首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 293 毫秒
1.
People with schizophrenia show a two- to three-fold increased risk to die prematurely. Mortality is accounted for by a combination of factors (patients’ life style, suicide, premature cardiovascular disease, metabolic syndromes and, not so often mentioned, sudden death). The cause of sudden death in schizophrenia is unknown, but cardiac arrhythmia plays a potential role. Patients with schizophrenia are at high risk for cardiovascular disease, and some antipsychotics may be associated with cardiovascular adverse events (e.g., electrocardiograph QT interval prolongation), suggesting that this could lead to sudden cardiac death. Animal and clinical studies have shown that omega-3 fatty acids could be useful in the prevention and treatment of schizophrenia. As omega-3 fatty acids have been considered a cardioprotector agent, reducing cardiac arrhythmias and hence sudden cardiac deaths and given their relative safety and general health benefits, our update article summarizes the knowledge by the possible positive effects of omega-3 supplementation and fish consumption against sudden cardiac death in patients with schizophrenia. However, fish species should be selected with caution due to contamination with toxic methylmercury.  相似文献   

2.
《Reproductive biology》2014,14(1):44-50
During the last 15 years spectacular progress has been achieved in knowledge on the dog genome organization and the molecular background of hereditary diseases in this species. A majority of canine genetic diseases have their counterparts in humans and thus dogs are considered as a very important large animal model in human biomedicine. Among canine monogenic diseases with known causative gene mutations there are two large groups classified as retinal dystrophies and lysosomal storage diseases. Specific types of these diseases are usually diagnosed in a single or several breeds. A well known disorder, restricted to a single breed, is congenital stationary night blindness described in Briards. This disease is a counterpart of Leber amaurosis in children. On the other hand, one of the most common monogenic human diseases (Duchenne muscular dystrophy), has its canine counterparts in several breeds (e.g., the Golden retriever, Beagle and German short-haired pointer). For some of the canine diseases gene therapy strategy was successfully applied, e.g., for congenital stationary night blindness, rod-cone dystrophy and muccopolysaccharydoses type I, IIIB and VII. Since phenotypic variability between the breeds is exceptionally high, the dog is an interesting model to study the molecular background of congenital malformations (e.g., dwarfism and osteoporosis imperfecta). Also disorders of sexual development (DSD), especially testicular or ovotesticular DSD (78,XX; SRY-negative), which is widely distributed across dozens of breeds, are of particular interest. Studies on the genetic background of canine cancers, a major health problem in this species, are also quite advanced. On the other hand, genetic studies on canine counterparts of major human complex diseases (e.g., obesity, the metabolic syndrome and diabetes mellitus) are still in their infancy.  相似文献   

3.
酸性鞘磷脂酶/神经酰胺通路可介导细胞凋亡、炎症和自噬等多种细胞活动,与心脑血管疾病、代谢类疾病、肺部和肝部疾病以及 神经系统疾病等多种疾病的发生、发展密切相关。酸性鞘磷脂酶现已成为多种疾病的临床生物标记物和潜在的治疗靶点。综述酸性鞘磷脂 酶/神经酰胺通路在各种疾病中的生物学功能和作用机制最新研究进展,旨在为相关疾病的治疗提供新思路。  相似文献   

4.
心外膜脂肪组织(epicardial adipose tissue,EAT)是一种特殊的具有局部和全身效应的多功能脂肪组织,其解剖位置特殊,代谢和组织学特征明显区别于其他脂肪组织.在生理条件下,EAT具有产热和保护心脏的作用;而在病理状态下,EAT通过分泌多种促炎细胞因子/脂肪因子,参与心血管疾病(cardiovascular disease,CVD)的发生发展.EAT的厚度/体积及其引发的慢性炎症反应与CVD的严重程度呈显著正相关,运动、减轻体重和药物等均可恢复EAT对心血管的保护作用,提示其有望成为CVD诊断、治疗和预后评价的指标.本文通过对EAT的特征、功能、调节机制以及在血管损伤后重构、动脉粥样硬化、高血压病、心律失常、心功能不全等CVD中的作用做一综述,以期为CVD的防治提供新靶点.  相似文献   

5.
Myo-inositol was found to possess several beneficial effects on the organism. The effect of myo-inositol on ethanol-induced metabolic changes and insulin concentration was investigated in growing rats. The increase in liver triglycerides induced by ethanol drinking (10% ethanol solution as the only drinking fluid for 10 days) was completely abolished by simultaneous treatment with myo-inositol (0. 1 g/100 g b.w., every day given intragastrically). The ethanol-evoked decrease in blood insulin and the increase in liver glycogen were also partially prevented by myo-inositol. Myo-inositol did not cause any undesirable metabolic changes in the rats. The results indicate that myo-inositol may be useful in the treatment of some metabolic consequences of alcohol drinking.  相似文献   

6.
Liver fibrosis is a common pathological feature of many chronic liver diseases. To characterize the entire panorama of proteome changes in dimethylnitrosamine (DMN)‐induced liver fibrosis, isobaric tags for relative and absolute quantitation (iTRAQ)‐based differential proteomic analysis is performed with DMN‐induced liver fibrosis rats. A total of 4155 confidently identified proteins are found, with 365 proteins showing significant changes (fold changes of >1.5 or < 0.67, p < 0.05). In metabolic activation, proteins assigned to drug metabolism enzymes (e.g., CYP2D1) change, suggesting that the liver protection mechanism is activated to relieve DMN toxicity. In addition, the altered proteins of immune response and oxidative stress may activate hepatic stellate cells. Glucose metabolism disorder in DMN model rats is demonstrated by a decrease in key enzymes (e.g., ACSL1) in fatty acid metabolism, a tricabolic acid cycle‐related enzyme (SDH), glycogenolysis enzyme, and gluconeogenesis enzymes (PC, PCKGC) and by an increase in glycolysis enzymes (e.g., HXK1). Meanwhile, alterations in iron and calcium ion homeostasis proteins are observed. Our results also show that mitochondrial dysfunction may be involved in DMN hepatotoxicity. In conclusion, these altered liver proteins in the DMN model and control rats provide data for understanding the functional mechanism of liver fibrosis.  相似文献   

7.
《Biomarkers》2013,18(6):466-475
Context: Growth differentiation factor 15 (GDF-15) is a novel cytokine showing close association with cardiovascular diseases. The biological mechanism and clinical use of GDF-15 in cardiovascular diseases have been well demonstrated. We review recent investigations from both basic research and clinical trials into the biological role of GDF-15.

Methods: The data were obtained mainly from MedLine via PubMed and from our own investigations.

Results: Laboratory investigations revealed that GDF-15 has biphasic effects on cellular survival by several signaling pathways. GDF-15 participates in several cardiovascular pathological processes such as cardiac remodeling, ischemia/reperfusion injury and atherosclerotic plaque formation. As well, GDF-15 was found a prognostic biomarker of heart failure and acute coronary syndrome. The evidence for diagnostic or therapeutic utility is poor.

Conclusion: GDF-15 has great potential as a biomarker in cardiovascular diseases, especially for prognosis, and is seen as a myocardial protective cytokine, but the exact mechanism of GDF-15 in cardiovascular diseases remains unknown.  相似文献   

8.
Rosiglitazone is a thiazolidinedione, a synthetic PPARγ receptor agonist with insulin-sensitizing properties that is used as an antidiabetic drug. In addition to improving glycemic control through actions in metabolic target tissues, rosiglitazone has numerous biological actions that impact on cardiovascular homeostasis. Some of these actions are helpful (e.g., improving endothelial function), whereas others are potentially harmful (e.g., promoting fluid retention). Since cardiovascular morbidity and mortality are major endpoints for diabetes, it is essential to understand how the natural history of diabetes alters the net benefits and risks of rosiglitazone therapy. This complex issue is an important determinant of optimal use of rosiglitazone and is critical for understanding cardiovascular safety issues. We give special attention to the effects of rosiglitazone in diabetic patients with stable coronary artery disease and the impact of rosiglitazone actions on atherosclerosis and plaque instability. This provides a rational conceptual framework for predicting evolving benefit/risk profiles that inform optimal use of rosiglitazone in the clinical setting and help explain the results of recent large clinical intervention trials where rosiglitazone had disappointing cardiovascular outcomes. Thus, in this perspective, we describe what is known about the molecular mechanisms of action of rosiglitazone on cardiovascular targets in the context of the evolving pathophysiology of diabetes over its natural history.  相似文献   

9.
《Epigenetics》2013,8(1):161-172
Epigenetic dysregulation contributes to the high cardiovascular disease burden in chronic kidney disease (CKD) patients. Although microRNAs (miRNAs) are central epigenetic regulators, which substantially affect the development and progression of cardiovascular disease (CVD), no data on miRNA dysregulation in CKD-associated CVD are available until now. We now performed high-throughput miRNA sequencing of peripheral blood mononuclear cells from ten clinically stable hemodialysis (HD) patients and ten healthy controls, which allowed us to identify 182 differentially expressed miRNAs (e.g., miR-21, miR-26b, miR-146b, miR-155). To test biological relevance, we aimed to connect miRNA dysregulation to differential gene expression. Genome-wide gene expression profiling by MACE (Massive Analysis of cDNA Ends) identified 80 genes to be differentially expressed between HD patients and controls, which could be linked to cardiovascular disease (e.g., KLF6, DUSP6, KLF4), to infection / immune disease (e.g., ZFP36, SOCS3, JUND), and to distinct proatherogenic pathways such as the Toll-like receptor signaling pathway (e.g., IL1B, MYD88, TICAM2), the MAPK signaling pathway (e.g., DUSP1, FOS, HSPA1A), and the chemokine signaling pathway (e.g., RHOA, PAK1, CXCL5). Formal interaction network analysis proved biological relevance of miRNA dysregulation, as 68 differentially expressed miRNAs could be connected to 47 reciprocally expressed target genes. Our study is the first comprehensive miRNA analysis in CKD that links dysregulated miRNA expression with differential expression of genes connected to inflammation and CVD. After recent animal data suggested that targeting miRNAs is beneficial in experimental CVD, our data may now spur further research in the field of CKD-associated human CVD.  相似文献   

10.
Endothelial dysfunction is an early pathophysiological feature and independent predictor of poor prognosis in most forms of cardiovascular diseases. Epidemiological studies report an inverse association between dietary flavonoid consumption and mortality from cardiovascular diseases. In the present paper, we review the effects of flavonoids, especially quercetin and wine polyphenols, on endothelial function and dysfunction and its potential protective role in hypertension, ischemic heart disease and stroke. In vitro studies show that flavonoids may exert multiple actions on the NO-guanylyl cyclase pathway, endothelium-derived hyperpolarizing factor(s) and endothelin-1 and protect endothelial cells against apoptosis. In vivo, flavonoids prevent endothelial dysfunction and reduce blood pressure, oxidative stress and end-organ damage in hypertensive animals. Moreover, some clinical studies have shown that flavonoid-rich foods can improve endothelial function in patients with hypertension and ischemic heart disease. Altogether, the available evidence indicates that quercetin and wine polyphenols might be of therapeutic benefit in cardiovascular diseases even though prospective controlled clinical studies are still lacking.  相似文献   

11.
To help ensure an expanded healthy lifespan for as many people as possible worldwide, there is a need to prevent or manage a number of prevalent chronic diseases directly and indirectly closely related to aging, including diabetes and obesity. Glucagon-like peptide 1 receptor agonists (GLP-1 RAs) have proven beneficial in type 2 diabetes, are amongst the few medicines approved for weight management, and are also licensed for focused cardiovascular risk reduction. In addition, strong evidence suggests several other beneficial effects of the pleiotropic peptide hormone, including anti-inflammation. Consequently, GLP-1 RAs are now in advanced clinical development for the treatment of chronic kidney disease, broader cardiovascular risk reduction, metabolic liver disease and Alzheimer's disease. In sum, GLP-1 RAs are positioned as one of the pharmacotherapeutic options that can contribute to addressing the high unmet medical need characterising several prevalent aging-related diseases, potentially helping more people enjoy a prolonged healthy lifespan.  相似文献   

12.
Autophagy is a conserved method of quality control in which cytoplasmic contents are degraded via lysosomes. Lipophagy, a form of selective autophagy and a novel type of lipid metabolism, has recently received much attention. Lipophagy is defined as the autophagic degradation of intracellular lipid droplets (LDs). Although much remains unknown, lipophagy appears to play a significant role in many organisms, cell types, metabolic states, and diseases. It participates in the regulation of intracellular lipid storage, intracellular free lipid levels (e.g., fatty acids), and energy balance. However, it remains unclear how intracellular lipids regulate autophagy. Impaired lipophagy can cause cells to become sensitive to death stimuli and may be responsible for the onset of a variety of diseases, including nonalcoholic fatty liver disease and metabolic syndrome. Like autophagy, the role of lipophagy in cancer is poorly understood, although analysis of specific autophagy receptors has helped to expand the diversity of chemotherapeutic targets. These studies have stimulated increasing interest in the role of lipophagy in the pathogenesis and treatment of cancer and other human diseases.Subject terms: Autophagy, Mechanisms of disease  相似文献   

13.
Functional amino acids in nutrition and health   总被引:1,自引:0,他引:1  
Guoyao Wu 《Amino acids》2013,45(3):407-411
The recent years have witnessed growing interest in biochemistry, physiology and nutrition of amino acids (AA) in growth, health and disease of humans and other animals. This results from the discoveries of AA in cell signaling involving protein kinases, G protein-coupled receptors, and gaseous molecules (i.e., NO, CO and H2S). In addition, nutritional studies have shown that dietary supplementation with several AA (e.g., arginine, glutamine, glutamate, leucine, and proline) modulates gene expression, enhances growth of the small intestine and skeletal muscle, or reduces excessive body fat. These seminal findings led to the new concept of functional AA, which are defined as those AA that participate in and regulate key metabolic pathways to improve health, survival, growth, development, lactation, and reproduction of the organisms. Functional AA hold great promise in prevention and treatment of metabolic diseases (e.g., obesity, diabetes, and cardiovascular disorders), intrauterine growth restriction, infertility, intestinal and neurological dysfunction, and infectious disease (including viral infections).  相似文献   

14.
More and more frequently these days, aquatic ecosystems are being stressed by nutrient enrichment, pollutants, and global warming, leading to a serious depletion in oxygen concentrations. Although a sudden, significant lack of oxygen will result in mortality, fishes can have an acute behavior (e.g., an increase in breathing rate, reduction in swimming frequency) and physiology responses (e.g., increase in oxygen delivery, and reduction in oxygen consumption) to hypoxia, which allows them to maintain normal physical activity. Therefore, in order to shed further light on the molecular mechanisms of hypoxia adaptation in fishes, the authors conduct comparative quantitative proteomics on Pelteobagrus vachelli livers using iTRAQ. The research identifies 511 acute hypoxia‐responsive proteins in P. vachelli. Furthermore, comparison of several of the diverse key pathways studied (e.g., peroxisome pathway, PPAR signaling pathway, lipid metabolism, glycolysis/gluco‐neogenesis, and amino acid metabolism) help to articulate the different mechanisms involved in the hypoxia response of P. vachelli. Data from proteome analysis shows that P. vachelli can have an acute reaction to hypoxia, including detoxification of metabolic by‐products and oxidative stress in light of continued metabolic activity (e.g., peroxisomes), an activation in the capacity of catabolism to get more energy (e.g., lipolysis and amino acid catabolism), a depression in the capacity of biosynthesis to reduce energy consumption (e.g., biosynthesis of amino acids and lipids), and a shift in the aerobic and anaerobic contributions to total metabolism. The observed hypoxia‐related changes in the liver proteome of the fish can help to understand or can be related to the hypoxia‐related response that takes place in similar conditions in the liver or other proteomes of mammals.  相似文献   

15.
16.
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in the United States. Research has shown that the majority of the cardiometabolic alterations associated with an increased risk of CVD (e.g., insulin resistance/type 2 diabetes, abdominal obesity, dyslipidemia, hypertension, and inflammation) can be prevented, and even reversed, with the implementation of healthier diets and regular exercise. Data from animal and human studies indicate that more drastic interventions, i.e., calorie restriction with adequate nutrition (CR), may have additional beneficial effects on several metabolic and molecular factors that are modulating cardiovascular aging itself (e.g., cardiac and arterial stiffness and heart rate variability). The purpose of this article is to review the current knowledge on the effects of CR on the aging of the cardiovascular system and CVD risk in rodents, monkeys, and humans. Taken together, research shows that CR has numerous beneficial effects on the aging cardiovascular system, some of which are likely related to reductions in inflammation and oxidative stress. In the vasculature, CR appears to protect against endothelial dysfunction and arterial stiffness and attenuates atherogenesis by improving several cardiometabolic risk factors. In the heart, CR attenuates age-related changes in the myocardium (i.e., CR protects against fibrosis, reduces cardiomyocyte apoptosis, prevents myosin isoform shifts, etc.) and preserves or improves left ventricular diastolic function. These effects, in combination with other benefits of CR, such as protection against obesity, diabetes, hypertension, and cancer, suggest that CR may have a major beneficial effect on health span, life span, and quality of life in humans.  相似文献   

17.
BACKGROUND: The developmental environment is thought to determine, in part, lifelong metabolic parameters and risk of adult disease. Effects of maternal malnutrition on fetal growth have been studied extensively, and the role of poor prenatal diet in elevating lifelong risk of cardiovascular and metabolic disease has been well characterized ( www.thebarkertheory.com ). However, the contribution of gestational high saturated fat diet (HFD) to adult-onset metabolic disease and skeletal dysfunction has only recently been recognized, and as such is incompletely understood. METHODS: The present study evaluates the pathophysiologic mechanisms linking gestational HFD (approximating the macronutrient content of fast food) and elevated oxidative stress (OS) to adult-onset skeletal, cardiovascular, and metabolic dysfunction. RESULTS: Results of this study demonstrate that adult offspring of dams fed HFD during pregnancy exhibited adult hyperglycemia, insulin resistance, obesity, and hypertension, despite being fed healthy standard rodent chow throughout postnatal life. These offspring also showed significantly lower femoral epiphyseal average bone mineral density (ABMD) at 6 months of age, and dysregulation of distal femoral trabecular architecture at 12 months of age, characteristic of osteoporosis. Incidence of these adult-onset adverse skeletal and metabolic effects was reduced by supplementing the pregnant dam with the antioxidant (quercetin, Q) during pregnancy. CONCLUSIONS: Collectively, these data suggest that offspring of dams who consume a diet rich in saturated fats during pregnancy are at increased risk of adult-onset chronic disease. Additionally, these chronic diseases were determined to be in-part OS-mediated, and preventable by increasing a prenatal dietary antioxidant; this knowledge offers both a putative mechanism of disease pathogenesis and suggests a potential preventive strategy. Birth Defects Res (Part B) 86:377–384, 2009. © 2009 Wiley-Liss, Inc.  相似文献   

18.
The Mitochondrial Permeability Transition as a Target for Neuroprotection   总被引:4,自引:0,他引:4  
Mitochondria serve as checkpoints and amplifiers on cell death pathways. In the central nervous system, mitochondrial involvement seems essential for normal expression of cell death phenotypes, and interference with these pathways thus seems a reasonable approach to neuroprotection. We have been involved in examining the potential involvement of the mitochondrial permeability transition (mPT) as one of several possible mechanisms by which mitochondria may be drawn into these death cascades. This possibility, though still controversial, is supported by evidence that factors that may stimulate mPT induction are associated with some forms of cell death (e.g., in stroke) and are modulated by diseases of the central nervous system (e.g., Huntington's). Evidence of neuroprotection seen with compounds such as N-Met-Val cyclosporine also support this possibility.  相似文献   

19.
Amino acids: metabolism,functions, and nutrition   总被引:5,自引:0,他引:5  
Guoyao Wu 《Amino acids》2009,37(1):1-17
Recent years have witnessed the discovery that amino acids (AA) are not only cell signaling molecules but are also regulators of gene expression and the protein phosphorylation cascade. Additionally, AA are key precursors for syntheses of hormones and low-molecular weight nitrogenous substances with each having enormous biological importance. Physiological concentrations of AA and their metabolites (e.g., nitric oxide, polyamines, glutathione, taurine, thyroid hormones, and serotonin) are required for the functions. However, elevated levels of AA and their products (e.g., ammonia, homocysteine, and asymmetric dimethylarginine) are pathogenic factors for neurological disorders, oxidative stress, and cardiovascular disease. Thus, an optimal balance among AA in the diet and circulation is crucial for whole body homeostasis. There is growing recognition that besides their role as building blocks of proteins and polypeptides, some AA regulate key metabolic pathways that are necessary for maintenance, growth, reproduction, and immunity. They are called functional AA, which include arginine, cysteine, glutamine, leucine, proline, and tryptophan. Dietary supplementation with one or a mixture of these AA may be beneficial for (1) ameliorating health problems at various stages of the life cycle (e.g., fetal growth restriction, neonatal morbidity and mortality, weaning-associated intestinal dysfunction and wasting syndrome, obesity, diabetes, cardiovascular disease, the metabolic syndrome, and infertility); (2) optimizing efficiency of metabolic transformations to enhance muscle growth, milk production, egg and meat quality and athletic performance, while preventing excess fat deposition and reducing adiposity. Thus, AA have important functions in both nutrition and health.  相似文献   

20.
Early life nutritional adversity is tightly associated with the development of long-term metabolic disorders. Particularly, maternal obesity and high-fat diets cause high risk of obesity in the offspring. Those offspring are also prone to develop hyperinsulinemia, hepatic steatosis and cardiovascular diseases. However, the precise underlying mechanisms leading to these metabolic dysregulation in the offspring remain unclear. On the other hand, disruptions of diurnal circadian rhythms are known to impair metabolic homeostasis in various tissues including the heart and liver. Therefore, we investigated that whether maternal obesity perturbs the circadian expression rhythms of clock, metabolic and inflammatory genes in offspring heart and liver by using RT-qPCR and Western blotting analysis. Offspring from lean and obese dams were examined on postnatal day 17 and 35, when pups were nursed by their mothers or took food independently. On P17, genes examined in the heart either showed anti-phase oscillations (Cpt1b, Pparα, Per2) or had greater oscillation amplitudes (Bmal1, Tnf-α, Il-6). Such phase abnormalities of these genes were improved on P35, while defects in amplitudes still existed. In the liver of 17-day-old pups exposed to maternal obesity, the oscillation amplitudes of most rhythmic genes examined (except Bmal1) were strongly suppressed. On P35, the oscillations of circadian and inflammatory genes became more robust in the liver, while metabolic genes were still kept non-rhythmic. Maternal obesity also had a profound influence in the protein expression levels of examined genes in offspring heart and liver. Our observations indicate that the circadian clock undergoes nutritional programing, which may contribute to the alternations in energy metabolism associated with the development of metabolic disorders in early life and adulthood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号