首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The patterns of chemokine expression play a decisive role in both breast cancer prognosis and metastasis. In a recent article published in Bioscience Reports, ‘Bioinformatics identification of CCL8/21 as potential prognostic biomarkers in breast cancer microenvironment’, Chen et al. presented that expression of both CCL8 and CCL21 among CCL-type chemokines is prominent for prognosis of the breast cancer, metastasis and chemoresistance (Biosci Rep (2020) 40(11); DOI: 10.1042/BSR20202042). Identifying the sources of the CCL8 and CCL21 in the tumor microenvironment and developing targeting strategies for these chemokines to prevent tumor growth will improve both prognosis and therapeutic outcomes.  相似文献   

2.

Background

Previous findings support the concept that IL-9 may play a significant role in mediating both pro-inflammatory and changes in airway responsiveness that characterizes the atopic asthmatic state. We previously demonstrated that human airway smooth muscle (ASM) cells express a functional IL-9R that mediate CCL11 expression. However, the signaling pathway governing this effect is not well understood.

Methodology/Principal Findings

In this study, we showed that IL-9 mediated CCL11 expression in ASM cells does not rely on STAT6 or STAT5 but on STAT3 pathway. IL-9 induced rapid STAT3 activation in primary ASM cells that was not observed in case of STAT6 or STAT5. STAT3 binding to CCL11 promoter was also observed in vivo upon IL-9 stimulation of ASM cells. Disruption of STAT3 activity with SH2 domain binding inhibitory peptide results in significant reduction of IL-9 mediated CCL11 promoter activity. DN STAT3β over-expression in ASM cells, but not Ser 727 STAT3 or STAT6 DN, abolishes IL-9 mediated CCL11 promoter activity. Finally, STAT3 but not STAT6 silenced ASM cells showed significant reduction in IL-9 mediated CCL11 promoter activity and mRNA expression.

Conclusion/Significance

Taken together, our results indicate that IL-9 mediated CCL11 via STAT3 signalling pathway may play a crucial role in airway inflammatory responses.  相似文献   

3.
Colorectal cancer (CRC) liver metastasis is a significant clinical problem for which better therapies are urgently needed. Tumor-associated macrophage, a major cell population in the tumor microenvironment, is a known contributor to primary cancer progression and cancer metastasis. Here, we found TAM recruitment and M2 polarization were increased in the hepatic metastatic lesion compared with the primary site of human CRC tissues. Moreover, Pearson correlation analysis showed that TAM recruitment and polarization were closely correlated with the elevated TCF4 expression in the metastatic site. To investigate the role of TCF4 in CRC liver metastasis, we generated a syngeneic mouse model using MC38 cells splenic injection. Results from in vivo experiments and mouse models revealed that TCF4 deficiency in MC38 cells does not affect their proliferation and invasion; however, it reduces TAM infiltration and M2 polarization in the metastasis site. Further studies indicated that these effects are mediated by the TCF4 regulated CCL2 and CCR2 expression. TCF4 or CCL2 silencing in the tumor cells prevent CRC liver metastasis in the mouse model. Altogether, these findings suggest that the TCF4-CCL2-CCR2 axis plays an essential role in CRC liver metastasis by enhancing TAMs recruitment and M2 polarization.Subject terms: Cancer microenvironment, Cancer models  相似文献   

4.
Peroxiredoxin 6 (PRDX6) is a bifunctional protein with both glutathione peroxidase (GPx) and iPLA2 activities. Even though several pathophysiological functions have been studied, the definitive role of PRDX6 in tumor growth is not clear. Here, we compared carcinogen-induced tumor growth in PRDX6-transgenic (Tg) mice and non-Tg mice to evaluate the roles of PRDX6 in lung tumor development. Urethane (1 g/kg)-induced tumor incidence in PRDX6-Tg mice was significantly higher compared to non-Tg mice. In the tumors of PRDX6-Tg mice, the activation of JAK2/STAT3 and STAT3 DNA binding were also increased, accompanied by increased GPx and iPLA2 activities. PRDX6 was colocalized with JAK2 in tumor tissues and lung cancer cells and also showed physical interaction with JAK2. We found that increasing levels of PRDX6 increase the activation of the JAK2/STAT3 pathway. Furthermore, PRDX6-Tg mice showed altered cytokine levels in the tumors, especially leading to increased CCL5 levels. We validated that the activation of JAK2 was also decreased in lung tumors of CCR5−/− mice, and CCL5 increased the JAK2/STAT3 pathway in the lung cancer cells. Thus, our findings suggest that PRDX6 promotes lung tumor development via its mediated and CCL5-associated activation of the JAK2/STAT3 pathway.  相似文献   

5.
Recent studies have confirmed that IL-6/GP130 targets are closely associated with tumor growth, metastasis and drug resistance. 5-Fluorouracil (5-FU) is the most common chemotherapeutic agent for colon cancer but is limited due to chemoresistance and high cytotoxicity. Bazedoxifene (BZA), a third-generation selective estrogen receptor modulator, was discovered by multiple ligand simultaneous docking and drug repositioning approaches to have a novel function as an IL-6/GP130 target inhibitor. Thus, we speculated that in colon cancer, the anti-tumor efficacy of 5-FU might be increased in combination with IL-6/GP130 inhibitors. CCK8 assay and colony formation assay were used to detect the cell proliferation and colony formation. We measured the IC50 value of 5-FU alone and in combination with BZA by cell viability inhibition. Cell migration and invasion ability were tested by scratch migration assays and transwell invasion assays. Flow cytometric analysis for cell apoptosis and cell cycle. Quantitative real-time PCR was used to detect Bad, Bcl-2 and Ki-67 mRNA expression and western blotting (WB) assay analyzed protein expression of Bad/Bcl-2 signaling pathway. Further mechanism study, WB analysis detected the key proteins level in IL-6/GP130 targets and JAK/STAT3, Ras/Raf/MEK/ERK, and PI3K/AKT/mTOR signaling pathway. A colon cancer xenograft model was used to further confirm the efficacy of 5-FU and BZA in vivo. The GP130, P-STAT3, P-AKT, and P-ERK expression levels were detected by immunohistochemistry in the xenograft tumor. BZA markedly potentiates the anti-tumor function of 5-FU in vitro and in vivo. Conversely, 5-FU activation is reduced following exogenous IL-6 treatment in cells. Further mechanistic studies determined that BZA treatment enhanced 5-FU anti-tumor activation by inhibiting the IL-6/GP130 signaling pathway and the phosphorylation status of the downstream effectors AKT, ERK and STAT3. In contrast, IL-6 can attenuate 5-FU function via activating IL-6R/GP130 signaling and the P-AKT, P-ERK and P-STAT3 levels. This study firstly verifies that targeting IL-6/GP130 signaling can increase the anti-tumor function of 5-FU; in addition, this strategy can sensitize cancer cell drug sensitivity, implying that blocking IL-6/GP130 targets can reverse chemoresistance. Therefore, combining 5-FU and IL-6/GP130 target inhibitors may be a promising approach for cancer treatment.  相似文献   

6.
肿瘤因其易转移、易复发的特性成为一大难以治愈的疾病,已严重威胁到人类的生命健康。肿瘤微环境在肿瘤的生长、迁移、免疫逃逸、血管生成等过程中具有明显的促进作用。肿瘤微环境中细胞分泌的CCL5发挥的作用已受到越来越多的关注,且许多研究表明抑制CCL5/CCR5生物学轴可抑制肿瘤迁移、血管生成等,预示着这可能成为一个新的肿瘤治疗策略。本文总结了近年来关于CCL5/CCR5生物学轴的研究,包括CCL5/CCR5生物学轴介导的肿瘤生长迁移、血管生成、免疫逃逸等作用,及CCR5抑制剂在肿瘤治疗中的广阔前景。  相似文献   

7.
8.
9.
We have previously demonstrated that extracellular adenosine 5''-triphosphate (ATP) promotes breast cancer cell chemoresistance. However, the underlying mechanism remains unclear. Using a cDNA microarray, we demonstrated that extracellular ATP can stimulate hypoxia-inducible factor (HIF) signaling. In this study, we report that hypoxia-inducible factor 1α (HIF-1α) was upregulated after ATP treatment and mediated the ATP-driven chemoresistance process. We aimed to investigate the mechanisms and identify potential clinically relevant targets that are involved. Using mass spectrometry, we found that aldolase A (ALDOA) interacts with HIF-1α and increases HIF-1α expression. We then demonstrated that STAT3-ALDOA mediates ATP-HIF-1α signaling and upregulates the HIF-1 target genes adrenomedullin (ADM) and phosphoinositide-dependent kinase-1 (PDK1). Moreover, we show that PI3K/AKT acts upstream of HIF-1α in ATP signaling and contributes to chemoresistance in breast cancer cells. In addition, HIF-1α-knockdown or treatment with direct HIF inhibitors combined with the ATP hydrolase apyrase in MDA-MB-231 cells induced enhanced drug sensitivity in nude BALB/c mice. We then used in vitro spheroid formation assays to demonstrate the significance of ATP-HIF-1α in mediating chemoresistance. Furthermore, considering that indirect HIF inhibitors are effective in clinical cancer therapy, we treated tumor-bearing BALB/c mice with STAT3 and PI3K/AKT inhibitors and found that the dual-targeting strategy sensitized breast cancer to cisplatin. Finally, using breast cancer tissue microarrays, we found that ATP-HIF-1α signaling is associated with cancer progression, poor prognosis, and resistance to chemotherapy. Taken together, we suggest that HIF-1α signaling is vital in ATP-driven chemoresistance and may serve as a potential target for breast cancer therapies.Subject terms: Breast cancer, Cell signalling  相似文献   

10.
11.
Breast cancer is the most aggressive form of all cancers, with high incidence and mortality rates. The purpose of the present study was to investigate the molecular mechanism by which methylsulfonylmethane (MSM) inhibits breast cancer growth in mice xenografts. MSM is an organic sulfur-containing natural compound without any toxicity. In this study, we demonstrated that MSM substantially decreased the viability of human breast cancer cells in a dose-dependent manner. MSM also suppressed the phosphorylation of STAT3, STAT5b, expression of IGF-1R, HIF-1α, VEGF, BrK, and p-IGF-1R and inhibited triple-negative receptor expression in receptor-positive cell lines. Moreover, MSM decreased the DNA-binding activities of STAT5b and STAT3, to the target gene promoters in MDA-MB 231 or co-transfected COS-7 cells. We confirmed that MSM significantly decreased the relative luciferase activities indicating crosstalk between STAT5b/IGF-1R, STAT5b/HSP90α, and STAT3/VEGF. To confirm these findings in vivo, xenografts were established in Balb/c athymic nude mice with MDA-MB 231 cells and MSM was administered for 30 days. Concurring to our in vitro analysis, these xenografts showed decreased expression of STAT3, STAT5b, IGF-1R and VEGF. Through in vitro and in vivo analysis, we confirmed that MSM can effectively regulate multiple targets including STAT3/VEGF and STAT5b/IGF-1R. These are the major molecules involved in tumor development, progression, and metastasis. Thus, we strongly recommend the use of MSM as a trial drug for treating all types of breast cancers including triple-negative cancers.  相似文献   

12.
13.
Metastatic spread of cancer to distant vital organs, including lung and bone, is the overwhelming cause of breast cancer mortality and morbidity. Effective treatment of systemic metastasis relies on the identification and functional characterization of metastasis mediators to multiple organs. Overexpression of the chemokine (C-C motif) ligand 2 (CCL2) is frequently associated with advanced tumor stage and metastatic relapse in breast cancer. However, the functional mechanism of CCL2 in promoting organ-specific metastasis of breast cancer has not been rigorously investigated. Here, we used organ-specific metastatic sublines of the MDA-MB-231 human breast cancer cell line to demonstrate that overexpression of CCL2 promotes breast cancer metastasis to both lung and bone. Conversely, blocking CCL2 function with a neutralizing antibody reduced lung and bone metastases. The enhancement of lung and bone metastases by CCL2 was associated with increased macrophage infiltration and osteoclast differentiation, respectively. By performing functional assays with primary cells isolated from the wild type, CCL2 and CCR2 knock-out mice, we showed that tumor cell-derived CCL2 depends on its receptor CCR2 (chemokine, CC motif, receptor 2) expressed on stromal cells to exert its function in promoting macrophage recruitment and osteoclast differentiation. Overall, these data demonstrated that CCL2-expressing breast tumor cells engage CCR2+ stromal cells of monocytic origin, including macrophages and preosteoclasts, to facilitate colonization in lung and bone. Therefore, CCL2 and CCR2 are promising therapeutic targets for simultaneously inhibiting lung and bone metastasis of breast cancer.Breast cancer is the most common malignancy in women in the United States, with an estimated 182,000 new cases and 40,000 deaths in 2008 (1). Late stage breast cancer patients develop metastases in bone, lung, liver, brain, and other organs, which are responsible for most breast cancer-related mortality and morbidity (2). Severe complications from bone metastasis include debilitating bone fractures, nerve compression and bone pain, and hypercalcemia (35), whereas lung metastasis is accompanied by cough, bloody sputum, rib cage pain, and, eventually, failure of the respiratory functions (6). Colonization of different secondary organs by breast cancer is believed to be a complex, multigenic process that depends on productive interactions between tumor cells and stromal microenvironments through concerted actions of organ-specific metastasis genes (7, 8). Functional genomic analysis of preclinical models of breast cancer to bone, lung, and brain have identified distinct sets of organ-specific metastasis genes (911), providing novel mechanistic insights into key rate-limiting steps of metastasis to different organs. However, as advanced breast cancer patients often suffer from metastases at several secondary organs, identifying genes that are capable of instigating metastasis to multiple sites may provide the ideal targets for therapeutic intervention of systemic metastasis.Chemokines are small (8–14 kDa) proteins classified into four conserved groups (CXC, CC, C, and CX3C) based on the position of the first two cysteines that are adjacent to the amino terminus (12). They are chemotactic cytokines that stimulate directed migration of leukocytes in response to inflammatory signals. Chemokines are also involved in the maintenance of hematopoietic homeostasis, regulation of cell proliferation, tissue morphogenesis, and angiogenesis (13). Chemokines bind to the seven-transmembrane domain receptors to elicit downstream molecular events that coordinate cell movement. Even though chemokines are unlikely to be a contributing factor for tumor initiation, they can have pleiotropic effects on tumor progression (13, 14). Among more than 50 human chemokines, CCL2 is of particular importance. CCL2, also called monocyte chemoattractant protein-1 (MCP-1), is a potent chemoattractant for monocytes, memory T lymphocytes, and natural killer cells (15). It is involved in a number of inflammatory conditions associated with monocyte recruitment, including delayed hypersensitivity reactions, bacterial infection, arthritis, and renal disease (15). The importance of CCL2 in cancer was manifested by its overexpression in a variety of tumor types, including glioma, ovarian, esophagus, lung, breast, and prostate cancers (1517). In prostate cancer, CCL2 expression levels was associated with advanced pathological stage (16). Importantly, CCL2-neutralizing antibodies inhibit bone resorption in vitro and bone metastasis in vivo (1820). In lung cancer, serum CCL2 levels were elevated in lung cancer patients with bone metastasis compared with localized diseases. Neutralizing antibodies against CCL2 also inhibited the tumor conditioned media-induced osteoclast formation in vitro and bone metastasis in vivo (17). Taken together, these findings suggested a role of CCL2 in bone metastasis.A potential role of CCL2 in breast cancer progression and metastasis has been indicated by the analysis of CCL2 expression of tumor and serum samples from breast cancer patients. Serum CCL2 levels were significantly higher in postmenopausal breast cancer patients than in age-matched controls (21). Over 50% of breast cancer tumor samples had intense staining of CCL2 in tumor cells (22). Prognostic analysis further revealed that high expression of CCL2 was correlated with advanced tumor stage, lymph node metastasis (23), and early relapse (24). CCL2 up-regulation in breast tumors was also associated with the infiltration of tissue-associated macrophages (TAMs)3 and with increased microvessel density (22, 24). TAMs have been known to contribute to primary tumor progression and metastasis of breast cancer (25), which is supported by epidemiological evidence showing that TAM infiltration portended a poor clinical outcome (26, 27). However, whether the function of CCL2 in modulating activity of macrophages and possibly other cell types is important for breast tumor organotropic metastasis has not been rigorously investigated. CCL2 may engage organ-specific cell types derived from the same bone marrow myelomonocytic progenitors. These progenitors differentiate into osteoclast precursors in bone or into blood monocytes that eventually become mature macrophages in different tissues, like alveolar macrophages in lung (28). These stromal cell types of myelomonocytic origin may contribute to different functions in different organ-specific metastases. Another unresolved question regarding the function of CCL2 in tumor-stroma interaction is the functional involvement of CCL2 receptors. CCL2 can bind to both CCR2 and CCR4 (29, 30). Loss of function studies in mice showed CCL2 and CCR2 knock-out mice displayed similar impairments in monocyte migration (31, 32), suggesting that CCR2 is the major functional receptor for CCL2. Understanding whether CCR2 deficiency in stromal cells leads to compromised monocyte engagement by CCL2-expressing tumor cells may have important implications in designing targeting therapeutics against the CCL2/CCR2 axis.In this study, we used the recently developed organ-specific metastatic sublines of the human breast cancer cell MDA-MB-231 (9, 10, 33) and showed that overexpression of CCL2 promotes both lung and bone metastases. This function was associated with increased TAM infiltration in lung metastasis and increased osteoclast differentiation in bone metastasis, respectively. Furthermore, by using macrophages and bone marrow cells isolated from wild type, CCL2-deficient, and CCR2-deficient mice, we showed that CCR2 expression in stromal cells is essential for tumor-derived CCL2 to recruit macrophages and promote osteoclastogenesis. Targeting tumor-derived CCL2 by a neutralizing antibody significantly reduced metastasis formation in both bone and lung.  相似文献   

14.
15.
STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion   总被引:16,自引:0,他引:16  
It is well established that tumor progression is associated with the accumulation of myeloid suppressive cells, which in mice include Gr-1+ immature myeloid cells and F4/80+ macrophages. The paradox is that with the exception of terminal stages of the disease or chemotherapy treatment, tumor-bearing mice or cancer patients do not display a profound systemic immune suppression. We therefore raised the question as to whether myeloid cell-mediated T cell suppression is controlled at a local level at the site of the tumor. We have demonstrated that after adoptive transfer to tumor-bearing recipients, Gr-1+ (immature myeloid cells) freshly isolated from spleens of tumor-bearing mice become F4/80+ tumor-associated macrophages (TAM). These TAM, but not F4/80+ macrophages or Gr-1+ cells freshly isolated from spleens of tumor-bearing or naive mice were able to inhibit T cell-mediated immune response in vitro via induction of T cell apoptosis. Arginase and NO were both responsible for the apoptotic mechanism, and were seen only in TAM, but not in freshly isolated Gr1+ cells. Using the analysis of STAT activity in combination with STAT knockout mice, we have determined that STAT1, but not STAT3 or STAT6, was responsible for TAM-suppressive activity.  相似文献   

16.
17.
18.
Glioblastoma (GBM) is a prevalent and highly lethal form of glioma, with rapid tumor progression and frequent recurrence. Excessive outgrowth of pericytes in GBM governs the ecology of the perivascular niche, but their function in mediating chemoresistance has not been fully explored. Herein, we uncovered that pericytes potentiate DNA damage repair (DDR) in GBM cells residing in the perivascular niche, which induces temozolomide (TMZ) chemoresistance. We found that increased pericyte proportion correlates with accelerated tumor recurrence and worse prognosis. Genetic depletion of pericytes in GBM xenografts enhances TMZ-induced cytotoxicity and prolongs survival of tumor-bearing mice. Mechanistically, C-C motif chemokine ligand 5 (CCL5) secreted by pericytes activates C-C motif chemokine receptor 5 (CCR5) on GBM cells to enable DNA-dependent protein kinase catalytic subunit (DNA-PKcs)-mediated DDR upon TMZ treatment. Disrupting CCL5-CCR5 paracrine signaling through the brain-penetrable CCR5 antagonist maraviroc (MVC) potently inhibits pericyte-promoted DDR and effectively improves the chemotherapeutic efficacy of TMZ. GBM patient-derived xenografts with high CCL5 expression benefit from combined treatment with TMZ and MVC. Our study reveals the role of pericytes as an extrinsic stimulator potentiating DDR signaling in GBM cells and suggests that targeting CCL5-CCR5 signaling could be an effective therapeutic strategy to improve chemotherapeutic efficacy against GBM.Subject terms: Cancer microenvironment, CNS cancer, Cancer therapy  相似文献   

19.
In colorectal cancer (CRC), overt metastases often appear after years of latency. But the signals that cause micro-metastatic cells to remain indolent, thereby enabling them to survive for extended periods of time, are unclear. Immunofluorescence and co-immunoprecipitation assays were used to explore the co-localization of CCL7 and CCR2. Immunohistochemical (IHC) assays were employed to detect the characters of metastatic HT29 cells in mice liver. Flow cytometry assays were performed to detect the immune cells. Bruberin vivo MS FX Pro Imager was used to observe the liver metastasis of CRC in mice. Quantitative real-time PCR (qRT-PCR) and western blot were employed to detect the expressions of related proteins. Trace RNA sequencing was employed to identify differentially expressed genes in MDSCs from liver micro-M and macro-M of CRC in mice. Here, we firstly constructed the vitro dormant cell models and metastatic dormant animal models of colorectal cancer. Then we found that myeloid-derived suppressor cells (MDSCs) were increased significantly from liver micro-metastases to macro-metastases of CRC in mice. Moreover, monocytic MDSCs (Mo-MDSC) significantly promoted the dormant activation of micro-metastatic cells compared to polymorphonuclear MDSCs (PMN-MDSC). Mechanistically, CCL7 secreted by Mo-MDSCs bound with membrane protein CCR2 of micro-metastatic cells and then stimulated the JAK/STAT3 pathway to activate the dormant cells. Low-dose administration of CCL7 and MDSCs inhibitors in vivo could significantly maintain the CRC metastatic cells dormant status for a long time to reduce metastasis or recurrence after radical operation. Clinically, the level of CCL7 in blood was positively related to the number of Mo-MDSCs in CCR patients, and highly linked with the short-time recurrence and distant metastasis. CCL7 secreted by Mo-MDSCs plays an important role in initiating the outgrowth of metastatic latent CRC cells. Inhibition of CCL7 might provide a potential therapeutic strategy for the prevention of metastasis recurrence.Subject terms: Cancer models, Colorectal cancer, Metastasis, Tumour immunology  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号