首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Papillary thyroid carcinoma (PTC) is the common subtype of thyroid cancer, which is a common endocrine malignancy. Tripartite motif 26 (TRIM26) has been found to act as a tumor suppressor in several cancers. However, the functional roles of TRIM26 in PTC remain unknown. In this study, we examined the TRIM26 expression in PTC and evaluated the effects of TRIM26 on proliferation, metastasis, and glycolysis in PTC cells. The results proved that TRIM26 was significantly downregulated in PTC tissues and cell lines. TRIM26 overexpression inhibited cell proliferation, migration, and invasion in PTC cells. TRIM26 overexpression also suppressed the epithelial-to-mesenchymal transition process. Besides, overexpression of TRIM26 caused significant decrease in glucose uptake and lactate production in PTC cells. Further investigations revealed that TRIM26 overexpression inhibited the activation of PI3K/Akt pathway. Treatment with an activator (740Y-P) of the PI3K/AKT pathway reversed the antitumor effects of TRIM26 on PTC cells. These findings provided evidence that TRIM26 acted as a tumor suppressor in PTC.  相似文献   

2.
We aimed to investigate the role of exosomal miR-4443 in metastasis of breast cancer (BCa). In vitro wound-healing assay and transwell invasion assay were used to investigate effect of miR-4443 on BCa cells. Animal experiments were performed to confirm its effects in vivo. miR-4443 promotes the metastasis of BCa cells through downregulating tissue inhibitors of metalloproteinase 2 (TIMP2) and upregulating matrix metalloproteinases (MMPs). Highly invasive BCa cells have a higher expression of miR-4443 in both cells and exosomes. The exosomes derived from highly invasive BCa cells mainly gather in the primary tumor and liver. In vivo, overexpression of miR-4443 in noninvasive BCa cells induces liver metastasis, accompanied with downregulated TIMP2, and upregulated MMP-2 in both the primary tumor and liver. When we armed MCF-10A exosomes with miR-4443 inhibitors to treat mice bearing high-miR-4443 tumors, exosomes accumulated in the primary tumor, and liver following the upregulation of TIMP2 and downregulation of MMP2, and the metastasis was inhibited. Highly invasive BCa cells destroy natural barriers against metastasis by delivering exosomal miR-4443 to stromal cells of the primary tumor and impairing TIMP2, consequently activating MMP; circulating exosomal miR-4443 might promote BCa cells lodging in future metastatic sites through the similar mechanisms.  相似文献   

3.
Long intergenic noncoding RNA 460 (LINC00460) has been identified as a critical regulator for multiple types of cancers. However, the biological role and underlying mechanism in human papillary thyroid carcinoma (PTC) still remain unclear and need to be uncovered. This study was aimed to ascertain the biological role and molecular mechanism of LINC00460 in PTC progression. Our findings revealed that the level of LINC00460 was significantly upregulated in PTC tissues and cell lines, which was positively correlated with advanced tumor–node–metastasis (TNM) stage and lymph node metastasis. Cellular experiments exhibited that knockdown of LINC00460 decreased proliferative, migratory, and invasive abilities of PTC cells. Mechanism assays noted that knockdown of LINC00460 suppressed cell proliferation, migration, and invasion, and inhibited expression of sphingosine kinase 2 (SphK2, a target of miR-613) in PTC cells, at least in part, by regulating miR-613. These findings suggested that LINC00460 could function as a competing endogenous RNA to regulate SphK2 expression by sponging miR-613 in PTC. Targeting LINC00460 could be a promising therapeutic strategy for patients with PTC.  相似文献   

4.
5.
魏宁  王萍  王斐  侯旭  车奎 《现代生物医学进展》2016,16(11):2141-2144
目的:观察微小RNA(microRNA,miRNA,miR)-205在甲状腺乳头状癌(PTC)中的表达并探讨其临床意义。方法:收集自2014年1月至2014年12月在我院甲状腺外科住院治疗的甲状腺乳头状癌患者的术后新鲜病理组织45例,其中男14例,女31例,年龄24-69岁,平均45.5岁。结节性甲状腺肿28例,癌旁正常甲状腺组织5例。提取各组织中的miRNA,应用实时荧光定量聚合酶链反应(RT-q PCR)方法检测miR-205的表达情况。结果:甲状腺乳头状癌miR-205的表达量较非肿瘤组织(结节性甲状腺肿、癌旁组织)明显下调[(1.06±1.76)vs(3.19±4.88),P=0.038]。伴淋巴结转移的PTC组织中miR-205表达量明显低于无淋巴结转移的PTC组织[(1.21±1.80)vs(9.59±1.60),P=0.003]。miR-205的相对表达与PTC患者性别、年龄及浸润与否均无显著相关性,而肿瘤直径呈显著相关性。结论:miR-205在PTC中的表达异常下调,可能与PTC的发生、侵袭和转移有关。  相似文献   

6.
Long intergenic non-coding RNA 152 (LINC00152) was reported to be tightly linked to tumorigenesis and progression in multiple cancers. However, its biological role and modulatory mechanism in papillary thyroid carcinoma (PTC) has not been elucidated. In this study, we determined the expression levels of LINC00152 in PTC tissues and cell lines by quantitative real time polymerase chain reaction (qRT-PCR). Cell proliferation, colony formation, migration, and invasion were measured by a Cell Counting Kit-8 assay, colony formation analysis, wound healing, and transwell invasion assay, respectively. A luciferase reporter assay and qRT-PCR were used to determine whether LINC00152 interacts with miR-497 directly. We established a xenograft mouse model to examine the underlying molecular mechanism and effect of LINC00152 on tumor growth in vivo. We found that LINC00152 expression was significantly increased in PTC tissues and derived cell lines. LINC00152 knockdown significantly inhibited proliferation, colony formation, migration, and invasion in vitro, and impaired tumor growth in vivo. We revealed that LINC00152 functioned as a competing endogenous RNA to the miR-497 sponge, downregulating its downstream target brain-derived neurotrophic factor (BDNF), which is an oncogene in thyroid cancer. These findings suggest that LINC00152 is responsible for PTC cell proliferation and invasion and exerts its function by regulating the miR-497/BDNF axis.  相似文献   

7.
《Translational oncology》2020,13(10):100805
Hepatocellular carcinoma (HCC) is often treated with doxorubicin. MicroRNAs have been shown to have important regulatory roles in cancer and serve as a target in chemoresistance. In this study, we investigated the effects of specific microRNA-200a (miR-200a) on HCC tumor cell growth and effect of doxorubicin-mediated cytotoxicity. Our results show miR-200a is downregulated in human HCC and HCC tumor cell lines. Increasing miR-200a expression inhibited HCC growth and synergized with the antitumor effects of doxorubicin. Inhibiting endogenous miR-200a promoted tumor growth and chemotherapeutic resistance. Increasing miR-200a expression inhibited tumor metabolism (ATP production, mitochondrial respiration, glycolysis), while inhibition of endogenous miR-200a reversed these effects. MiR-200a expression also increased autophagy and synergized with doxorubicin-mediated cytotoxicity. This study identifies a novel role of miR-200a in potentiating doxorubicin-mediated therapeutic effects in HCC.  相似文献   

8.
A unique feature of cancer cells is to convert glucose into lactate to produce cellular energy, even under the presence of oxygen. Called aerobic glycolysis [The Warburg Effect] it has been extensively studied and the concept of aerobic glycolysis in tumor cells is generally accepted. However, it is not clear if aerobic glycolysis in tumor cells is fixed, or can be reversed, especially under therapeutic stress conditions. Here, we report that mTOR, a critical regulator in cell proliferation, can be relocated to mitochondria, and as a result, enhances oxidative phosphorylation and reduces glycolysis. Three tumor cell lines (breast cancer MCF-7, colon cancer HCT116 and glioblastoma U87) showed a quick relocation of mTOR to mitochondria after irradiation with a single dose 5 Gy, which was companied with decreased lactate production, increased mitochondrial ATP generation and oxygen consumption. Inhibition of mTOR by rapamycin blocked radiation-induced mTOR mitochondrial relocation and the shift of glycolysis to mitochondrial respiration, and reduced the clonogenic survival. In irradiated cells, mTOR formed a complex with Hexokinase II [HK II], a key mitochondrial protein in regulation of glycolysis, causing reduced HK II enzymatic activity. These results support a novel mechanism by which tumor cells can quickly adapt to genotoxic conditions via mTOR-mediated reprogramming of bioenergetics from predominantly aerobic glycolysis to mitochondrial oxidative phosphorylation. Such a “waking-up” pathway for mitochondrial bioenergetics demonstrates a flexible feature in the energy metabolism of cancer cells, and may be required for additional cellular energy consumption for damage repair and survival. Thus, the reversible cellular energy metabolisms should be considered in blocking tumor metabolism and may be targeted to sensitize them in anti-cancer therapy.  相似文献   

9.
Background: The decreased level of miR-192-5p has been reported in several kinds of cancers, including bladder, colon, ovarian, and non-small cell lung cancer. However, the expression and function of miR-192-5p in papillary thyroid carcinoma/cancer (PTC) remains unknown.Objective: The present study aimed to explore the function and underlying mechanism of miR-192-5p in PTC development.Methods: PTC tissues and relative normal controls from PTC patients were collected. qRT-PCR analysis was performed to measure miR-192-5p and SH3RF3 mRNA level in PTC tissues and cell lines. CCK-8 method and FCM assay were used to test cell proliferation and apoptosis in TPC-1 cells, respectively. The abilities of cell migration and invasion were detected by wound healing and transwell assays, respectively. The protein expression was evaluated by Western blot. The interaction between miR-192-5p and Src homology 3 (SH3) domain containing ring finger 3 (SH3RF3) were confirmed by dual-luciferase reporter assay.Results: MiR-192-5p level was obviously decreased in PTC tissues and cell lines. Overexpression of miR-192-5p suppressed proliferation, migration, invasion, and EMT process, while induced apoptosis in TPC-1 cells. In addition, miR-192-5p negatively modulated SH3RF3 expression by binding to its 3′-untranslated region (3′UTR). Silencing SH3RF3 inhibited the migration, invasion, and EMT of TPC-1 cells. In the meantime, matrine, an alkaloid extracted from herb, exerted its anti-cancer effects in PTC cells dependent on increase in miR-192-5p expression and decrease in SH3RF3 expression.Conclusion: We firstly declared that miR-192-5p played a tumor suppressive role in PTC via targeting SH3RF3. Moreover, matrine exerted its anti-cancer effects in PTC via regulating miR-192-5p/SH3RF3 pathway.  相似文献   

10.
11.
BackgroundAerobic glycolysis is a unique tumor cell phenotype considered as one of the hallmarks of cancer. Aerobic glycolysis can accelerate tumor development by increasing glucose uptake and lactate production. In the present study, lactate dehydrogenase A (LDHA) is significantly increased within glioma tissue samples and cells, further confirming the oncogenic role of LDHA within glioma.MethodsHematoxylin and eosin (H&E) and immunohistochemical (IHC) staining were applied for histopathological examination. The protein levels of LDHA, transporter isoform 1 (GLUT1), hexokinase 2 (HK2), phosphofructokinase (PFK) in target cells were detected by Immunoblotting. The predicted miR-9 binding to lncRNA Annexin A2 Pseudogene 2 (ANXA2P2) or the 3′ untranslated region (UTR) of LDHA was verified using Luciferase reporter assay. Cell viability or apoptosis were examined by MTT assay or Flow cytometry. Intracellular glucose and Lactate levels were measured using glucose assay kit and lactate colorimetric assay kit.ResultsThe expression of ANXA2P2 showed to be dramatically upregulated within glioma tissue samples and cells. Knocking down ANXA2P2 within glioma cells significantly inhibited cell proliferation and aerobic glycolysis, as manifested as decreased lactate and increased glucose in culture medium, and downregulated protein levels of glycolysis markers, GLUT1, HK2, PFK, as well as LDHA. miR-9 was predicted to target both lncRNA ANXA2P2 and LDHA. The overexpression of miR-9 suppressed the cell proliferation and aerobic glycolysis of glioma cells. Notably, miR-9 could directly bind to LDHA 3′UTR to inhibit LDHA expression and decrease the protein levels of LDHA. ANXA2P2 competitively targeted miR-9, therefore counteracting miR-9-mediated repression on LDHA. Within tissues, miR-9 exhibited a negative correlation with ANXA2P2 and LDHA, respectively, whereas ANXA2P2 and LDHA exhibited a positive correlation with each other.ConclusionsIn conclusion, ANXA2P2/miR-9/LDHA axis modulates the aerobic glycolysis progression in glioma cells, therefore affecting glioma cell proliferation.  相似文献   

12.
Accumulating evidence has demonstrated the key role of long noncoding (lnc)RNAs in tumorigenesis. Prostate cancer (PCa) is a cancer with high mortality that requires further exploration of the underlying molecular mechanisms. In the present study, we aimed to discover novel potential biomarkers for diagnosing PCa and targeting treatment. Overexpression of the lncRNA, LINC00491, was verified in PCa tumor tissues and cell lines using the real-time polymerase chain reaction. Cell proliferation and invasion were then analyzed via the Cell Counting Kit-8, colony formation, and transwell assays in vitro, and tumor growth in vivo. The interaction of miR-384 with LINC00491, as well as TRIM44, was investigated via bioinformatics analyses, subcellular fractionation, luciferase reporter gene assays, radioimmunoprecipitation, pull-down, and western blot analyses. LINC00491 was overexpressed in PCa tissues and cell lines. LINC00491 knockdown resulted in impaired cell proliferation and invasion in vitro and decreased tumor growth in vivo. Moreover, LINC00491 acted as a sponge for miR-384 and its downstream target, TRIM44. Additionally, miR-384 expression was downregulated in PCa tissues and cell lines, and its expression was negatively correlated with LINC00491. A miR-384 inhibitor restored the inhibitory effects of LINC00491 silencing on PCa cell proliferation and invasion. LINC00491 is a tumor promoter in PCa via enhancing TRIM44 expression by sponging miR-384 to facilitate the development of PCa. LINC00491 plays a significant role in PCa and could serve as both a biomarker for early diagnosis and a novel treatment target.  相似文献   

13.
Clear cell renal cell carcinoma (ccRCC) is the most popular kidney cancer in adults. Metabolic shift toward aerobic glycolysis is a fundamental factor for ccRCC therapy. MicroRNAs (miRNAs) are thought to be important regulators in ccRCC development and progression. Phosphoinositide-dependent kinase 1 (PDK1) is required for metabolic activation; however, the role of PDK1-induced glycolytic metabolism regulated by miRNAs is unclear in ccRCC. So, the purpose of the current study is to elucidate the underlying mechanism in ccRCC cell metabolism mediated by PDK1. Our results revealed that miR-409-3p inhibited glycolysis by regulating PDK1 expression in ccRCC cells. We also found that miR-409-3p was regulated by hypoxia. Our results indicated that PDK1 facilitated ccRCC cell glycolysis, regulated by miR-409-3p in hypoxia.  相似文献   

14.
Abnormal energy metabolism is one of the characteristics of tumours. In the last few years, more and more attention is being paid to the role and regulation of tumour aerobic glycolysis. Cancer cells display enhanced aerobic glycolysis, also known as the Warburg effect, whereby tumour cells absorb glucose to produce a large amount of lactic acid and energy under aerobic conditions to favour tumour proliferation and metastasis. In this study, we report that the haploinsufficient tumour suppressor ASPP2, can inhibit HCC growth and stemness characteristics by regulating the Warburg effect through the WNT/β-catenin pathway. we performed glucose uptake, lactate production, pyruvate production, ECAR and OCR assays to verify ASPP2 can inhibit glycolysis in HCC cells. The expression of ASPP2 and HK2 was significantly inversely correlated in 80 HCC tissues. Our study reveals downregulation of ASPP2 can promote the aerobic glycolysis metabolism pathway, increasing HCC proliferation, glycolysis metabolism, stemness and drug resistance. This ASPP2-induced inhibition of glycolysis metabolism depends on the WNT/β-catenin pathway. ASPP2-regulated Warburg effect is associated with tumour progression and provides prognostic value. and suggest that may be promising as a new therapeutic strategy in HCC.  相似文献   

15.
Ovarian cancer is the leading cause of death from gynecological malignancies worldwide. Understanding the molecular mechanism underlying ovarian cancer progression facilitates the development of promising strategy for ovarian cancer therapy. Previously, we observed frequent down-regulation of miR-497 expression in ovarian cancer tissues. In this study, we investigated the role of miR-497 in ovarian cancer metastasis. We found that endogenous miR-497 expression was down-regulated in the more aggressive ovarian cancer cell lines compared with the less aggressive cells. Exogenous expression of miR-497 suppressed ovarian cancer cell migration and invasion, whereas reduction of endogenous miR-497 expression induced tumor cell migration and invasion. Mechanistic investigations confirmed pro-metastatic factor SMURF1 as a direct target of miR-497 through which miR-497 ablated tumor cell migration and invasion. Further studies revealed that lower levels of miR-497 expression were associated with shorter overall survival as well as increased SMURF1 expression in ovarian cancer patients. Our results indicate that down-regulation of miR-497 in ovarian cancer may facilitate tumor metastasis. Restoration of miR-497 expression may be a promising strategy for ovarian cancer therapy.  相似文献   

16.
MicroRNA-32 (miR-32) functioned as a tumor oncogene in some cancer, which control genes involved in important biological and pathological functions and facilitate the tumor growth and metastasis. However, the role of miR-32 modulates esophageal squamous cell carcinoma (ESCC) malignant transformation has not been clarified. Here, we focused on the function and the underlying molecular mechanism of miR-32 in ESCC. Results discovered a significant increased expression of miR-32 in ESCC tissues and cells. Downregulation of miR-32 inhibited the migration, invasion, adhesion of ESCC cell lines (EC9706 and KYSE450), and the levels of EMT protein in vitro. In vivo, miR-32 inhibitors decrease tumor size, tumor weight, and the number of metastatic nodules. Hematoxylin and eosin (H&E) results revealed that inhibition of miR-32 attenuate lung metastasis. Immunohistochemistry and immunofluorescence assay showed increased level of E-cadherin and decreased level of N-cadherin and Vimentin with treatment of miR-32 inhibitors. Furthermore, miR-32 targeted the 3′-untranslated region (3′-UTR) of CXXC5, and inhibited the level of mRNA and protein of CXXC5. There is a negative correlation between the expressions of CXXC5 and miR-32. Then, after EC9706 and KYSE450 cells cotransfected with si-CXXC5 and miR-32 inhibitors, the ability of cell migration, invasion, and adhesion was significantly reduced. In addition, the protein expression of EMT and TGF-β signaling was also depressed. Collectively, these data supply an insight into the positive role of miR-32 in ESCC progression and metastasis, and its biological effects may attribute the inhibition of TGF-β signaling mediated by CXXC5.  相似文献   

17.
Osteosarcoma (OS) is the most common primary malignant bone tumor. Recently, increasing evidence has shown that the long noncoding RNA (lncRNA) DLX6-AS1 (distal-less homeobox 6 antisense 1) plays significant roles in various types of cancers. However, the functions and underlying mechanisms of DLX6-AS1 have not been explored in OS yet. In this study, we assessed the expression of DLX6-AS1 in OS tissues and cell lines and explored the underlying molecular mechanisms. DLX6-AS1 was found to be significantly upregulated in OS tissues and OS cell lines. High expression of DLX6-AS1 was significantly correlated with advanced TNM stage, high tumor grade, and distant metastasis of patients with OS. Knockdown of DLX6-AS1 suppressed OS cell proliferation, invasion, and migration, and induced cell apoptosis. Knockdown of DLX6-AS1 also suppressed in vivo tumor growth. Bioinformatics and luciferase assay analysis showed that DLX6-AS1 functioned as a competing endogenous RNA (ceRNA) to negatively regulate miR-641 expression. Furthermore, miR-641 was found to target the 3′ untranslated region of homeobox protein Hox-A9 (HOXA9) and suppressed the expression of HOXA9. Mechanistic studies showed that DLX6-AS1 regulated OS cell proliferation, invasion, and migration via regulating HOXA9 by acting as a ceRNA for miR-641. Our results suggested that DLX6-AS1 functions as a ceRNA by targeting miR-641/HOXA9 signal pathway to suppress OS cell proliferation and metastasis. Our study may provide novel insights into understanding pathogenesis and development of OS.  相似文献   

18.
19.
20.
The purpose of this current study is to elucidate whether altered microRNA-365 (miR-365) has an association with the initiation and development of non-small-cell lung cancer (NSCLC) by targeting TRIM25 expression. The expression of miR-365 and TRIM25 in NSCLC tissues, adjacent normal tissues, and NSCLC cell lines were detected. The relationship between miR-365 expression and TRIM25 with the clinicopathological characteristics of NSCLC was analyzed. The putative binding site between miR-365 and TRIM25 was determined by luciferase activity assay. miR-365 inhibitors and miR-365 mimics were transfected to human NSCLC A549 cells, and the cell viability was detected by cell counting kit-8 assay; flow cytometry was carried out to determine cell cycle and apoptosis rate. Poorly expressed miR-365 and overexpressed TRIM25 was found in NSCLC tissues. TRIM25 was determined as a target gene of miR-365. The miR-365 and TRIM25 expression were related to the clinicopathological features of NSCLC, such as pathological classification, differentiation degree, TNM stage as well as lymph node metastasis. miR-365 suppressed the expression of TRIM25 and elevated the expression of the proapoptotic protein in NSCLC cells. Our study demonstrates that altered expression of miR-365 has a close association with the occurrence and development of NSCLC by inhibiting TRIM25 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号