificity over plasma TM. Urinary TM could be used as a predictive marker in bladder cancer. Further studies are needed to detect the prognosis significance of thrombomodulin in schistosomiasis associated bladder cancer.  相似文献   

12.
13.
OBJECTIVES: Urinary bladder urothelial carcinoma is diagnosed by a combination of cystoscopy and biopsy, with cytology as a valuable additional technique. The accuracy of cytological diagnosis depends on the experience of the cytologist and can inevitably vary from one cytologist to another. There is a need for an easy, reliable and objective diagnostic method. In the present study a new method was designed for the detection of bladder cancer cells in urine. METHODS: Flow cytometry was utilized to detect protoporphyrin IX in an artificial model consisting of normal urinary bladder transitional epithelial cells (NBECs) from healthy volunteers' urine and an established human urinary bladder carcinoma cell line, TCCSUP, after incubation with hexaminolevulinate (HAL). In addition, urine samples from 19 patients with histopathologically confirmed superficial bladder cancer were examined. RESULTS: Incubation of NBECs or TCCSUP cells with HAL for 1 hour resulted in production of protoporphyrin IX only in the TCCSUP cells. Incubation of a mixture of NBECs and TCCSUP cells with HAL gave rise to a separated subpopulation of cells with protoporphyrin IX fluorescence. After cell sorting by flow cytometry the protoporphyrin IX-containing subpopulation of cells was confirmed as TCCSUP cells on cytological examination. It was possible to detect 5% TCCSUP cells in the mixture of NBECs/TCCSUP cells. To test the feasibility of the method in clinica diagnosis, urine samples from patients with bladder cancer were also measured with comparable, although preliminary and limited, results to those of cytological examination. CONCLUSIONS: The preliminary results show that the technique may be feasible for the detection of bladder cancer cells in urine with possible advantages of simplicity, reliability and objectivity.  相似文献   

14.
Bladder cancer is one of the most common tumors of the genitourinary tract. Here, we use phage display to identify a peptide that targets bladder tumor cells. A phage library containing random peptides was screened for binding to cells from human bladder tumor xenografts. Phage clones were further selected for binding to a bladder tumor cell line in culture. Six clones displaying the consensus sequence CXNXDXR(X)/(R)C showed selective binding to cells from primary human bladder cancer tissue. Of these, the CSNRDARRC sequence was selected for further study as a synthetic peptide. Fluorescein-conjugated CSNRDARRC peptide selectively bound to frozen sections of human bladder tumor tissue, whereas only negligible binding to normal bladder tissue was observed. When the fluorescent peptide was introduced into the bladder lumen, in a carcinogen-induced rat tumor model, it selectively bound to tumor epithelium. Moreover, when the peptide was intravenously injected into the tail vein, it homed to the bladder tumor but was not detectable in normal bladder and control organs. Next, we examined whether the peptide can detect tumor cells in urine. The fluorescent peptide bound to cultured bladder tumor cells but not to other types of tumor cell lines. Moreover, it bound to urinary cells of patients with bladder cancer, while showing little binding to urinary cells of patients with inflammation or healthy individuals. The CSNRDARRC peptide may be useful as a targeting moiety for selective delivery of therapeutics and as a diagnostic probe for the detection of bladder cancer.  相似文献   

15.
Summary In order to analyze the state of the natural resistance system of bladder cancer patients in vivo, we measured natural killer (NK) activity and NK cell subsets of peripheral blood lymphocytes (PBL) from 46 patients with bladder cancer and 25 age- and sex-matched healthy volunteers. The mean NK activity in patients with lowstage bladder cancer was similar to that in the controls, while NK activity in patients with high-stage bladder cancer was significantly depressed. The mean proportions of Leu7+ cells in patients with both low-stage and highstage bladder cancer were significantly higher than that in the controls. The mean proportion of Leu11a+ cells in patients with low-stage bladder cancer was similar to that in the controls, while in patients with high-stage bladder cancer it was significantly higher. This study demonstrates the abnormal immunological state of bladder cancer patients; namely, abnormalities exist not only in NK activity but also in the proportions of circulating NK cell subsets.  相似文献   

16.
Non‐invasive detection of urinary bladder cancer remains a significant challenge. Urinary volatile organic compounds (VOCs) are a promising alternative to cell‐based biomarkers. Herein, we demonstrate a novel diagnosis system based on an optic fluorescence sensor array for detecting urinary bladder cancer VOCs biomarkers. This study describes a fluorescence‐based VOCs sensor array detecting system in detail. The choice of VOCs for the initial part was based on an extensive systematic search of the literature and then followed up using urinary samples from patients with urinary bladder transitional cell carcinoma. Canonical discriminant analysis and partial least squares discriminant analysis (PLS‐DA) were employed and correctly detected 31/48 urinary bladder cancer VOC biomarkers and achieved an overall 77.75% sensitivity and 93.25% specificity by PLS‐DA modelling. All five urine samples from bladder cancer patients, and five healthy controls were successfully identified with the same sensor arrays. Overall, the experiments in this study describe a real‐time platform for non‐invasive bladder cancer diagnosis using fluorescence‐based gas‐sensor arrays. Pure VOCs and urine samples from the patients proved such a system to be promising; however, further research is required using a larger population sample.   相似文献   

17.
The light-induced chlorophyll (Chl) fluorescence decline at 77 K was investigated in segments of leaves, isolated thylakoids or Photosystem (PS) II particles. The intensity of chlorophyll fluorescence declines by about 40% upon 16 min of irradiation with 1000 μmol m−2 s−1 of white light. The decline follows biphasic kinetics, which can be fitted by two exponentials with amplitudes of approximately 20 and 22% and decay times of 0.42 and 4.6 min, respectively. The decline is stable at 77 K, however, it is reversed by warming of samples up to 270 K. This proves that the decline is caused by quenching of fluorescence and not by pigment photodegradation. The quantum yield for the induction of the fluorescence decline is by four to five orders lower than the quantum yield of QA reduction. Fluorescence quenching is only slightly affected by addition of ferricyanide or dithionite which are known to prevent or stimulate the light-induced accumulation of reduced pheophytin (Pheo). The normalised spectrum of the fluorescence quenching has two maxima at 685 and 695 nm for PS II emission and a plateau for PS I emission showing that the major quenching occurs within PS II. ‘Light-minus-dark’ difference absorbance spectra in the blue spectral region show an electrochromic shift for all samples. No absorbance change indicating Chl oxidation or Pheo reduction is observed in the blue (410–600 nm) and near infrared (730–900 nm) spectral regions. Absorbance change in the red spectral region shows a broad-band decrease at approximately 680 nm for thylakoids or two narrow bands at 677 and 670–672 nm for PS II particles, likely resulting also from electrochromism. These absorbance changes follow the slow component of the fluorescence decline. No absorbance changes corresponding to the fast component are found between 410 and 900 nm. This proves that the two components of the fluorescence decline reflect the formation of two different quenchers. The slow component of the light-induced fluorescence decline at 77 K is related to charge accumulation on a non-pigment molecule of the PS II complex. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Identification and characterization of biomarkers in body fluids such as serum or urine serve as a basis for early detection of diseases, particularly of cancer. Performing 2-DE with subsequent MS analyses, conventional immunoblotting and immunohistochemistry we identified two proteins, orosomucoid (ORM) and human zinc-alpha(2)-glycoprotein (ZAG), which were increased in the urine samples of patients with bladder cancer in comparison to the urine samples of healthy volunteers. The highest amount of both proteins was found in invasive bladder cancer stages such as pT2-3. Immunohistochemical studies showed ORM in inflammatory cells but also in endothelial cells of blood vessels within or adjacent to the tumor area and in part of the tumor cells. ZAG was prominent in tumor cells at the tumor invasion front. Additionally, ZAG was localized at the luminal surface of normal urothelium, which switches to the basal side when a superficial papillary tumor was observed. These results show that we have been able to identify two new proteins that may be related to the development of superficial bladder cancer and to its switch to an invasive phenotype.  相似文献   

19.
Photosensitizers (PSs) are of crucial importance in the effectiveness of photodynamic therapy (PDT) for cancer. Due to their high reactive oxygen species production and strong absorption in the wavelength range between 650 and 850 nm, where tissue light penetration is rather high, phthalocyanines (Pcs) have been studied as PSs of excellence. In this work, we report the evaluation of a phthalocyanine surrounded by a carbohydrate shell of sixteen galactose units distributed in a dendritic manner (PcGal16) as a new and efficient third generation PSs for PDT against two bladder cancer cell lines, HT-1376 and UM-UC-3. Here, we define the role of galacto-dendritic units in promoting the uptake of a Pc through interaction with GLUT1 and galectin-1. The photoactivation of PcGal16 induces cell death by generating oxidative stress. Although PDT with PcGal16 induces an increase on the activity of antioxidant enzymes immediately after PDT, bladder cancer cells are unable to recover from the PDT-induced damage effects for at least 72 h after treatment. PcGal16 co-localization with galectin-1 and GLUT1 and/or generation of oxidative stress after PcGal16 photoactivation induces changes in the levels of these proteins. Knockdown of galectin-1 and GLUT1, via small interfering RNA (siRNA), in bladder cancer cells decreases intracellular uptake and phototoxicity of PcGal16. The results reported herein show PcGal16 as a promising therapeutic agent for the treatment of bladder cancer, which is the fifth most common type of cancer with the highest rate of recurrence of any cancer.  相似文献   

20.
We used protein expression profiles to develop a classification rule for the detection and prognostic assessment of bladder cancer in voided urine samples. Using the Ciphergen PBS II ProteinChip Reader, we analyzed the protein profiles of 18 pairs of samples of bladder tumor and adjacent urothelium tissue, a training set of 85 voided urine samples (32 controls and 53 bladder cancer), and a blinded testing set of 68 voided urine samples (33 controls and 35 bladder cancer). Using t-tests, we identified 473 peaks showing significant differential expression across different categories of paired bladder tumor and adjacent urothelial samples compared to normal urothelium. Then the intensities of those 473 peaks were examined in a training set of voided urine samples. Using this approach, we identified 41 protein peaks that were differentially expressed in both sets of samples. The expression pattern of the 41 protein peaks was used to classify the voided urine samples as malignant or benign. This approach yielded a sensitivity and specificity of 59% and 90%, respectively, on the training set and 80% and 100%, respectively, on the testing set. The proteomic classification rule performed with similar accuracy in low- and high-grade bladder carcinomas. In addition, we used hierarchical clustering with all 473 protein peaks on 65 benign voided urine samples, 88 samples from patients with clinically evident bladder cancer, and 127 samples from patients with a history of bladder cancer to classify the samples into Cluster A or B. The tumors in Cluster B were characterized by clinically aggressive behavior with significantly shorter metastasis-free and disease-specific survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号