首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Lepechinia meyenii is a medicinal plant specialized in the biosynthesis of different types of antioxidants including the diterpenes carnosic (CA) acid and carnosol (CS). Herein we present the results of plant tissue culture approaches performed in this medicinal plant with particular emphasis on the generation and evaluation of a cell suspension system for CA and CS production. The effect of sucrose concentration, temperature, pH, and UV-light exposure was explored. In addition, diverse concentrations of microbial elicitors (salicylic acid, pyocyanin, Glucanex, and chitin), simulators of abiotic elicitors (polyethylene glycol and NaCl), and biosynthetic precursors (mevalonolactone, geranylgeraniol, and miltiradiene/abietatriene) were evaluated on batch cultures for 20 days. Miltiradiene/abietatriene obtainment was achieved through a metabolic engineering approach using a recombinant strain of Saccharomyces cerevisiae. Our results suggested that the maximum accumulation (Accmax) of CA and CS was mainly conferred to stimuli associated with oxidative stress such as UV-light exposure (Accmax, 6.2 mg L−1) polyethylene glycol (Accmax, 6.5 mg L−1) NaCl (Accmax, 5.9 mg L−1) which simulated drought and saline stress, respectively. Nevertheless the bacterial elicitor pyocyanin was also effective to increase the production of both diterpenes (Accmax, 6.4 mg L−1). Outstandingly, the incorporation of upstream biosynthetic precursors such as geranylgeraniol and miltiradiene/abietatriene, generated the best results with Accmax of 8.6 and 16.7 mg L−1, respectively. Optimized batch cultures containing 100 mg L−1 geranylgeraniol, 50 mg L−1 miltiradiene/abietatriene (95 : 5 %) and 5 g L−1 polyethylene glycol treated with 6 min UV light pulse during 30 days resulted in Accmax of 26.7 mg L−1 for CA and 17.3 mg L−1 for CS on days 18–24. This strategy allowed to increase seven folds the amounts of CA and CS in comparison with batch cultures without elicitation (Accmax, 4.3 mg L−1).  相似文献   

2.
Present study aims to optimize the production of starch and total carbohydrates from Arthrospira platensis. Growing concerns toward unprecedented environmental issues associated with plastic pollution has created a tremendous impetus to develop new biomaterials for the production of bioplastic. Starch-based biopolymers from algae serve as sustainable feedstock for thermoplastic starch production due to their abundant availability and low cost. A. platensis was cultivated in Zarrouk's medium at 32 ± 1°C and exposed to red light with a photoperiod of 12:12 hr light/dark. Growth kinetics studies showed that the maximum specific growth rate (μmax) obtained was 0.059 day−1 with the doubling time (td) of 11.748 days. Subsequently, Zarrouk's medium with different concentrations of sulfur, phosphorus and nitrogen was prepared to establish the nutrient-limiting conditions to enhance the accumulation of starch and total carbohydrates. In this study, the highest starch accumulated was 6.406 ± 0.622 mg L−1 under optimized phosphorus limitation (0.025 g L−1) conditions. Nitrogen limitation (0.250 g L−1) results demonstrated significant influenced (p < 0.05) on total carbohydrates (67.573 ± 2.893 mg L−1) accumulation in A. platensis. The starch accumulation in A. platensis was significantly affected (p < 0.05) by phosphorus limitation (0.0025 g L−1). Subsequently, the optimized phosphorus concentration was coupled with mixotrophic cultivation to further enhance the starch accumulation. The results obtained indicated that, the starch (11.426 ± 0.314 mg L−1) and carbohydrates (43.053 ± 2.986 mg L−1) concentration obtained was significantly high (p < 0.05) under mixotrophic cultivation. Therefore, it shown that nutrient limitation and mixotrophic cultivation are viable strategies to enhance the accumulation of starch and total carbohydrates in A. platensis.  相似文献   

3.
The addition of fungal cell-wall homogenates of Penicillium notatum and Cylindrocladium spathiphylli markedly stimulated the accumulation of tolytoxin, an antifungal secondary metabolite, in cultures of the cyanobacterium Scytonema ocellatum Lyngbye ex Bornet et Flahault. Evaluation of polysaccharides, proteins, and other polymers established that a limited range of polysaccharides, especially chitin and carboxymthylcellulose, selectively elicited enhanced tolytoxin accumulation in S. ocellatum. The elicitor activity of fungal cell-wall preparations could be correlated with the chitin content of the preparation. Polymeric chitin was half-maximally effective at a concentration (EC50) of 19 mg.L-1, whereas chitin oligoments were more effective (EC50= 3.3 mg.L-1) in eliciting enhanced tolytoxin accumulation. The elicitor activity of either purified chitin or an elicitor-active fungal cell-wall preparation could be destroyed by treatment with chitinase. The results suggest an ecological role for tolytoxin as an inducible chemical defense agent (phytoalexin) capable of protecting S. ocellatum against fungal invasion.  相似文献   

4.
Abstract

The paper reports levels of 24-h urine nicotine and five of its major metabolites (expressed as nicotine-equivalents) and blood carboxyhaemoglobin as biomarkers of exposure to particulate- and gas-phase cigarette smoke, respectively, from an exploratory pilot study of adult smokers of 3.0–6.9 mg tar delivery (Federal Trade Commission (FTC) method) cigarettes. On multiple occasions over 6 weeks, blood high-sensitivity C-reactive protein (hs-CRP), fibrinogen, HDL- and LDL-cholesterol, and 24-h urine 8-epi-prostaglandin F (8-epi-PGF) and 11-dehydro-thromboxane B2 (11-dehydro-TxB2) were also evaluated as biomarkers of potential harm. All the biomarkers examined, except for LDL-cholesterol, discriminated with high sensitivity and specificity between adult smokers and non-smokers overall. Except for HDL-cholesterol, all biomarker medians were greater in adult smokers than in non-smokers: urine nicotine-equivalents 64.514 versus??1 creatinine (p<0.001), carboxyhaemoglobin 4.0 versus 0.4% saturation (p<0.001), hs-CRP 0.27 versus 0.12 mg dl?1 (p=0.05), fibrinogen 292 versus 248 mg dl?1 (p<0.001), HDL-cholesterol 46 versus 53 mg dl?1 (p=0.003), LDL-cholesterol 119 versus 109 mg dl?1 (p=0.18), urine 8-epi-PGF 1935 versus 1034 pg mg?1 creatinine (p<0.001) and urine 11-dehydro-TxB2 973 versus 710 pg mg?1 creatinine (p<0.001). All the biomarkers of exposure and most of the biomarkers of potential harm showed no time of sampling (by visit week) effect.  相似文献   

5.
Anopheles gambiae, An. coluzzii, An. arabiensis, and An. funestus are major vectors in high malaria endemic African regions. Various terpenoid classes form the main chemical constituent repository of essential oils, many of which have been shown to possess insecticidal effects against Anopheles species. The current study aimed to assess the bioactivity of terpenoids including four sesquiterpene alcohols, farnesol, (-)-α-bisabolol, cis-nerolidol, and trans-nerolidol; a phenylpropanoid, methyleugenol, and a monoterpene, (R)-(+)-limonene, using the larvicidal screening assay against the four Anopheles species. The mechanism of action was investigated through in vitro acetylcholinesterase inhibition assay and in silico molecular modelling. All six terpenoids showed potent larvicidal activity against the four Anopheles species. Insights into the mechanism of action revealed that the six terpenoids are strong AChE inhibitors against An. funestus and An. arabiensis, while there was a moderate inhibitory activity against An. gambiae AChE, but very weak activity against An. coluzzii. Interestingly, in the in silico study, farnesol established a favourable hydrogen bonding interaction with a conserved amino acid residue, Cys447, at the entrance to the active site gorge. While (-)-α-bisabolol and methyleugenol displayed a strong interaction with the catalytic Ser360 and adjacent amino acid residues; but sparing the mutable Gly280 residue that confers resistance to the current anticholinesterase insecticides. As a result, this study identified farnesol, (-)-α-bisabolol, and methyleugenol as selective bioinsecticidal agents with potent Anopheles AChE inhibition. These terpenoids present as natural compounds for further development as anticholinesterase bioinsecticides.  相似文献   

6.
(±)-(2Z,4E)-α-Ionylideneacetic acid (2) was enantioselectively oxidized to (?)-(l′S)-(2Z,4E)-4′-hydroxy-α-ionylideneacetic acid (3), (+)-(1′R)-(2Z,4E)-4′-oxo-α-ionylideneacetic acid (4) and (+)-abscisic acid (ABA) (1) by Cercospora cruenta IFO 6164, which can produce (+)-ABA and (+)-4′-oxo-α-acid 4. This metabolism was confirmed by the incorporation of radioactivity from (±)-(2-14C)-(2Z,4E)-α-acid 2 into three metabolites. (?)-4′-Hydroxy-α-acid 3 was a diastereoisomeric mixture consisting of major 1′,4′-trance-4′-hydroxy-α-acid 3a and minor 1′,4′-cis-4′-hydroxy-α-acid 3b. These structures, 3a and 3b, were confirmed by 13C-NMR and 1H-NMR analysis. Also, the enantioselectivity of the microbial oxidation was reexamined by using optically pure α-acid (+)-2 and (?)-2, as the substrates.  相似文献   

7.
Soldatov  A. A.  Andreeva  A. Y.  Kukhareva  T. A.  Andreyenko  T. I. 《Biophysics》2020,65(3):452-459

The effect of hypoxia on nucleated red blood cells of the black scorpionfish (Scorpaena porcus) was studied in vitro. Deep hypoxia (the oxygen concentration was less than 1 mg O2 L–1; the norm was 7–8 mg O2 L–1) led to the transition of a part of the hemoglobin molecules to the ferric state (methemoglobin). The maximum increase in the concentration of methemoglobin was 32%. The accumulation of methemoglobin in red blood cells was accompanied by an increase in the activity of catalase and superoxide dismutase and a decrease in the content of reactive oxygen species in the cytoplasm of cells. It was shown that the formation of methemoglobin did not cause damage to the cytoplasmic membranes of red blood cells. The percentage of red blood cell lysis in deoxygenated (less than 1.0 mg O2 L–1) suspensions quantitatively coincided with the control values.

  相似文献   

8.
Enhancing the production of α-cyclodextrin glycosyltransferase (α-CGTase) is a key aim in α-CGTase industries. Here, the mature α-cgt gene from Paenibacillus macerans JFB05-01 was redesigned with systematic codon optimization to preferentially match codon frequencies of Escherichia coli without altering the amino acid sequence. Following synthesis, codon-optimized α-cgt (coα-cgt) and wild-type α-cgt (wtα-cgt) genes were cloned into pET-20b(+) and expressed in E.?coli BL21(DE3). The total protein yield of the synthetic gene was greater than wtα-cgt expression (1,710?mg?L?1) by 2,520?mg?L?1, with the extracellular enzyme activity being improved to 55.3?U?mL?1 in flask fermentation. ΔG values at -3 to +50 of the pelB site of both genes were ?19.10?kcal?mol?1. Functionally, coα-CGTase was equally as effective as wtα-CGTase in forming α-cyclodextrin (α-CD). These findings suggest that preferred codon usage is advantageous for translational efficiency to increase protein expression. Finally, batch fermentation was applied, and the extracellular coα-CGTase enzyme activity was 326?% that of wtα-CGTase. The results suggest that codon optimization is a reasonable strategy to improve the yield of α-CGTase for industrial application.  相似文献   

9.
A novel flow injection-chemiluminescence (FI–CL) approach is proposed for the assay of pioglitazone hydrochloride (PG-HCl) based on its enhancing influence on the tris(2,2′-bipyridyl)ruthenium(II)–silver(III) complex (Ru(bipy)32+-DPA) CL system in sulfuric acid medium. The possible CL reaction mechanism is discussed with CL and ultraviolet (UV) spectra. The optimum experimental conditions were found as: Ru(bipy)32+, 5.0 × 10−5 M; sulfuric acid, 1.0 × 10−3 M; diperiodatoargentate(III) (DPA), 1.0 × 10−4 M; potassium hydroxide, 1.0 × 10−3 M; flow rate 4.0 ml min−1 for each flow stream and sample loop volume, 180 μl. The CL intensity of PG-HCl was linear in the range of 1.0 × 10−3 to 5.0 mg L−1 (R2 = 0.9998, n = 10) with limit of detection [LOD, signal-to-noise ratio (S/N= 3] of 2.2 × 10−4 mg L−1, limit of quantification (LOQ, S/N = 10) of 6.7 × 10−4 mg L−1, relative standard deviation (RSD) of 1.0 to 3.3% and sampling rate of 106 h−1. The methodology was satisfactorily used to quantify PG-HCl in pharmaceutical tablets with recoveries ranging from 93.17 to 102.77 and RSD from 1.9 to 2.8%.  相似文献   

10.
Zhou  Junpei  Song  Zhifeng  Zhang  Rui  Chen  Caihong  Wu  Qian  Li  Junjun  Tang  Xianghua  Xu  Bo  Ding  Junmei  Han  Nanyu  Huang  Zunxi 《Extremophiles : life under extreme conditions》2017,21(4):699-709

β-N-Acetylglucosaminidases (GlcNAcases) are important for many biological functions and industrial applications. In this study, a glycoside hydrolase family 20 GlcNAcase from Shinella sp. JB10 was expressed in Escherichia coli BL21 (DE3). Compared to many GlcNAcases, the purified recombinant enzyme (rJB10Nag) exhibited a higher specificity activity (538.8 µmol min−1 mg−1) or V max (1030.0 ± 82.1 µmol min−1 mg−1) toward p-nitrophenyl β-N-acetylglucosaminide and N,N′-diacetylchitobiose (specificity activity of 35.4 µmol min−1 mg−1) and a higher N-acetylglucosaminide tolerance (approximately 50% activity in 70.0 mM N-acetylglucosaminide). The degree of synergy on enzymatic degradation of chitin by a commercial chitinase and rJB10Nag was as high as 2.35. The enzyme was tolerant to most salts, especially 3.0–15.0% (w/v) NaCl and KCl. These biochemical characteristics make the JB10 GlcNAcase a candidate for use in many potential applications, including processing marine materials and the bioconversion of chitin waste. Furthermore, the enzyme has the highest proportions of alanine (16.5%), glycine (10.5%), and random coils (48.8%) with the lowest proportion of α-helices (24.9%) among experimentally characterized GH 20 GlcNAcases from other organisms.

  相似文献   

11.
Abstract

Betulin (B) and betulinic acid (BA) are two triterpenes with diverse pharmacological and physiological actions. Elicitation of Betula pendula Roth cell cultures by elicitors is an excellent strategy to increase B and BA levels. Six abiotic and biotic elicitors were studied to improve accumulation of B and BA in the cell culture of B. pendula. The B and BA production in treated cells was verified by HPLC. The results showed the maximum growth index (7) on day 3 in cells treated with 0.5?mg L?1 chlorocholine chloride (CCC). The increased accumulation of BA in the cells treated with 200?mg L?1 of chitosan was found to be 5.9?×?(6.5?mg g?1 DW) higher over control cells. Treating the cells with 2?mg L?1 of CCC, after 7?days, led to 149.3× enhancement of B content (19.4?mg g?1 DW) over the controls. Production of this triterpenoid at a much shorter time with a much higher growth rate can be economic and lead to producing large amounts of B and BA for anti-cancer and HIV drugs preparation.  相似文献   

12.
The present study was aimed to develop a membrane sparger (MS) integrated into a tubular photobioreactor to promote the increase of the carbon dioxide (CO2) fixation by Spirulina sp. LEB 18 cultures. The use of MS for the CO2 supply in Spirulina cultures resulted not only in the increase of DIC concentrations but also in the highest accumulated DIC concentration in the liquid medium (127.4 mg L−1 d−1). The highest values of biomass concentration (1.98 g L−1), biomass productivity (131.8 mg L−1 d−1), carbon in biomass (47.9% w w−1), CO2 fixation rate (231.6 mg L−1 d−1), and CO2 use efficiency (80.5% w w−1) by Spirulina were verified with MS, compared to the culture with conventional sparger for CO2 supply. Spirulina biomass in both culture conditions had high protein contents varying from 64.9 to 69% (w w−1). MS can be considered an innovative system for the supply of carbon for the microalgae cultivation and biomass production. Moreover, the use of membrane system might contribute to increased process efficiency with a reduced cost of biomass production.  相似文献   

13.
We introduced efficient incorporation of unsaturated fatty acids into volicitin [N-(17-hydroxylinolenoyl)-L-glutamine] and N-linolenoyl-L-glutamine, insect-derived elicitors of plant volatiles, in the common cutworms Spodoptera litura by the incubation of larval gut tissues with unsaturated (linolenic, linoleic, and oleic acids) or saturated fatty acids (palmitic and stearic acids) sodium salt, and L-[α-15N]glutamine.  相似文献   

14.
Tomato shoots and avocado mesocarp supplied with (±)-[2-14C]-5-(1,2-epoxy-2,6,6-trimethylcyclohexyl)-3-methylpenta-cis-2-trans-4-dienoic acid metabolize it into (+)-abscisic acid and a more polar material that was isolated and identified as (?)-epi-1′(R),2′(R)-4′(S)-2-cis-xanthoxin acid. The (+)-1′(S),2′(S)-4′(S)-2-cis-xanthoxin acid recently synthesized from natural violaxanthin, has the 1′,2′-epoxy group on the opposite side of the ring to that of the 4′(S)-hydroxyl group and the compound is rapidly converted into (+)-abscisic acid. The 1′,2′-epoxy group of (?)-1′,2′-epi-2-cis-xanthoxin acid is on the same side of the ring as the 4′(S) hydroxyl group: the compound is not metabolized into abscisic acid. The configuration of the 1′,2′-epoxy group probably controls whether or not the 4′(S) hydroxyl group can be oxidized. (+)-2-cis-Xanthoxin acid is probably not a naturally occurring intermediate because a ‘cold trap’, added to avocado fruit forming [14C]-labelled abscisic acid from [2-14C]mevalonate, failed to retain [14C] label.  相似文献   

15.
1. Dissolved organic carbon (DOC) concentration was determined for a range of lakes of varying conductivity (30–4000 μS cm−1) in the low Arctic of SW Greenland. DOC concentration range from <1 to >100 mg C L−1, occasionally approaching 200 mg C L−1 in meromictic, oligosaline lakes. DOC concentration was strongly related to [log10] conductivity and total nitrogen. 2. Peak DOC concentrations (>80 mg L−1) occur in lakes located approximately 50 km from the present ice sheet margin, a zone of low effective precipitation; evaporative concentration is the first‐order control on DOC concentration. Lakes at the coast and closer to the ice margin had lower DOC concentrations (<20 mg C L−1). Local factors, notably the presence or absence of an outflow and catchment morphometry, resulted in considerable variability in concentration (20–100 mg C L−1) within the area of maximum concentration around 51°W. 3. Despite their high DOC concentration, these lakes are essentially colourless. Dissolved organic matter (DOM) absorption (a375) was low in most lakes (<10 m−1) with maximum values (approximately 20 m−1) occurring in one humic‐stained lake in the area. Absorption values corrected for DOC concentration () were very low (<0.6 m2 g−1 C) for all lakes apart from those at the coast, perhaps reflecting greater allochthonous inputs at these sites. 4. S, the spectral slope coefficient, ranged from 16 to 27 μm−1 and was weakly correlated with DOC concentration. Both a375 and S showed similar distribution patterns along the sampling gradient as did DOC, with maximum values at approximately 51°W. High and low S may indicate fresher, more rapidly flushed, systems with less degraded DOM or greater inputs from their catchments. 5. The lakes closer to the head of the fjord with higher conductivity, had low (<0.2 m2 g−1 C) and high S (>21 μm−1) and this may reflect increasingly longer lake water residence times, greater DOM age and photochemical degradation.  相似文献   

16.
Farnesol, a quorum‐sensing molecule, was used successfully to improve laccase production in submerged cultures of Trametes versicolor. At the optimal farnesol concentration of 60 μM added at the beginning of the culture, the extracellular laccase activity reached 629.3 U L?1 after 6 days of cultivation, which represented a 1.92‐fold increase relative to the control without farnesol treatment. The addition of farnesol resulted in an increase in the accumulation of H2O2 and an increased expression of the laccase (lac) gene and the RhoA gene. The RhoA gene correlated with hyperbranched mycelia, which facilitated the secretion of the intracellular laccase. This study provides a basis for understanding the induction mechanism of farnesol for enhancing laccase production.  相似文献   

17.

Brassinosteroids (BRs) are a class of polyhydroxysteroids that have been recognized as a “sixth class of plant hormones.” Exogenous application of BRs affects a broad spectrum of physiological responses, secondary metabolite accumulation, and resistance against stress factors in plants. In this study, the effects of pre-harvest 24-epibrassinolide (24-eBL) applications on the accumulation of antioxidant compound, yield, and quality properties of Alphonse Lavallée grape cultivar were examined. 24-eBL was applied to vines with 13 combinations including different application times and concentrations of 24-eBL (0.2, 0.4, 0.6, and 0.8 mg L−1) and control. It was found that 24-eBL increased yield, quality, and antioxidant compounds in grapes when it was applied at appropriate concentration and application time. The concentration 0.2 mg L−1 of 24-eBL applied to vines at three times (7 days after berry set + veraison + 30 days after veraison) was the most suitable application providing the highest yield and some quality properties such as cluster weight, berry weight, and specific gravity. Concentrations 0.6 and 0.8 mg L−1 of 24-eBL applied at veraison to vines can be suggested for total phenolics, β-carotene, ascorbic acid, and trans-resveratrol accumulation for Alphonse Lavallée as a practical application, while the application consists of 0.6 mg L−1 of 24-eBL and 7 days after berry set + veraison + 30 days after veraison seems to be the best treatment for anthocyanin content.

  相似文献   

18.
Summary Elicitation of anthocyanin-producing cells of ohelo (Vaccinium pahalae) by both biotic (purified β-glucan and chitosan) and abiotic [sodium ferric ethylenediamine di-(o-hydroxyphenylacetate) FeEDDHA, and CuSO4] elicitors resulted in significant enhancement of anthocyanin accumulation. Anthocyanin production increased up to 1.8 and 1.5-fold over the control in the presence of abiotic elicitors (90 μM FeEDDHA and 20 μM CuSO4, respectively), and increased 1.9 and 1.6-fold in the presence of biotic elicitors (10 mg L−1 β-glucan and 100 mg L−1 chitosan). Maximum anthocyanin production with the two most effective elicitors was achieved when cultures were treated on Day 3 (β-glucan) or Day 0 (FeEDDHA) after the initiation of fresh cell cultures. A concentration-dependent response was exhibited by cultures treated with exogenous methyl jasmonate (MJ). The addition of 0.5 μM MJ alone provoked a 2–3-fold increase in anthocyanin production over that of the control; however, no additive effect on anthocyanin production was observed in any treatments which combined MJ and β-glucan or FeEDDHA. Conditioning of the cells with a preculture in either MJ, β-glucan, or FeEDDHA similarly did not enhance anthocyanin production. Inoculation of cultures elicited by MJ or β-glucan with ibuprofen, a reported inhibitor of jasmonate biosynthesis, dramatically stimulated, rather than inhibited, anthocyanin production, resulting in levels of accumulation beyond any of the tested elicitor combinations. Hypotheses for the observed influence of ibuprofen in this system are discussed.  相似文献   

19.
The photosynthetic activity of Anabaena cirdnalis and associated changes in buoyancy were determined from prepared suspensions exposed in the natural light field of Crose Mere. The observations are related to variations in subsurface irradiance and temperature. Parallel experiments, aimed at trapping algal colonies undertaking controlled vertical movements within the lake system, are also described. Buoyancy loss and downward migration are clearly associated with specific photosynthetic rates: rates as low as 1.8 mg O2 (mg chlorophyll a) h−1 are shown to be sufficient to effect buoyancy loss, while movements in the lake tend towards a depth where rates of 5–7 mg O2 (mg chlorophyll a)−1 h−1 are possible. These rates are significantly less than those possible at light saturation. The effect of increasing temperature is to depress the population in the light-gradient. The significance of this response is discussed in relation to the growth of natural populations of blue-green algae.  相似文献   

20.

The influence of ethanol on the degradation kinetics of linear alkyl benzene sulfonate (LAS) and organic matter was investigated using batch experiments with different initial LAS concentrations (8.3 mg L−1 to 66.9 mg L−1) and biomass immobilized on sand. Data were fitted with a substrate inhibition model. Concentrations of 2.4 mg LAS L−1 and 18.9 mg LAS L−1 (without and with ethanol) provided the maximum LAS utilization rate by the biomass (Sbm). For LAS degradation, ethanol addition favored a lower decrease in the specific substrate utilization rate (robs), even at the LAS concentration usually reported as inhibitory (> 14.4 mg L−1). For organic matter degradation, robs was higher with ethanol. Higher biomass differentiation was observed at higher LAS concentrations. With ethanol, microbial selection occurred at LAS concentrations near Sbm. At higher LAS concentrations, the dominance and diversity values did not change significantly with ethanol, whereas without ethanol, their behaviors were irregular.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号