首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salicylic acid is an NSAID with serious side effects on the GIS. The side effects of salicylic acid on the GIS are slightly reduced by acetylating salicylic acid. 12 new ester analogs of salicylic acid were synthesized with high yields in this study. The chemical structures of the synthesized compounds were characterized by 1H-NMR, 13C-NMR, and HRMS spectra. The inhibitory potential of the compounds was evaluated on COXs by in vitro and in silico studies. The COX2 inhibitory activity of the most potent inhibitor MEST1 (IC50: 0.048 μM) was found to be much higher than the COX2 inhibitory activity of aspirin (IC50: 2.60 μM). In docking studies, the strongest inhibitor among the compounds synthesized was predicted to be MEST1, with the lowest binding energy. Docking studies revealed that MEST1 extends from the hydrophobic channel to the top of the cyclooxygenase active site, forming various interactions with residues in the binding pocket.  相似文献   

2.
Poly(ADP-ribose)polymerase-1 (PARP-1) is an abundant and ubiquitous chromatin-bound nuclear protein. PARP-1, a DNA repair enzyme, has been in the limelight as a chemotherapeutic target. In this study, we demonstrated the successful use of structure-based virtual screening to identify inhibitors of PARP-1 from Otava databases comprised of nearly 260,000 compounds. Five novel inhibitors belonging to thienopyrimidinone, isoquinolinoquinazolinone, pyrroloquinazolinone, and cyclopentenothienopyrimidinone scaffolds revealed inhibitory potencies with IC50 values ranged from 9.57 μM to 0.72 μM. Structural features relevant to the activity of these novel compounds within the active site of PARP-1 are discussed in detail and will guide future SAR investigation on these scaffolds.  相似文献   

3.
The present paper describes the synthesis, biological evaluation and molecular simulation studies of a series of N-(4-hydroxyphenyl)-3,4,5-trimethoxybenzamide derivatives with N,N-dialkylaminoethoxy/propoxy moiety as potential memory enhancers with acetylcholinesterase-inhibiting activity having IC50 in low micromolar range (4.0–16.5 μM). All the compounds showed a good degree of agreement between in vivo and in vitro results as most of these derivatives showed dose-dependent increase in percent retention. Compound 10a showed significant % retention of 84.73 ± 4.51 as compared to piracetam (46.88 ± 5.42) at 3 mg kg?1 and also exhibited a maximal percent inhibition of 97% at 50 μM. Molecular docking, MM-GBSA and molecular simulation studies were performed establishing a correlation between the experimental biology and in silico results. In silico results indicate that all the compounds have better docking scores and predicted binding free energies as compared to cocrystallized ligand with the best potent ligand retaining conserved hydrophobic interactions with residues of catalytic triad (HIS447), catalytic anionic site (CAS) (TRP86, TYR337, PHE338) and peripheral anionic site (PAS) (TYR72, TYR124, TRP286 and TYR341). Root mean square deviation (RMSD = 2.4 Å) and root mean square fluctuations of 10a–AChE complex during simulation proved its stable nature in binding toward acetylcholinesterase. The docked conformation of 10a and other analogs at the binding site have also been simulated with polar and nonpolar interactions interlining the gorge residues from PAS to catalytic triad.  相似文献   

4.
Various pyridopyridazinone derivatives were designed as Poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. The pyridopyridazinone scaffold was used as an isostere of the phthalazine nucleus of the lead compound Olaparib in addition to some modifications in the tail part of the molecule. Preliminary biological evaluation indicated that most compounds possessed inhibitory potencies comparable to Olaparib in nanomolar level. The best PARP-1 inhibitory activity was observed for compound 8a with (IC50 = 36 nM) compared to Olaparib as a reference drug (IC50 = 34 nM). Molecular modeling simulation revealed that, the designed compounds docked well into PARP-1 active site and their complexes are stabilized by three key hydrogen bond interactions with both Gly863 and Ser904 as well as other favorable π-π and hydrogen-π stacking interactions with Tyr907 and Tyr896, respectively. Computational ADME study predicted that the target compounds 8a and 8e have proper pharmacokinetic and drug-likeness properties. These outcomes afford a new structural framework for the design of novel inhibitors for PARP-1.  相似文献   

5.
Soluble epoxide hydrolase (sEH) inhibitory activity guided fractionation and isolation of two new isocucurbic acid derivatives ( 1 and 2 ) and nine known compounds ( 3 – 11 ) from the flowers of Chrysanthemum indicum L. Their structures were elucidated on the basis of spectroscopic data interpretation and comparison with those reported in previous studies. Luteolin ( 3 ), acacetin-7-O-β-D-glucopyranoside ( 6 ), and methyl 3,4-di-O-caffeoylquinate ( 10 ) displayed sEH inhibitory activities with IC50 values ranging from 13.7±3.6 to 20.8±0.4 μM. Enzyme kinetic analysis revealed that 3 , 6 , and 10 were non-competitive inhibitors with Ki values of 14.8±0.5, 31.2±0.8, and 3.9±0.2 μM, respectively. Additionally, molecular docking studies indicated compound 10 had the ability to form six hydrogen bonds at sEH active site, resulting binding energy as low as −9.58 Kcal/mol.  相似文献   

6.
Poly(ADP-ribose) polymerase-1 (PARP-1) enzyme has critical roles in DNA replication repair and recombination. Thus, PARP-1 inhibitors play an important role in the cancer therapy. In the current study, we have performed combination of in silico and in vitro studies in order to discover novel inhibitors against PARP-1 target. Structure-based virtual screening was carried out for an available small molecules database. A total of 257,951 ligands from Otava database were screened at the binding pocket of PARP-1 using high-throughput virtual screening techniques. Filtered structures based on predicted binding energy results were then used in more sophisticated molecular docking simulations (i.e. Glide/standard precision, Glide/XP, induced fit docking – IFD, and quantum mechanics polarized ligand docking – QPLD). Potential high binding affinity compounds that are predicted by molecular simulations were then tested by in vitro methods. Computationally proposed compounds as PARP-1 inhibitors (Otava Compound Codes: 7111620047 and 7119980926) were confirmed by in vitro studies. In vitro results showed that compounds 7111620047 and 7119980926 have IC50 values of 0.56 and 63 μM against PARP-1 target, respectively. The molecular mechanism analysis, free energy perturbation calculations using long multiple molecular dynamics simulations for the discovered compounds which showed high binding affinity against PARP-1 enzyme, as well as structure-based pharmacophore development (E-pharmacophore) studies were also studied.  相似文献   

7.
Herein we report the synthesis of two series of 4-phenylphthalazin-1-ones 11a-i and 4- benzylphthalazin-1-ones 16a-h as anti-lung adenocarcinoma agents with potential inhibitory activity against PARP-1. All the newly synthesized phthalazinones were evaluated for their anti-proliferative activity against A549 lung carcinoma cell line. Phthalazinones 11c-i and 16b, c showed significant cytotoxic activity against A549 cells at different concentrations (0.1, 1 and 10 μM) for two time intervals (24 h and 48 h). These nine phthalazinones were further examined for their inhibitory activity towards PARP-1. Compound 11c emerged as the most potent PARP-1 inhibitor with IC50 value of 97 nM, compared to that of Olaparib (IC50 = 139 nM). Furthermore, all these nine phthalazinones passed the filters of Lipinski and Veber rules, and predicted to have good pharmacokinetics properties in a theoretical kinetic study. On the other hand, western blotting in A549 cells revealed the enhanced expression of the cleaved PARP-1, alongside, with the reduced expression of pro-caspase-3 and phosphorylated AKT. In addition, ELISA assay confirmed the up-regulation of active caspase-3 and caspase-9 levels compared to the control, suggesting the activation of the apoptotic machinery in the A549 cells. Finally, molecular docking of 11c into PARP-1 active site (PDB: 5WRZ) was performed to explore the probable binding mode.  相似文献   

8.
Herein we report an assessment of 24 1,2,3,4-tetrahydroisoquinoline derivatives for potential DNase I (deoxyribonuclease I) inhibitory properties in vitro. Four of them inhibited DNase I with IC50 values below 200 μM. The most potent was 1-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-yl)propan-2-one ( 2 ) (IC50=134.35±11.38 μM) exhibiting slightly better IC50 value compared to three other active compounds, 2-[2-(4-fluorophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl]-1-phenylethan-1-one ( 15 ) (IC50=147.51±14.87 μM), 2-[2-(4-fluorophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl]cyclohexan-1-one ( 18 ) (IC50=149.07±2.98 μM) and 2-[6,7-dimethoxy-2-(p-tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl]cyclohexan-1-one ( 22 ) (IC50=148.31±2.96 μM). Cytotoxicity assessment of the active DNase I inhibitors revealed a lack of toxic effects on the healthy cell lines MRC-5. Molecular docking and molecular dynamics simulations suggest that interactions with Glu 39, His 134, Asn 170, Tyr 211, Asp 251 and His 252 are an important factor for inhibitors affinity toward the DNase I. Observed interactions would be beneficial for the discovery of new active 1,2,3,4-tetrahydroisoquinoline-based inhibitors of DNase I, but might also encourage researchers to further explore and utilize potential therapeutic application of DNase I inhibitors, based on a versatile role of DNase I during apoptotic cell death.  相似文献   

9.
New series of triazole-tetrahydropyrimidinone(thione) hybrids ( 9a – g ) were synthesized. FT-IR, 1H-NMR, 13C-NMR, elemental analysis and mass spectroscopic studies characterized the structures of the synthesized compounds. Then, the synthesized compounds were screened to determine the urease inhibitory activity. Methyl 4-(4-((1-(2-chlorobenzyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate ( 9c ) exhibited the highest urease inhibitory activity (IC50=25.02 μM) among the compounds which was almost similar to thiourea as standard (IC50=22.32 μM). The docking study of the screened compounds demonstrated that these compounds fit well in the urease active site. Based on the docking study, compound 9c with the highest urease inhibitory activity showed chelates with both Ni2+ ions of the urease active site. Moreover, the molecular dynamic study of the most potent compounds showed that they created important interactions with the active site flap residues, His322, Cys321, and Met317.  相似文献   

10.
Urease is an enzyme of amidohydrolase family and is responsible for the different pathological conditions in the human body including peptic ulcers, catheter encrustation, kidney stone formation, hepatic coma, encephalopathy, and many others. Therefore, the search for potent urease inhibitors has attracted major scientific attention in recent years. Urea and thiourea derivatives of tryptamine (125) were synthesized via reaction of tryptamine with different substituted phenyl isocyanates/isothiocyanates. The synthetic compounds were evaluated for their urease enzyme inhibitory activity and they exhibited good inhibitory potential against urease enzyme in the range of (IC50 = 11.4 ± 0.4–24.2 ± 1.5 μM) as compared to the standard thiourea (IC50 = 21.2 ± 1.3 μM). Out of twenty-five compounds, fourteen were found to be more active than the standard. Limited structure-activity relationship suggested that the compounds with CH3, and OCH3 substituents at aryl part were the most potent derivatives. Compound 14 (IC50 = 11.4 ± 0.4 μM) with a methyl substituent at ortho position was found to be the most active member of the series. Whereas, among halogen substituted derivatives, para substituted chloro compound 16 (IC50 = 13.7 ± 0.9 μM) showed good urease inhibitory activity. These synthetic derivatives were found to be non-cytotoxic in cellular assay. Kinetic studies revealed that the compounds 11, 12, 14, 17, 21, 22, and 24 showed a non-competitive type of inhibition. In silico study identified the possible bindings interactions of potential inhibitors with the active site of enzyme. These newly identified inhibitors of urease enzyme can serve as leads for further research and development.  相似文献   

11.
Benzothiazepines 1–3 inhibited acetylcholinesterase (AChE; EC 3.1.1.7) enzyme in a concentration-dependent fashion with IC50 values of 1.0 ± 0.002, 1.2 ± 0.005 and 1.3 ± 0.001 μM, respectively. By using linear-regression equations, Lineweaver-Burk, Dixon plots and their secondary replots were constructed which indicated that compounds 1–3 are non-competitive inhibitors of AChE with Ki values of 0.8 ± 0.04, 1.1 ± 0.002, and 1.5 ± 0.001 μM, respectively. Molecular docking studies revealed that all the compounds are completely buried inside the aromatic gorge of AChE, extending deep into the gorge of AChE. A comparison of the docking results of compounds 1–3 displayed that these compounds generally adopt the same binding mode in the active site of AChE. The superposition of the docked structures demonstrated that the non-flexible benzothiazepine always penetrate into the aromatic gorge through the six-membered ring A, which allowed the ligands to interact simultaneously with more than one subsites of the active center of AChE. The higher AChE inhibitory potential of compounds 1–3 was found to be the cumulative effect of hydrophobic contacts and π-π interactions between the ligands and AChE. The relatively high affinity of benzothiazepine 1 with AChE was found to be due to additional hydrogen bond in benzothiazepine 1-AChE complex. The results indicated that substitution of halogen and methyl groups by hydrogen at aromatic ring of the benzothiazepine decreased the affinity of these molecules towards enzyme that may be due to the polar non-polar repulsions of these moieties with the amino acid residues in the active site of AChE. The observed binding modes of benzothiazepines 1–3 in the active site of AChE explain the affinities of benzothiazepines and provide a rational basis for the structure-based drug design of benzothiazepines with improved pharmacological properties.  相似文献   

12.
Hypericum attenuatum Choisy is a traditional Chinese herbal plant with multiple therapeutic effects. In this study, bioactivity-guided fractionation of Hypericum attenuatum Choisy extracts afforded three major flavonoids (including astragalin, guaijaverin and quercetin), which possessed α-Glucosidase inhibitory activity with IC50 values of 33.90±0.68 μM, 17.23±0.75 μM and 31.90±0.34 μM, respectively. Circular dichroism analysis revealed that all the three compounds could interact with α-glucosidase by inducing conformational changes of the enzyme. Molecular docking results indicated that they could bind to the active site in α-glucosidase, and the binding force was driven mainly by hydrogen bond. Additionally, isobolographic analysis of the interactions between two compounds showed that all the combinations presented a synergistic α-glucosidase inhibitory effect at lower concentrations, and the combination between quercetin and guaijaverin or astragalin exhibited the best synergistic effect. This research might provide a theoretical basis for the application of Hypericum attenuatum Choisy in treating hyperglycemia.  相似文献   

13.
Acetylpolyamine and spermine oxidases are involved in the catabolism of polyamines. The discovery of selective inhibitors of these enzymes represents an important tool for the development of novel anti-neoplastic drugs. Here, a comparative study on acetylpolyamine and spermine oxidases inhibition by the polyamine analogue chlorhexidine is reported. Chlorhexidine is an antiseptic diamide, commonly used as a bactericidal and bacteriostatic agent. Docking simulations indicate that chlorhexidine binding to these enzymes is compatible with the stereochemical properties of both acetylpolyamine oxidase and spermine oxidase active sites. In fact, chlorhexidine is predicted to establish several polar and hydrophobic interactions with the active site residues of both enzymes, with binding energy values ranging from ?7.6 to ?10.6 kcal/mol. In agreement with this hypothesis, inhibition studies indicate that chlorhexidine behaves as a strong competitive inhibitor of both enzymes, values of Ki being 0.10 μM and 0.55 μM for acetylpolyamine oxidase and spermine oxidase, respectively.  相似文献   

14.
Suppression of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) along with nitric oxide reduction in RAW 264.7 cells by 7,8-dihydroxy-4-methylcoumarin, ethyl p-coumarate, ethyl caffeate and ethyl ferulate drove us to search structural-analogues of the aforementioned compounds through structure-based drug design. Docking studies revealed that substituted cinnamic acids and their ethyl esters (2-7c) showed higher GoldScore-fitness (GSF) and non-bonding interactions with target proteins than 7,8-dihydroxy-4-methylcoumarin (1a) and 7,8-dihydroxy-5-methylcoumarin (1b). With this background, the methylcoumarins (1a and 1b) and the cinnamic acid derivatives (2-7c) were fused in different permutations and combinations to generate sixty novel fused-cyclic coumarinolignans (FCLs) (813k). Docking studies on 813k indicated that several FCLs possess higher GSF, interesting active site interactions and distinctive π-π interactions compared to the standards (cleomiscosin A, diclofenac Na and prednisolone). Based on these findings, four novel FCLs (9d, 10d, 11d and 11e) were synthesized and tested for inhibition effect on TNF-α, IL-1β and IL-6 expressions in LPS and oxalate crystal-induced in-vitro models. Compound 10d exhibited significant effect (P < 0.0001 at 100 μM) with an IC50 value of 8.5 μM against TNF-α. Compound 11e possessed IC50 values of 13.29 μM and 17.94 μM against IL-6 and IL-1β, respectively. Study on SAR corroborated the requirement of C-4-methyl substituent in the coumarin moiety, dihydroxyl groups in the phenyl ring, and esterification of lignans for potent activity. Additionally, the reported excellent anti-inflammatory activity of cleomiscosin-A-glucoside was corroborated by from the higher GSF and better hydrophobic interactions than cleomsicosin A in the docking study. As an outcome, some novel and potentially active FCLs acting through NFκB and caspase 1 signaling pathways have been discovered as multiple cytokine inhibitors.  相似文献   

15.
In this study, 12 novel 2-((1-(4-(1H-imidazol-1-yl)phenyl)ethylidene)hydrazineylidene)-3-ethyl-4-(substitutephenyl)-2,3-dihydrothiazole derivatives were obtained. Among these compounds, 2-((1-(4-(1H-imidazol-1-yl)phenyl)ethylidene)hydrazineylidene)-4-([1,1′-biphenyl]-4-yl)-3-ethyl-2,3-dihydrothiazole ( 4h ) was chosen as the most active derivative in the series. According to the MTT results, compounds 4h and 4k showed activity with IC50=4.566±0.246 μM and IC50=4.537±0.463 μM, respectively. Unlike other derivatives, compound 4h carries a phenyl ring in the 4th position of the phenyl ring. This bulky group allowed the compound to settle in the enzyme active site. Dynamic studies show that the stability of the compound does not change over 40 ns. RMSD, RMSF and Rg parameters all remained within acceptable limits. The uninterrupted aromatic hydrogen bonding of the enzyme active site with the important amino acids Cys919, Glu885 and Asp1046 proves the inhibitory potential of compound 4h on the VEGFR-2 enzyme. It is thought that more active compounds will be reached with the derivatives to be synthesized starting from compound 4h .  相似文献   

16.
Despite of many diverse biological activities exhibited by benzimidazole scaffold, it is rarely explored for the urease inhibitory potential. For that purpose, benzimidazole analogues 1–19 were synthesized and screened for in vitro urease inhibitory potential. Structures of all synthetic analogues were deduced by different spectroscopic techniques. All analogues revealed inhibition potential with IC50 values of 0.90 ± 0.01 to 35.20 ± 1.10 μM, when compared with the standard thiourea (IC50 = 21.40 ± 0.21 μM). Limited SAR suggested that the variations in the inhibitory potentials of the analogues are the result of different substitutions on phenyl ring. In order to rationalize the binding interactions of most active compounds with the active site of urease enzyme, molecular docking study was conducted.  相似文献   

17.
Twelve new thiazolidinones were synthesized and, together with 41 previously synthesized thiazolidinones, evaluated for inhibitory activity against deoxyribonuclease I (DNase I) in vitro. Ten compounds inhibited commercial bovine pancreatic DNase I with an IC50 below 200 μM and showed to be more potent DNase I inhibitors than crystal violet (IC50 = 365.90 ± 47.33 μM), used as a positive control. Moreover, three compounds were active against DNase I in rat liver homogenate, having an IC50 below 200 μM. (3-Methyl-1,4-dioxothiazolidin-2-ylidene)-N-(2-phenylethyl)ethanamide ( 41 ) exhibited the most potent DNase I inhibition against both commercial and rat liver DNase I with IC50 values of 115.96 ± 11.70 and 151.36 ± 15.85 μM, respectively. Site Finder and molecular docking defined the thiazolidinones interactions with the most important catalytic residues of DNase I, including the H-acceptor interaction with residues His 134 and His 252 and/or H-donor interaction with residues Glu 39 and Asp 168. The three most active compounds against both commercial and rat liver DNase I ( 31 , 38 , and 41 ) exhibited favorable physico-chemical, pharmacokinetic, and toxicological properties. These observations could be utilized to guide the rational design and optimization of novel thiazolidinone inhibitors. Thiazolidinones as novel DNase I inhibitors could have potential therapeutic applications due to the significant involvement of DNase I in the pathophysiology of many disease conditions.  相似文献   

18.
Novel chiral benzimidazole amine hybrids ( 4a – 4d ) were synthesized from commercially available amine [(R)- (+)-phenylethylamine, (−) (S)-(-)-phenylethylamine, (−) (R)-(-)-cyclohexylethylamine, (S)-(+)-cyclohexylethylamine] and 2-(chloromethyl)-N-tosyl-1H-benzimidazole. The synthesized compounds ( 4a – 4d ) were characterized by IR, NMR, and LC/MS analysis. The inhibitory effect of 4a – 4d on human erythrocytes carbonic anhydrase I (hCA-I), II (hCA-II), and acetylcholinesterase (AChE) activity was investigated. For hCA-I, the IC50 values of 4a – 4d were found to be 4.895 μM, 1.750 μM, 0.173 μM, and 0.620 μM, respectively, and for hCA-II, the IC50 values of 4a – 4d were found to be 0.469 μM, 0.380 μM, 0.233 μM, 0.635 μM, respectively. Furthermore, IC50 values of 4a – 4d on AChE were found as 87.5 nM, 100 nM, 26.92 nM, and 100 nM, respectively. In addition, molecular docking analysis was performed to evaluate the affinity of 4a – 4d against hCA-I, hCA-II, and AChE and explain their binding interactions.  相似文献   

19.
A new series of 1,3,5-trisubstituted 2-pyrazolines for the inhibition of cyclooxygenase-2 (COX-2) were synthesized. The designed structures include a COX-2 pharmacophore SO2CH3 at the para-position of the phenyl ring located at C-5 of a pyrazoline scaffold. The synthesized compounds were tested for in vitro COX-1/COX-2 inhibition and cell toxicity against human colorectal adenocarcinoma cell lines HT-29. The lead compound (4-chlorophenyl){5-[4-(methanesulfonyl)phenyl]-3-phenyl-4,5-dihydro-1H-pyrazol-1-yl}methanone ( 16 ) showed significant COX-2 inhibition (IC50=0.05±0.01 μM), and antiproliferative activity (IC50=5.46±4.71 μM). Molecular docking studies showed that new pyrazoline-based compounds interact via multiple hydrophobic and hydrogen-bond interactions with key binding site residues of the COX-2 enzyme.  相似文献   

20.
In the current study, forty-four new [3-(2/3/4-methoxyphenyl)-6-oxopyridazin-1(6H)-yl]methyl carbamate derivatives were synthesized and evaluated for their ability to inhibit electric eel acetylcholinesterase (EeAChE) and equine butyrylcholinesterase (eqBuChE) enzymes. According to the inhibitory activity results, [3-(2-methoxyphenyl)-6-oxopyridazin-1(6H)-yl]methyl heptylcarbamate (16c, eqBuChE, IC50 = 12.8 μM; EeAChE, no inhibition at 100 μM) was the most potent eqBuChE inhibitor among the synthesized compounds and was found to be a moderate inhibitor compared to donepezil (eqBuChE, IC50 = 3.25 μM; EeAChE, IC50 = 0.11 μM). Kinetic and molecular docking studies indicated that compounds 16c and 14c (hexylcarbamate derivative, eqBuChE, IC50 = 35 μM; EeAChE, no inhibition at 100 μM) were mixed-type inhibitors which accommodated within the catalytic active site (CAS) and peripheral anionic site (PAS) of hBuChE through stable hydrogen bonding and π-π stacking. Furthermore, it was determined that [3-(2-methoxyphenyl)-6-oxopyridazin-1(6H)-yl]methyl (4-methylphenyl)carbamate 7c (eqBuChE, IC50 = 34.5 μM; EeAChE, 38.9% inhibition at 100 μM) was the most active derivative against EeAChE and a competitive inhibitor binding to the CAS of hBuChE. As a result, 6-(2-methoxyphenyl)pyridazin-3(2H)-one scaffold is important for the inhibitory activity and compounds 7c, 14c and 16c might be considered as promising lead candidates for the design and development of selective BuChE inhibitors for Alzheimer’s disease treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号