首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Marine algae are one of the most important sources of high-value compounds such as polar lipids, omega-3 fatty acids, photosynthetic pigments, or secondary metabolites with interesting features for different niche markets. Acetabularia acetabulum is a macroscopic green single-celled alga, with a single nucleus hosted in the rhizoid. This alga is one of the most studied dasycladalean species and represents an important model system in cell biology studies. However, its lipidome and pigment profile have been overlooked. Total lipid extracts were analyzed using hydrophilic interaction liquid chromatography-high resolution mass spectrometry (HILIC-HRMS), tandem mass spectrometry (MS/MS), and high-performance liquid chromatography (HPLC). The antioxidant capacity of lipid extracts was tested using DPPH and ABTS assays. Lipidomics identified 16 polar lipid classes, corresponding to glycolipids, betaine lipids, phospholipids, and sphingolipids, with a total of 191 lipid species, some of them recognized by their bioactivities. The most abundant polar lipids were glycolipids. Lipid classes less studied in algae were identified, such as diacylglyceryl-carboxyhydroxymethylcholine (DGCC) or hexosylceramide (HexCer). The pigment profile of A. acetabulum comprised carotenoids (17.19%), namely cis-neoxanthin, violaxanthin, lutein and β,β-carotene, and chlorophylls a and b (82.81%). A. acetabulum lipid extracts showed high antioxidant activity promoting a 50% inhibition (IC50) with concentrations of 57.91 ± 1.20 μg · mL−1 (438.18 ± 8.95 μmol Trolox · g−1 lipid) in DPPH and 20.55 ± 0.60 μg · mL−1 in ABTS assays (918.56 ± 27.55 μmol Trolox · g−1 lipid). This study demonstrates the potential of A. acetabulum as a source of natural bioactive molecules and antioxidant compounds.  相似文献   

2.
Aromatic plants attract the attention of many researchers worldwide due to their worthy applications in agriculture, human prosperity, and the environment. Essential oil (EO) could be exploited as effective alternatives to synthetic compounds as it has several biological activities including allelopathy. The EO from the aerial parts of Rhynchosia minima was extracted by hydrodistillation and investigated by gas chromatography/mass spectrometry (GC/MS). Different concentrations (50, 100, 150 and 200 μL L−1) of the EO were prepared for investigation of their allelopathic potential on two weeds; Dactyloctenium aegyptium and Rumex dentatus. Twenty‐eight compounds, mainly sesquiterpenes (69.13%) were determined. The major compounds are α‐eudesmol, 2‐allyl‐5‐tert‐butylhydroquinone, caryophyllene oxide, trans‐caryophyllene, and τ‐cadinol. The EO from the Rminima showed a significant inhibition of Daegyptium and Rdentatus germination, while the seedling growth was stimulated. Therefore, it is not recommended to treat these noxious weeds with the EO of Rminima before the germination. In contrast, the apparent stimulatory effect on the seedling growth offers further studies to use the EO of Rminima to enhance the fitness of different economic crops. However, characterization of green bio‐herbicides such as EO (allelochemicals) from wild plants raises a new opportunity for the incorporation of new technology of bio‐control against the noxious weeds.  相似文献   

3.
The extracts of five invasive plants were investigated for antifungal and antibiofilm activities against Candida albicans, C. glabrata, C. krusei, and C. parapsilosis. The antifungal activity was evaluated using the microdilution assay and the antibiofilm effect by measurement of the metabolic activity. Ethanol and ethanol-water extracts of Reynoutria japonica leaves inhibited 50 % of planktonic cells at 250 μg mL−1 and 15.6 μg mL−1, respectively. Ethanol and ethanol-water extracts of Baccharis halimifolia inhibited >75 % of the mature biofilm of C. albicans at 500 μg mL−1. The essential oil (EO) of B. halimifolia leaves was the most active (50 % inhibition (IC50) at 4 and 74 μg mL−1against the maturation phase and 24 h old-biofilms of C. albicans, respectively). Oxygenated sesquiterpenes were the primary contents in this EO (62.02 %), with β-caryophyllene oxide as the major component (37 %). Aromadendrene oxide-(2), β-caryophyllene oxide, and (±)-β-pinene displayed significant activities against the maturation phase (IC50=9–310 μ mol l−1) and preformed 24 h-biofilm (IC50=38–630 μ mol l−1) of C. albicans with very low cytotoxicity for the first two compounds. C. albicans remained the most susceptible species to this EO and its components. This study highlighted for the first time the antibiofilm potential of B. halimifolia, its EO and some of its components.  相似文献   

4.
Ferula cupularis (Boiss.) Spalik et S. R. Downie is an endangered endemic Iranian medicinal plant with occurrence restricted to Fars and Kohkilooyeh Boyerahmad provinces, Iran. F. cupularis is cited for strong antibacterial activity, usages in foodstuffs preservation, and has long been used by local peoples for ulcer treatment. In this research, the aerial parts of F. cupularis wild populations were collected from three natural habitats: Eqlid-Kaftar (FC1), Kakan (FC2), and Sepidan-Komohr (FC3), to assess phytochemical diversity and antioxidant activity. The quantity of essential oil (EO) ranged remarkably from 0.42 to 0.72 % v/w among the populations. Results obtained from the EO analysis by GC-FID and GC/MS detected up to 56 compounds. α-Pinene (21.65–31.53 %), sabinene (4.74–11.39 %), phellandrene (1.78–5.1 %), δ-3-carene (1.85–7.18 %), limonene (4.12–7.45 %), (Z)-β-ocimene (9.08–17.64 %), and elemicin (0.23–5.74 %) were the major compounds of EOs varied significantly among the populations. Moreover, total phenol content (250.54 to 387.45 mg gallic acid/100 g dry weight (DW)) and flavonoids (34.38 to 41.12 mg quercetin/100 g DW) of methanolic extracts varied substantially among the populations. Antioxidant activities of F. cupularis EOs and extracts were assessed by DPPH (2,2,1-diphenyl-1-picrylhydrazyl) radical scavenging method. EOs exhibited EC50 values ranging from 8.88 to 9.67 μg mL−1 and the EC50 values for the extract ranged from 941.36 to 1335.96 μg mL−1 within the populations. Results demonstrated significantly different levels of antioxidant capacities among the studied populations. Monitoring the data, the population collected from Eqlid-Kaftar (FC1) was selected as the most potent population concerning the highest EO content and antioxidant activity level. The obtained data provided new insights for an initial source of breeding plans and ultimately massive production for food and pharmaceutical industries.  相似文献   

5.
The essential oil (EO) of Bassia muricata shoots was extracted via hydro-distillation and then investigated by gas chromatography-mass spectrometry. Thirty-four compounds were recognized for the first time from this plant, representing 100% of the total mass. Terpenoids represented the major components with 69.17% of the total mass, containing oxygenated sesquiterpenes (53.18%), oxygenated monoterpenes (9.77%), sesquiterpene hydrocarbons (5.03%), and diterpenes (1.19%). Additionaly, 6-methoxy-1-acetonaphthone was the only aromatic compound represented in a high percentage of the total identified compounds with 22.35%. Additionally, a percent of 8.48% of the total mass was hydrocarbons. Only one oxygenated sesquiterpene namely hexahydrofarnesyl acetone representing 47.35% of the total mass was identified. It was followed by methoxy-1-acetonaphthone (19.92%), n-dotriacontane (3.58%), endo-borneol (3.24%), 6-methy-α-ionone (3.04%), and α-gurjunene (2.65%). The EO exhibited moderate antioxidant activity comparable with ascorbic acid as a standard, where it attained IC50 value of 20.70 µL L−1 and 16.32 µL L−1, for DPPH and ABTS. The EO of B. muricata significantly reduces the germination and seedling development of the weed Chenopodium murale. The EO showed an IC50 value of 175.60 µL L−1, 246.65 µL L−1, and 308.33 µL L−1 for root growth, shoot growth, and germination, respectively. Therefore, this EO could be a good green resource for the control of weeds.  相似文献   

6.
Essential oils (EOs) are a promising group of natural products of the aromatic plants due to their various biological effects such as allelopathic, antioxidant, antimicrobial activities. The present study aimed to construct the detailed chemical profile of the EO derived from Deverra tortuosa aerial parts along with assessing its allelopathic, antimicrobial, and antioxidant potentialities. The EO was extracted by hydrodistillation and analyzed via gas chromatography-mass spectrometry (GC/MS). The allelopathic activity of the EO was assessed against the germination and seedling growth of the weed Chenopodium murale. Also, the EO was tested against five microbes. The antioxidant activity was determined using the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). The GC/MS analysis of EO revealed the presence of 86 compounds with a preponderance of oxygenated sesquiterpenes and monoterpene hydrocarbons. Widdrol, β-phellandrene, piperitol, cubedol, α-terpinene, (E)-10-heptadecen-8-ynoic acid methyl ester, citronellyl tiglate, and m-cymene were the major compounds. A comparative profile was established between the EOs constituents of our study with the documented EOs of D. tortuosa and the other Deverra species around the world via agglomerative hierarchical clustering (AHC) and principal components analysis (PCA). The EO showed a substantial allelopathic activity against C. murale, as well as it showed considerable antimicrobial and antioxidant activities. Thereby, the EO of D. tortuosa could be considered as a promising environmental-friendly bioherbicide against weeds. Also, it could be integrated into food preservation due to its potent antimicrobial and antioxidant activities. However, further study is recommended for more characterization of the major compounds and evaluation of their activities, either singular or synergistic, and assess their efficiency and biosafety.  相似文献   

7.
Pomelo seeds (PS) are important by-product of pomelo fruits (Citrus grandis Osbeck). The value-added utilization of PS remains highly challenged. This study aimed to investigate the utilization potential of PS as natural antioxidant, antibacterial, herbicidal agents, and their functional components. The ethanolic extract (EE) of PS and its four fractions as PEE (petroleum ether extract), AcOEtE (ethyl acetate extract), BTE (butanol extract), and WE (water extract), were prepared and biologically evaluated. BTE exhibited the best antioxidant activity among all these extracts, in both ABTS (2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt) and FRAP (ferric reducing antioxidant power) assays. AcOEtE was superior to other extracts in herbicidal assay against both Festuca elata Keng (IC50 of 0.48 mg mL−1) and Amaranthus retroflexus L. (IC50 of 0.94 mg mL−1). Meanwhile, both AcOEtE and BTE demonstrated inhibitory effects against Bacillus subtilis, Escherichia coli, and Xanthomonas citri subsp. citri, with MIC ranging 2.5–5.0 mg mL−1. Furthermore, the primary chemical components involving naringin, deacetylnomilin, limonin, nomilin, and obacunone, were quantified in all these extracts. PCA (principal component analysis) suggested that naringin might highly contribute to the antioxidant activity of PS, and the herbicidal activity should be ascribed to limonoids. This study successfully identified AcOEtE and BTE as naturally occurring antioxidant, antibacterial, and herbicidal agents, showing application potential in food and cosmetics industries, and organic farming agriculture.  相似文献   

8.
Terminalia citrina (T. citrina) belongs to the Combretaceae family and is included in the class of medicinal plants in tropical countries such as Bangladesh, Myanmar, and India. The antioxidant activities of lyophilized water (WTE) and alcohol extracts (ETE) of T. citrina fruits, their phenolic content by LC-HRMS, and their effects on cholinesterases (ChEs; AChE, acetylcholinesterase, and BChE, butyrylcholinesterase) were investigated. Especially ten different analytical methods were applied to determine the antioxidant capacity. Compared with similar studies for natural products in the literature, it was determined that both WTE and ETE exhibited strong antioxidant capacity. Syringe and ellagic acids were higher than other acids in ETE and WTE. IC50 values for ETE and WTE in DPPH radical and ABTS⋅+ scavenging activities were calculated as 1.69–1.68 μg mL−1 and 6.79–5.78 μg mL−1, respectively. The results of the biological investigations showed that ETE and WTE had an inhibition effect against ChEs, with IC50 values of 94.87 and 130.90 mg mL−1 for AChE and 262.55 and 279.70 mg mL−1 for BChE, respectively. These findings indicate that with the prominence of herbal treatments, T. citrina plant may guide the literature in treating Alzheimer's Disease, preventing oxidative damage, and mitochondrial dysfunction.  相似文献   

9.
The genus Euphorbia attracted the attention of many researchers worldwide from natural products, bioactivity, and ecological perspective. The essential oils (EOs) of Euphorbia heterophylla are poorly studied. Therefore, the present study aimed to provide a detailed profile of the E. heterophylla EOs as well as to determine their antioxidant and allelopathic activities. The EOs from aerial parts of E. heterophylla were extracted using hydrodistillation and analyzed via GC/MS. The antioxidant activity was determined based on scavenging of the free radical, 1,1‐diphenyl‐2‐picrylhydrazyl and H2O2. Various concentrations of the EOs were tested against the noxious weed, Cenchrus echinatus. Thirty‐five compounds were identified representing 100 % of the total mass. Four classes of components were characterized, among which terpenoids were the main components (88.70 %). Monoterpenes represented the main class (69.48 %), followed by sesquiterpenes (18.63 %), and only one diterpenoid, kaur‐16‐ene, was identified. 1,8‐Cineole (32.03 %), camphor (16.54 %), β‐elemene (5.92 %), endo‐borneol (4.94 %), limonene (4.27 %), pentatriacontane (3.91 %), and α‐pinene (3.89 %) were the major compounds. The EOs composition of Egyptian E. heterophylla ecospecies was comparable to that of other reported Euphorbia species, although it showed no correlation with Nigerian E. heterophylla ecospecies. The EOs from E. heterophylla aerial parts exhibited significant antioxidant activity. Moreover, a concentration of 100 μL L?1 of the EOs reduced the germination, root, and shoot growth of C. echinatus by about 93.95 %, 84.6 %, and 57.8 %, respectively. Therefore, the EOs from E. heterophylla could be integrated into the control of this weed, as eco‐friendly biocontrol method. Further study is needed to characterize their allelopathic activity under field conditions as well as to evaluate their durability and biosafety.  相似文献   

10.
The extraction and characterization of the essential oils (EO) from Satureja montana L., Myristica fragrans H. and Cymbopogon flexuosus and the determination of their antibacterial and antioxidant activities were achieved. The EO were identified by gas chromatography/mass spectrometry and quantified by gas chromatography using a flame ionization detector. The antibacterial potential against Escherichia coli and Staphylococcus aureus was evaluated by cell susceptibility assays and by scanning electron microscopy. The antioxidant activity was evaluated by the 2,2-diphenyl-1-picrylhydrazyl assay, by β-carotene bleaching and by determining the reducing power. Borneol (36·18%), γ-terpineol (12·66%) and carvacrol (11·07%) were the principal components in the EO from S. montana, and sabinene (49·23%) and α-pinene (13·81%) were found in the EO from M. fragrans. Geranial (59·66%) and neral (38·98%) isomers were the only major components in the EO from C. flexuosus. The EO from S. montana was effective against E. coli, with minimum inhibitory and bactericidal concentrations (MIC and MBC) of 6·25 µl ml−1, whereas bactericidal potential against both was observed for the EO from M. fragrans; MIC = 6·25 µl ml−1 for S. aureus and MBC = 12·5 µl ml−1 for E. coli. A significant protective role on lipid substrates in the β-carotene bleaching assay was seen for the EO from S. montana and M. fragrans. Overall, such EO can be promising agents against pathogenic bacteria and for protecting biomolecules during oxidative stress.  相似文献   

11.
This work aimed to investigate, for the first time, the chemical composition, antioxidant, antiparasitic, cytotoxicity, and antimicrobial activities of the aromatic plant Limonium oleifolium Mill. essential oil (EO) and organic extracts. L. oleifolium aerial parts essential oil was analyzed by GC-FID and GC-MS, and 46 constituents representing 98.25±1.12 % of the oil were identified. γ-Muurolene (10.81±0.07 %), cis-caryophyllene (7.71±0.06 %), o-cymene (7.07±0.01 %) and α-copaene (5.02±0.05 %) were the essential oil main compounds. The antioxidant activity of L. oleifolium EO and organic extracts (MeOH, CHCl3, AcOEt, BuOH) was explored using 2,2-diphenyl-1-picrylhydrazyl (DPPH), ABTS, β-carotene/linoleic acid, cupric reducing antioxidant capacity (CUPRAC), and ferric reducing power assays. The results showed that L. oleifolium EO exhibit antioxidant capacity (IC50=17.40±1.32 μg/mL for DPPH assay, IC50=29.82±1.08 μg/mL for β-carotene assay, IC50=25.23±1.01 μg/mL for ABTS assay, IC50=9.11±0.08 μg/mL for CUPRAC assay and IC50=19.41±2.06 mg/mL for reducing power assay). Additionally, the EO showed significant activity against trophozoite form of Acanthamoeba castellanii (IC50=7.48±0.41 μg/mL) and promastigote form of Leishmania amazonensis (IC50=19.36±1.06 μg/mL) and low cytotoxicity on murine macrophages (LC50 90.23±1.09 μg/mL), as well as good antimicrobial activity against Staphylococcus aureus, Escherichia coli, Klebsiella oxytoca, and Pseudomonas aeruginosa. These results suggest that L. oleifolium essential oil is a valuable source of bioactive compounds presenting antioxidant, antiparasitic, and antimicrobial activities. Furthermore, it is considered nontoxic.  相似文献   

12.
In spite of tremendous efforts exerted in the management of COVID-19, the absence of specific treatments and the prevalence of delayed and long-term complications termed post-COVID syndrome still urged all concerned researchers to develop a potent inhibitor of SARS-Cov-2. The hydromethanolic extracts of different parts of E. mauritanica were in vitro screened for anti-SARS-Cov-2 activity. Then, using an integrated strategy of LC/MS/MS, molecular networking and NMR, the chemical profile of the active extract was determined. To determine the optimum target for these compounds, docking experiments of the active extract's identified compounds were conducted at several viral targets. The leaves extract showed the best inhibitory effect with IC50 8.231±0.04 μg/ml. The jatrophane diterpenes were provisionally annotated as the primary metabolites of the bioactive leaves extract based on multiplex of LC/MS/MS, molecular network, and NMR. In silico studies revealed the potentiality of the compounds in the most active extract to 3CLpro, where compound 20 showed the best binding affinity. Further attention should be paid to the isolation of various jatrophane diterpenes from Euphorbia and evaluating their effects on SARS-Cov-2 and its molecular targets.  相似文献   

13.

Nanotechnology is currently gaining immense attention to combat food borne bacteria, and biofilm. Diabetes is a common metabolic disease affecting majority of people. A better therapy relies on phytomediated nanoparticle synthesis. In this study, W. somnifera leaf extract-assisted ZnO NPs (Ws-ZnO NPs) was synthesized and characterized. From HR-TEM analysis, it has been found that the hexagonal wurtzite particle is 15.6 nm in size and − 12.14 mV of zeta potential. A greater antibacterial effect of Ws-ZnO NPs was noticed against E. faecalis and S. aureus at 100 µg mL−1. Also, the biofilm of E. faecalis and S. aureus was greatly inhibited at 100 µg mL−1 compared to E. coli and P. aeruginosa. The activity of α-amylase and α-glucosidase enzyme was inhibited at 100 µg mL−1 demonstrating its antidiabetic potential. The larval and pupal development was delayed at 25 µg mL−1 of Ws-ZnO NPs. A complete mortality (100%) was recorded at 25 µg mL−1. Ws-ZnO NPs showed least LC50 value (9.65 µg mL−1) compared to the uncoated ZnO NPs (38.8 µg mL−1) and leaf extract (13.06 µg mL−1). Therefore, it is concluded that Ws-ZnO NPs are promising to be used as effective antimicrobials, antidiabetic and insecticides to combat storage pests.

  相似文献   

14.
Thymus vulgaris L. (thyme), Origanum majorana L. (marjoram), and Origanum vulgare L. (oregano) were used to determine whether light modification (plants grown under nets with 40% shaded index or in un-shaded open field) could improve the quantity and quality of essential oils (EOs) and antioxidant activity. The yield of EOs of thyme, marjoram, and oregano obtained after 120 min of hydrodistillation was 2.32, 1.51, and 0.27 mL/100 g of plant material, respectively. At the same time under shading conditions plants synthetized more EOs (2.57, 1.68, and 0.32 mL/100 g of plant material). GC/MS and GC/FID analyses were applied for essential oils determinations. The main components of the thyme essential oil are thymol (8.05–9.35%); γ-terpinene (3.49–4.04%); p-cymene (2.80–3.60%) and caryophyllene oxide (1.54–2.15%). Marjoram main components were terpinene 4-ol (7.44–7.63%), γ-terpinene (2.82–2.86%) and linalool (2.04–2.65%) while oregano essential oil consisted of the following components: caryophyllene oxide (3.1–1.93%); germacrene D (1.17–2.0%) and (E)-caryophyllene (1.48–1.1%). The essential oil from thyme grown under shading (EC50 value after 20 min of incubation) have shown the highest antioxidant activity – 0.85 mg mL−1 in comparison to marjoram and oregano (shaded plants EC50 19.97 mg mL−1 and 7.02 mg mL−1 and unshaded, control plants EC50 54.01 mg mL−1 and 7.45 mg mL−1, respectively). The medicinal plants are a good source of natural antioxidants with potential application in the food and pharmaceutical industries. For production practice, it can be recommended to grow medicinal plants in shading conditions to achieve optimal quality parameters.  相似文献   

15.
In this study, we investigated the phenolic composition of the crude extract (MeOH 80 %) of Alnus cordata (Loisel .) Duby stem bark (ACE) and its antioxidant and skin whitening properties. RP‐LC‐DAD analysis showed a high content of hydroxycinnamic acids (47.64 %), flavanones (26.74 %) and diarylheptanoids (17.69 %). Furthermore, ACE exhibited a dose‐dependent antioxidant and free‐radical scavenging activity, expressed as half‐maximal inhibitory concentration (IC50): Oxygen radical absorbance capacity (ORAC, IC50 1.78 μg mL?1)>Trolox equivalent antioxidant capacity (TEAC, IC50 3.47 μg mL?1)>2,2‐Diphenyl‐1‐picrylhydrazyl (DPPH, IC50 5.83 μg mL?1)>β‐carotene bleaching (IC50 11.58 μg mL?1)>Ferric reducing antioxidant power (FRAP, IC50 17.28 μg mL?1). Moreover, ACE was able to inhibit in vitro tyrosinase activity (IC50 77.44 μg mL?1), l ‐DOPA auto‐oxidation (IC50 39.58 μg mL?1) and in an in vivo model it exhibited bleaching effects on the pigmentation of zebrafish embryos (72 h post fertilization) without affecting their development and survival. In conclusion, results show that A. cordata stem bark may be considered a potential source of agents for the treatment of skin disorders due to its bleaching properties and favorable safety profiles, associated to a good antioxidant power.  相似文献   

16.
The production of self-pollinated plants could be important for improving medicinal plants secondary metabolites. In this study, 11 Thymus populations from eight species were evaluated to determine the effect of self and open pollination on agro-morphological characteristics, total phenolic content (TPC), essential oil (EO) content, and EO components. Inbreeding led to some positive effects of above mentioned traits in most of the studied populations. Total phenolic content ranged from 7.07 to 52.69 mg tannic acid equivalents (TAE) g−1 dry weight (DW) in open pollinated derived populations, while it varied from 1.2 to 55.03 mg TAE g−1 DW in self-pollinated ones. Under open and self-pollination condition, the highest EO content was obtained in T. trautvetteri (3.37 %) and T. pubescens (1.96 %), respectively. Gas chromatography-mass spectrometry (GC/MS) identified 42 compounds including thymol, carvacrol, linalool, p-cymene, γ-terpinene, terpinen-4-ol, and α-terpineol as the main compounds. In most cases, selfed plants compared to open pollinated ones, revealed higher thymol content. T. daenensis-1 showed a significant increase in thymol content (from 25.22 % to 74.3 %) due to self-pollination. Moreover, self-pollination led to emergence of some new compounds. Carvacrol methyl ether was the constituents of Thymus EO that are being reported in self-pollinated populations. Finally, inbreeding in Thymus might be suggested as a useful tool to increase genetic homogeneity for the selection of superior plants for improving secondary metabolite.  相似文献   

17.
Sheep breeding has suffered economic losses due to parasitism by gastrointestinal nematodes, particularly Haemonchus contortus. The use of natural products, specifically Tagetes patula, has been suggested as an alternative method of combatting this issue. Chemical analyses of the extracts of this species described in the literature report the presence of important classes of secondary metabolites such as thiophenes, flavonoids, alkaloids, and benzofurans, some of which were identified and isolated in this study. The aim of this work was to test the effect of the essential oil (EO) and the ethanolic extract of the aerial parts (TpEtOH) of T. patula on eggs and larvae of H. contortus, through an egg hatch test (EHT) and a larval development test (LDT). In the EHT, the EO showed 100% inhibition at 0.75 mg mL?1 (LC50 = 0.0780 mg mL?1), and the TpEtOH showed 100% inhibition at 100 mg mL?1 (LC50 = 12.8 mg mL?1). In the LDT, the EO showed 100% inhibition at 0.375 mg mL?1 (LC50 = 0.0400 mg mL?1), and the TpEtOH showed 100% inhibition at 1.56 mg mL?1 (LC50 = 0.340 mg mL?1). Compared to available literature data, the results presented here suggest that the crude extracts of T. patula have substantial potential for controlling this nematode by interrupting its life cycle and/or preventing it from reaching the infective stage.  相似文献   

18.
In Mexico, plants are commonly used to alleviate various ailments, including controlling some chronic degenerative diseases through the regular consumption of decoctions, infusions, and teas. However, there is little scientific evidence consolidating traditional medicine within health systems. Therefore, this work determined the phytochemical profile of the most used plants to treat various ailments (Cedro rojo, Cancerina, Ortiguilla, Hierba de la golondrina, Hierba de arlomo) and their general consumption as infusions. Aqueous and ethanolic extracts were generated, while the phytochemical compound content in the extracts obtained was quantified. The results indicate that the ethanolic extracts showed the highest phenolic compound and tannin content, with the highest contents for Cedro rojo (831.04 mg L−1) and Cancerina (864.80 mg L−1). The antioxidant activity was also determined, and a significant difference was observed (p<0.05). The extracts with the highest antioxidant capacity were the ethanolic extracts ranging from 250 to 907 μMET mL−1, while the aqueous extracts ranged from 112 to 390 μMET mL−1. The compounds identified by high-performance liquid chromatography characterization on the aqueous extracts highlighted the presence of chlorogenic acid>cinnamic acid>quercetin. In ethanolic extracts, the presence of chlorogenic acid>cinnamic acid>quercetin>gallic acid>ferulic acid>coumaric acid was highlighted. The correlation between bioactive compounds, type of extract, and antioxidant activity suggests a significant affinity of these phytochemical compounds for the ethanol solvent. The results indicate that these plants are good sources of antioxidant phenolics and can be incorporated for use as functional beverages. However, more studies are needed to corroborate their beneficial effect.  相似文献   

19.
The phenolic composition and antioxidant capacity of four Tunisian lichen species, Cladonia rangiformis, Flavoparmelia caperata, Squamarina cartilaginea and Xanthoria parietina, were determined in order to provide a better understanding of their lichenochemical composition. Powdered material of F. caperata was the richest in total phenolic content (956.68 μg GAE g−1 DW) and S. cartilaginea in proanthocyanidin content (77.31 μg CE g−1 DW), while the acetone extract of X. parietina showed the highest flavonoid content (9.56 μg CE g−1 DW). The antioxidant capacity of all lichen extracts and crude material was evaluated by DPPH. scavenging, iron-chelating, and iron-reducing powers. Results showed that methanol extracts of S. cartilaginea had the highest DPPH. antioxidant capacity (IC50=0.9 μg mL−1) and the highest iron-reducing power was attributed to the acetone extract of this species. All extracts of all species were further screened by Fourier-transform infrared spectroscopy (FT-IR) and nuclear resonance spectroscopy (NMR); results showed an abundance of phenols, aromatic compounds, and fatty acids. Overall, our results showed that the investigated species are a rich source of potentially bioactive compounds with valuable properties.  相似文献   

20.
The endemic Hawaiian species of Scaevola and Euphorbia grow in a wide variety of native habitats and exhibit a wide range of variation in photosynthetic responses. Light-saturated photosynthetic capacities range from 12.0 to 24.7 μmol CO2 m−-2 s−-1 in the Scaevola species and from 18.2 to 51.4 μmol CO2 m−-2 s−-1 in the Euphorbia species. Within each genus, differences in light-saturated photosynthetic capacity are paralleled by differences in mesophyll and leaf conductances to CO2. Within each habitat, the C4 Euphorbia species exhibits a significantly higher photosynthetic capacity and a significantly higher mesophyll conductance than the corresponding C3 Scaevola species. These differences are greatest in the dry scrub habitat and least in the wet forest habitat. One photosynthetic characteristic that exhibits little variation among the species within each genus, yet that exhibits a consistently large difference between the species within each habitat, is photosynthetic water-use efficiency. The C4 Euphorbia species possess water-use efficiencies that are 2–3½ times as high as those of the C3 Scaevola species, regardless of whether these species are native to very dry or very wet habitats. At present, the ecological significance of this large inherent difference in photosynthetic water-use efficiency is unknown. Indeed, it appears that neither photosynthetic pathway has imposed any major inherent constraints on the ability of the Scaevola and Euphorbia species to diversify into a wide variety of habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号