首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vitis vinifera L. cv. ‘Manicure Finger’ is one of the major table grape varieties in China. To provide a strong foundation for genetic transformation with potential for crop improvement, we undertook plant regeneration via somatic embryogenesis. Anthers and gynoecia were harvested from immature flowers and used as explants to induce embryogenic calli. Explants cultured in MS1 medium (based on Murashige and Skoog basal salts), supplemented with 4.5-μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 4.4-μM 6-benzylaminopurine (6-BA) showed the highest rates of embryogenic callus induction (3.7%?±?1.3% for anthers and 4.8%?±?2.5% for gynoecia). After several months, somatic embryos were produced from embryogenic calli cultured in plant growth regulator-free MS2 medium (with reduced sucrose). Somatic embryos (SE) at the cotyledonary stage were isolated and cultured on three different media (MS2, MS3, or B) for conversion into plantlets, the efficiency of which ranged from 63.9%?±?4.8% to 83.9%?±?8.4%. After 1 mo of in vitro culture, 80% of plants with at least six leaves were successfully transplanted into soil. SE was repeatedly induced from previously induced somatic embryos for up to 1.5 yr. Using embryogenic calli as starting material, suspension cultures containing embryogenic cell aggregates were also established in liquid MS medium supplemented with 4.5-μM 2,4-D. The embryogenic cell aggregates continued to proliferate without differentiating for successive subculture cycles. After transfer to 2,4-D-free liquid medium for 4 wk, an average of 63.7%?±?9.0% mature SEs were produced per 20 mL of liquid medium. More than 40% of somatic embryos at cotyledonary stage, derived from the suspension cultures, successfully germinated into plants using solid medium.  相似文献   

2.
Margaria P  Palmano S 《Proteomics》2011,11(2):212-224
Flavescence dorée is a serious phytoplasma disease affecting grapevine in several European countries. We studied the interaction of Flavescence dorée phytoplasma with its natural plant host by monitoring the effects of infection on the protein expression profile. Among the 576 analyzed spots, 33 proteins were differentially regulated in infected grapevines. Grouping into MIPS functional categories showed proteins involved in metabolism (21%), energy processes (9%), protein synthesis (3%), protein fate (18%), cellular transport and transport routes (6%), cell defense and virulence (42%). Among the differentially regulated proteins, we selected six targets (thaumatin I, thaumatin II, osmotin-like protein, plant basic secretory protein, AAA(+) Rubisco activase and proteasome α5 subunit) and we analyzed their expression by quantitative RT-PCR on samples collected in 2008 and 2009 in several vineyards in Piedmont region, Italy. There was a positive correlation between mRNA and protein expression for most of the genes in both the years. We discuss the involvement of these proteins in the specific response to phytoplasma infection. To our knowledge, this work is the first to investigate the response of the grapevine proteome to Flavescence dorée phytoplasma infection, and provides reference protein profiles for future comparative proteomic and genomic studies.  相似文献   

3.
The chlorosis susceptible Vitis vinifera L. cv. Pinot blanc was grafted on two hybrid rootstocks with different iron efficiency, as follows: V. Berlandieri × V. rupestris 140 Ru (iron-efficient) and V. riparia × V. rupestris 101-14 (iron-inefficient). The grafted vines were grown in pots of a calcareous and a non-calcareous soil. The shoot growth was periodically checked and leaves, selected at two different times (at the middle of the annual growing period), were assayed for total chlorophyll, ferrous iron, ash alkalinity, percentage of dry matter and chlorosis score. At the end of the growing cycle the roots were oven-dried and weighed. The most significant findings of the trial were: (a) the soil strongly affected the shoot growth, with canes about twice as long in the non-calcareous soil; (b) the iron-efficient rootstock (140 Ru) did not induce chlorosis when growing on the calcareous soil, while the opposite occurred with the iron-inefficient rootstock (101=14); and (c) a high ash alkalinity occurred in light chlorotic leaves compared to green ones, under the same iron concentration.  相似文献   

4.
Physiology and Molecular Biology of Plants - The fruit is the most important economical organ in the grape; accordingly, to investigate the grapevine genomic methylation landscape and examine its...  相似文献   

5.
6.
The identification of carbonised grape pips (Vitis vinifera ssp.) is problematic, and the morphological features generally used to distinguish the wild subspeciesV. vinifera ssp.sylvestris from the cultivated subspeciesV. vinifera ssp.vinifera are not satisfactory. Different biometric studies were carried out on Nabataean and Roman seeds found at Petra, Jordan, dated to 150 B.C. – A.D. 400, and the results were compared to known phytogeographical and climatic data. Depending on the identification method selected, the seeds were attributed either to wild grapevines (based on the ratio of breadth over length, and on discriminant analyses of size variables such as pip length, stalk length, and chalaza position), or to an archaic variety of vine with seeds morphologically close to those of wild grapevines (ratio of stalk length over total pip length). The methods used here were applied to European grape pips; they should be tested on Near Eastern material. Archaeological data did not clarify the situation, and the importance of viticulture, which was prohibited during the Nabataean period, remains difficult to evaluate at Petra.  相似文献   

7.
A highly efficient technique of embryo rescue is critical when using stenospermocarpic Vitis vinifera cultivars (female parents) to breed novel, disease-resistant, seedless grape cultivars by hybridizing with wild Chinese Vitis species (male parents) having many disease-resistance alleles. The effects of various factors on the improvement of embryo formation, germination, and plantlet development for seven hybrid combinations were studied. The results indicated that Beichun and Shuangyou were the best male parents. The best sampling time for ovule inoculation differed among the female parents. When hybrid ovules were cultured on a double-phase medium with five different solid medium types, percent embryo formation was highest (11.3–28.3%) on a modified MM3 medium. Percentages of embryo germination (15.4–55.4%) and plantlet development (11.15–44.6%) were all highest when embryos were cultured on Woody Plant Medium?+?5.7 μM indole-3-acetic acid?+?4.4 μM 6-benzylaminopurine?+?1.4 μM gibberellic acid?+?2% sucrose?+?0.05% casein hydrolysate?+?0.3% activated charcoal?+?0.7% agar. In the absence of other amino acids, the addition of proline significantly increased embryo formation (36.1%), embryo germination (64.6%), and plantlet development (90.5%). A highly efficient protocol has been developed for hybrid embryo rescue from seedless V. vinifera grapes?×?wild Chinese Vitis species that results in a significant improvement in breeding efficiency for new disease-resistant seedless grapes.  相似文献   

8.

The effects of an inhibitor (Abz-E3M) of abscisic acid (ABA) 8′-hydroxylase, which is a primary enzyme of ABA catabolism, on dehydration tolerance and root formation in grape cuttings under drought conditions were investigated. Cuttings of ‘Kyoho’ grape (Vitis labrusca L. × Vitis vinifera L.) were sprayed with 100 μM of Abz-E3M and subjected to water deficit conditions at the stage when their first leaves fully expanded. The physiological and morphological changes in the leaves and basal portions of the cuttings were determined. In Abz-E3M-treated leaves, lower ABA metabolite and higher ABA and indole-3-acetic acid (IAA) concentrations were observed. Compared to the untreated control leaves, higher water potential was significantly maintained in Abz-E3M-treated leaves. Abz-E3M applications resulted in lower proline accumulation and 2,2-diphenyl-2-picrylhydrazyl radical scavenging activity in the leaves and led to enhanced dehydration tolerance. In addition, the percentage of rooted cuttings was significantly increased by Abz-E3M application. In the basal portion of Abz-E3M-treated cuttings, endogenous IAA concentrations and the gene expressions of VvARF6 and VvARF8, which are positive regulators of adventitious root formation, were significantly increased. Moreover, the expression levels of the negative regulator, VvARF17, were significantly lower. These results suggested that the inhibition of ABA 8′-hydroxylase enhanced dehydration tolerance and adventitious rooting and may be an effective strategy for achieving drought stress tolerance in grape cuttings.

  相似文献   

9.
N. Schilling 《Planta》1982,154(1):87-93
The de novo synthesis of maltose in spinach (Spinacia oleracea L.) was shown to be catalyzed by a maltose synthase, which converts two molecules of -d-glucose-1-phosphate (-G1P) (Km 1.5 mmol l-1) to maltose and 2 orthophosphate (Pi). This enzyme was purified 203-fold by fractionated ammonium sulfate precipitation and by column chromatography on Sepharose 6B. The addition of -G1P (15 mmol l-1) to the isolation buffer is required to stabilize the enzyme activity during the extraction and purification procedure. Molecular weight determination by gel filtration yielded a value of 95,000. -Gluconolactone, ATP and Pi are competitive inhibitors toward the substrate -G1P. The maltose synthase catalyzes an exchange of the phosphate group of -G1P with [32P] orthophosphate; this transfer reaction suggests that the synthesis of maltose occurs via a glucose-enzyme in a double displacement reaction. The physiological role of this enzyme as a starch initiator system is discussed.Abbreviations Fru fructose - Glc glucose - -G1P -d-glucose-1-phosphate - -G1P -d-glucose-1-phosphate - G6P d-glucose-6-phosphate This enzyme is tentatively called maltose synthase in this publication  相似文献   

10.

Background

The aim of the present work was to examine the role of UV-C irradiation on the production of secondary metabolites (total phenolic, total flavanols, total flavonols, catechin, ferulic acid and trans-resveratrol in phenolic compounds and α-, β-, γ- δ-tocopherols) in callus cultures. Studies on the effects of UV-C treatment on callus culture are seldom and generally focused on UV-B. However UV-C radiation play an important role in accumule secondary metabolites.

Results

In this study, callus cultures from Öküzgözü grape cultivar were initiated from leaf petiole explants. Calli formed after 6 weeks on the medium supplemented with 0.5 mg L-1 benzylaminopurine (BA), 0.5 mg L-1 indole acetic acid (IAA) on B5 media. Callus tissues were exposed to UV-C irradiation at 10, 20 and 30 cm distances from the UV source for 5 and 10 minutes and samples were collected at hours 0, 24 and 48.

Conclusions

The greatest total phenolic content (155.14 mg 100 g-1) was detected in calli exposed to UV-C for 5 min from 30 cm distance and sampled after 24 h. 24 h and 48 h incubation times, 30 cm and 5 min were the most appropriate combination of UV-C application in total flavanol content. Maximum total flavonol content (7.12 mg 100 g-1) was obtained on 0 h, 5 min and 20 cm combination. The highest (+)- catechin accumulation (8.89 mg g-1) was found in calli with 10 min UV-C application from 30 cm distance and sampled after 48 h. Ferulic acid content increased 6 fold in Öküzgözü callus cultures (31.37 μg g-1) compared to the control group. The greatest trans-resveratrol content (8.43 μg g-1) was detected in calli exposed to UV-C for 5 min from 30 cm distance and sampled after 24 h. The highest α-tocopherol concentration was found in calli exposed to UV-C for 10 min from 30 cm distance and sampled after 24 h. As a conclusion, it was showed that UV-C radiation had remarkable promoting effects on the accumulation of secondary metabolites in the calli of Öküzgözü grape cultivar.  相似文献   

11.
Somatic embryogenesis was induced from stamen filaments and an embryogenic suspension culture was established in the grapevine cultivar Mencía using thidiazuron and 2,4-dichlorophenoxyacetic acid. Four combinations of each growth regulator were assessed for somatic embryo induction in a basal medium containing Nitsch and Nitsch salts and Murashige and Skoog vitamins, and an embryogenic suspension was established in liquid medium containing 1 μM 2,4-dichlorophenoxyacetic acid plus 4.5 μM thidiazuron. By using thidiazuron instead of benzyladenine, induction rates were improved over those previously reported for this cultivar and were relatively high compared with previous results in other cultivars. Three combinations of indole-3-acetic acid and benzyladenine and two inoculum levels were tested in a differentiation medium containing activated charcoal. The size of the inoculum affected the developmental stage of the somatic embryos, whereas the type of growth regulator did not. Both the germination and plant conversion rates were high (87.8% and 88.2%, respectively). An analysis of plant ploidy levels by flow cytometry revealed that 5.6% of the somatic embryo-derived plants were tetraploid. The mean nuclear DNA content of the diploid somatic embryo-derived plants was, on average, 6.7% lower than that of diploid field-grown plants, indicating that this protocol produces low levels of somaclonal variation. The results obtained here indicate that such variations in grapevine can occur both through changes in the ploidy level and by loss of genetic material during somatic embryogenesis.  相似文献   

12.
Leaves from annual young grape plants (Vitis vinifera L. cv. Jingxiu) were used as experimental materials. The ultrastructural characteristics of mesophyll cells in chilling-treated plants after heat acclimation (HA) and in heat-treated plants after cold acclimation (CA) were observed and compared using transmission electron microscopy. The results showed that slight injury appeared in the ultrastructure of mesophyll cells after either HA (38℃ for 10 h) or CA (8℃ for 2.5 d), but the tolerance to subsequent extreme temperature stress was remarkably improved by HA or CA pretreatment. The increases in membrane permeability and malondialdehyde concentration under chilling (0℃) or heat (45℃) stress were markedly inhibited by HA or CA pretreatment. The mesophyll cells of plants not pretreated with HA were markedly damaged following chilling stress. The chloroplasts appeared irregular in shape, the arrangement of the stroma lamellae was disordered, and no starch granules were present. The cristae of the mitochondria were disrupted and became empty. The nucleus became irregular in shape and the nuclear membrane was digested. In contrast, the mesophyll cells of HA-pretreated plants maintained an intact ultrastructure under chilling stress. The mesophyll cells of control plants were also severely damaged under heat stress. The chloroplast became round in shape, the stroma lamellae became swollen, and the contents of vacuoles formed clumps. In the case of mitochondria of control plants subjected to heat stress, the outer envelope was digested and the cristae were disrupted and became many small vesicles. Compared with cellular organelles in control plants, those in CA plant cells always maintained an integrated state during whole heat stress, except for the chloroplasts, which became round in shape after 10 h heat stress. From these data, we suggest that the stability of mesophyll cells under chilling stress can be increased by HA pretreatment. Similarly, CA pretreatment can protect chloroplasts, mitochondria, and the nucleus against subsequent heat stress; thus, the thermoresistance of grape seedlings was improved. The results obtained in the present study are the first, to our knowledge, to offered cytological evidence of cross-adaptation to temperature stresses in grape plants.  相似文献   

13.
Polyphenol oxidases (PPOs) catalyze browning reactions in various plant organs, therefore controlling the reactions is important for the food industry. PPOs have been assumed to be involved in skin browning of white grape cultivars; however, the molecular mechanism underlying PPO-mediated browning process remains elusive. We have recently identified a new PPO gene named VvPPO2 from “Shine Muscat” (Vitis labruscana Bailey × V. vinifera L.), and have shown that the gene is transcribed at a higher level than the previously identified VvPPO1 in browning, physiologically disordered berry skins at the maturation stage. In this study, we expressed VvPPO2 in Escherichia coli and, using the purified preparation, revealed unique physicochemical characteristics of the enzyme. Our study opens up a way to not only understand the berry skin browning process but also to elucidate the enzymatic maturation process of grape PPOs.  相似文献   

14.
15.
16.
Ma  Zonghuan  Yang  Shijin  Mao  Juan  Li  Wenfang  Li  Wei  Zuo  Cunwu  Chu  Mingyu  Zhao  Xin  Zhou  Qi  Chen  Baihong 《Journal of Plant Growth Regulation》2021,40(2):679-693
Journal of Plant Growth Regulation - Light is a vital environmental factor that can affect the synthesis of volatile organic compounds (VOCs) in grape berries. However, the mechanism through which...  相似文献   

17.
Plant haemoglobins (Hbs), found in both symbiotic and non-symbiotic plants, are heme proteins and members of the globin superfamily. Hb genes of actinorhizal Fagales mostly belong to the non-symbiotic type of haemoglobin; however, along with the non-symbiotic Hb, Casuarina sp. posses a symbiotic one (symCgHb), which is expressed specifically in infected cells of nodules. A thorough sequence analysis of 26 plant Hb proteins, currently available in public domain, revealed a consensus motif of 29 amino acids. This motif is present in all the members of symbiotic class II Hbs including symCgHb and non-symbiotic Class II Hbs, but is totally absent in Class I symbiotic and non-symbiotic Hbs. Further, we constructed 3D structures of Hb proteins from Alnus and Casuarina through homology modelling and peeped into their structural properties. Structure-based studies revealed that the Casuarina symbiotic haemoglobin protein shows distinct stereochemical properties from that of the other Casuarina and Alnus Hb proteins. It also showed considerable structural similarities with leghemoglobin structure from yellow lupin (pdb id 1GDI). Therefore, sequence and structure analyses point to the fact that symCgHb protein shows significant resemblance to symbiotic haemoglobin found in legumes and may thus eventually play a similar role in shielding the nitrogenase from oxygen as seen in the case of leghemoglobin.  相似文献   

18.
19.
The inherent instability of metabolite production in plant cell culture-based bioprocessing is a major problem hindering its commercialization. To understand the extent and causes of this instability, this study was aimed at understanding the variability of anthocyanin accumulation during long-term subcultures, as well as within subculture batches, inVitis vinifera cell cultures. Therefore, four cell line suspensions ofVitis vinifera L. var. Gamay Fréaux, A, B, C and D, originated from the same callus by cell-aggregate cloning, were established with starting anthocyanin contents of 2.73±0.15, 1.45±0.04, 0.77±0.024 and 0.27±0.04 CV (Color Value)/g-FCW (fresh cell weight), respectively. During weekly subculturing of 33 batches over 8 months, the anthocyanin biosynthetic capacity was gradually lost at various rates, for all four cell lines, regardless of the significant difference in the starting anthocyanin content. Contrary to this general trend, a significant fluctuation in the anthocyanin content was observed, but with an irregular cyclic pattern. The variabilities in the anthocyanin content between the subcultures for the 33 batches, as represented by the variation coefficient (VC), were 58, 57, 54, and 84% forV. vinifera cell lines A, B, C and D, respectively. Within one subculture, the VCs from 12 replicate flasks for each of 12 independent subcultures were averaged, and found to be 9.7%, ranging from 4 to 17%. High- and low-producing cell lines, VV05 and VV06, with 1.8-fold differences in their basal anthocyanin contents, exhibited different inducibilities tol-phenylalanine feeding, methyl jasmonate and light irradiation. The low-producing cell line showed greater potential in enhanced the anthocyanin production.  相似文献   

20.
A newly isolated Geobacillus sp. IIPTN (MTCC 5319) from the hot spring of Uttarakhand's Himalayan region produced a hyperthermostable α-amylase. The microorganism was characterized by biochemical tests and 16S rRNA gene sequencing. The optimal temperature and pH were 60°C and 6.5, respectively, for growth and enzyme production. Although it was able to grow in temperature ranges from 50 to 80°C and pH 5.5–8.5. Maximum enzyme production was in exponential phase with activity 135 U ml−1 at 60°C. Assayed with cassava as substrate, the enzyme displayed optimal activity 192 U ml−1 at pH 5.0 and 80°C. The enzyme was purified to homogeneity with purification fold 82 and specific activity 1,200 U mg−1 protein. The molecular mass of the purified enzyme was 97 KDa. The values of K m and V max were 36 mg ml−1 and 222 μmol mg−1 protein min−1, respectively. The amylase was stable over a broad range of temperature from 40°C to 120°C and pH ranges from 5 to 10. The enzyme was stimulated with Mn2+, whereas it was inhibited by Hg2+, Cu2+, Zn2+, Mg2+, and EDTA, suggesting that it is a metalloenzyme. Besides hyperthermostability, the novelty of this enzyme is resistance against protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号