首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Suspension culture systems are currently under investigation for the mass production of pluripotent stem (PS) cells for tissue engineering; however, the control of cell aggregation in suspension culture remains challenging. Existing methods to control aggregation such as microwell culture are difficult to scale up. To address this issue, in this study a novel method that incorporates the addition of KnockOut Serum Replacement (KSR) to the PS cell culture medium was described. The method regulated cellular aggregation and significantly improved cell growth (a 2‐ to 10‐fold increase) without any influence on pluripotency. In addition, albumin‐associated lipids as the major working ingredient of KSR responsible for this inhibition of aggregation were identified. This is one of the simplest methods described to date to control aggregation and requires only chemically synthesizable reagents. Thus, this method has the potential to simplify the mass production process of PS cells and thus lower their cost. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1009–1016, 2016  相似文献   

2.
3.
Amniotic fluid stem cells (AFSC) represent an attractive potential cell source for fetal and pediatric cell-based therapies. However, upgrading them to pluripotency confers refractoriness toward senescence, higher proliferation rate and unlimited differentiation potential. AFSC were observed to rapidly and efficiently reacquire pluripotency which together with their easy recovery makes them an attractive cell source for reprogramming. The reprogramming process as well as the resulting iPSC epigenome could potentially benefit from the unspecialized nature of AFSC. iPSC derived from AFSC also have potential in disease modeling, such as Down syndrome or β-thalassemia. Previous experiments involving AFSC reprogramming have largely relied on integrative vector transgene delivery and undefined serum-containing, feeder-dependent culture. Here, we describe non-integrative oriP/EBNA-1 episomal plasmid-based reprogramming of AFSC into iPSC and culture in fully chemically defined xeno-free conditions represented by vitronectin coating and E8 medium, a system that we found uniquely suited for this purpose. The derived AF-iPSC lines uniformly expressed a set of pluripotency markers Oct3/4, Nanog, Sox2, SSEA-1, SSEA-4, TRA-1-60, TRA-1-81 in a pattern typical for human primed PSC. Additionally, the cells formed teratomas, and were deemed pluripotent by PluriTest, a global expression microarray-based in-silico pluripotency assay. However, we found that the PluriTest scores were borderline, indicating a unique pluripotent signature in the defined condition. In the light of potential future clinical translation of iPSC technology, non-integrating reprogramming and chemically defined culture are more acceptable.  相似文献   

4.
5.
The microenvironment of cells, which includes basement proteins, shear stress, and extracellular stimuli, should be taken into consideration when examining physiological cell behavior. Although microfluidic devices allow cellular responses to be analyzed with ease at the single-cell level, few have been designed to recover cells. We herein demonstrated that a newly developed microfluidic device helped to improve culture conditions and establish a clonality-validated human pluripotent stem cell line after tracing its growth at the single-cell level. The device will be a helpful tool for capturing various cell types in the human body that have not yet been established in vitro.  相似文献   

6.
7.
Mesenchymal stem cells (MSCs) have received significant attention in recent years due to their large potential for cell therapy. Indeed, they secrete a wide variety of immunomodulatory factors of interest for the treatment of immune-related disorders and inflammatory diseases. MSCs can be extracted from multiple tissues of the human body. However, several factors may restrict their use for clinical applications: the requirement of invasive procedures for their isolation, their limited numbers, and their heterogeneity according to the tissue of origin or donor. In addition, MSCs often present early signs of replicative senescence limiting their expansion in vitro, and their therapeutic capacity in vivo. Due to the clinical potential of MSCs, a considerable number of methods to differentiate induced pluripotent stem cells (iPSCs) into MSCs have emerged. iPSCs represent a new reliable, unlimited source to generate MSCs (MSCs derived from iPSC, iMSCs) from homogeneous and well-characterized cell lines, which would relieve many of the above mentioned technical and biological limitations. Additionally, the use of iPSCs prevents some of the ethical concerns surrounding the use of human embryonic stem cells. In this review, we analyze the main current protocols used to differentiate human iPSCs into MSCs, which we classify into five different categories: MSC Switch, Embryoid Body Formation, Specific Differentiation, Pathway Inhibitor, and Platelet Lysate. We also evaluate common and method-specific culture components and provide a list of positive and negative markers for MSC characterization. Further guidance on material requirements to produce iMSCs with these methods and on the phenotypic features of the iMSCs obtained is added. The information may help researchers identify protocol options to design and/or refine standardized procedures for large-scale production of iMSCs fitting clinical demands.  相似文献   

8.
9.
人类诱导多能干细胞(induced pluripotent stem cells,iPS细胞)的建立被公认为目前最重要的科技进展之一。iPS细胞在动物疾病模型上的成功治疗,病患特异性iPS细胞的研究及iPS细胞的定向分化研究将有可能使人们避开治疗性克隆的伦理和技术障碍,给人类疾病的干细胞治疗带来光明的前景。本文从iPS细胞的诱导策略和方法,来源细胞及筛选、重编程机制的研究现状、应用前景以及研究中存在的问题等方面对其作一综述和讨论。  相似文献   

10.
Human pluripotent stem cells (hPSCs) are important resources for cell-based therapies and pharmaceutical applications. In order to realize the potential of hPSCs, it is critical to develop suitable technologies required for specific applications. Most hPSC technologies depend on cell culture, and are critically influenced by culture medium composition, extracellular matrices, handling methods, and culture platforms. This review summarizes the major technological advances in hPSC culture, and highlights the opportunities and challenges in future therapeutic applications.  相似文献   

11.
12.
Menkes disease (MD) is a copper-deficient neurodegenerative disorder that manifests severe neurologic symptoms such as seizures, lethargic states, and hypotonia. Menkes disease is due to a dysfunction of ATP7A, but the pathophysiology of neurologic manifestation is poorly understood during embryonic development. To understand the pathophysiology of neurologic symptoms, molecular and cellular phenotypes were investigated in Menkes disease-derived induced pluripotent stem cells (MD-iPSCs). MD-iPSCs were generated from fibroblasts of a Menkes disease patient. Abnormal reticular distribution of ATP7A was observed in MD-fibroblasts and MD-iPSCs, respectively. MD-iPSCs showed abnormal morphology in appearance during embryoid body (EB) formation as compared with wild type (WT)-iPSCs. Intriguingly, aberrant switch of E-cadherin (E-cad) to N-cadherin (N-cad) and impaired neural rosette formation were shown in MD-iPSCs during early differentiation. When extracellular copper was chelated in WT-iPSCs by treatment with bathocuprione sulfate, aberrant switch of E-cad to N-cad and impaired neuronal differentiation were observed, like in MD-iPSCs. Our results suggest that neurological defects in Menkes disease patients may be responsible for aberrant cadherin transition and impaired neuronal differentiation during early developmental stage.  相似文献   

13.
14.
Induced pluripotent stem (iPS) cells have considerable promise as a novel tool for modelling human disease and for drug discovery. While the generation of disease-specific iPS cells has become routine, realizing the potential of iPS cells in disease modelling poses challenges at multiple fronts. Such challenges include selecting a suitable disease target, directing the fate of iPS cells into symptom-relevant cell populations, identifying disease-related phenotypes and showing reversibility of such phenotypes using genetic or pharmacological approaches. Finally, the system needs to be scalable for use in modern drug discovery. Here, we will discuss these points in the context of modelling familial dysautonomia (FD, Riley-Day syndrome, hereditary sensory and autonomic neuropathy III (HSAN-III)), a rare genetic disorder in the peripheral nervous system. We have demonstrated three disease-specific phenotypes in FD-iPS-derived cells that can be partially rescued by treating cells with the plant hormone kinetin. Here, we will discuss how to use FD-iPS cells further in high throughput drug discovery assays, in modelling disease severity and in performing mechanistic studies aimed at understanding disease pathogenesis. FD is a rare disease but represents an important testing ground for exploring the potential of iPS cell technology in modelling and treating human disease.  相似文献   

15.

Background aims

Human induced pluripotent stem cells (hiPSCs) are becoming increasingly popular in research endeavors due to their potential for clinical application; however, such application is challenging due to limitations such as inferior function and low induction efficiency. In this study, we aimed to establish a three-dimensional (3D) culture condition to mimic the environment in which hepatogenesis occurs in vivo to enhance the differentiation of hiPSCs for large-scale culture and high throughput BAL application.

Methods

We used hydrogel to create hepatocyte-like cell (HLC) spheroids in a 3D culture condition and analyzed the cell-behavior and differentiation properties of hiPSCs in a synthetic nanofiber scaffold.

Results

We found that treating cells with Y-27632 promoted the formation of spheroids, and the cells aggregated more rapidly in a 3D culture condition. The ALB secretion, urea production and glycogen synthesis by HLCs in 3D were significantly higher than those grown in a 2-dimensional culture condition. In addition, the metabolic activities of the CYP450 enzymes were also higher in cells differentiated in the 3D culture condition.

Conclusions

3D hydrogel culture condition can promote differentiation of hiPSCs into hepatocytes. The 3D culture approach could be applied to the differentiation of hiPSCs into hepatocytes for bioartificial liver.  相似文献   

16.
Reprograming somatic cells using exogenetic gene expression represents a groundbreaking step in regenerative medicine. Induced pluripotent stem cells(i PSCs) are expected to yield novel therapies with the potential to solve many issues involving incurable diseases. In particular, applying i PSCs clinically holds the promise of addressing the problems of immune rejection and ethics that have hampered the clinical applications of embryonic stem cells. However, as i PSC research has progressed, new problems have emerged that need to be solved before the routine clinical application of i PSCs can become established. In this review, we discuss the current technologies and future problems of human i PSC generation methods for clinical use.  相似文献   

17.
The breakthrough development of induced pluripotent stem cells(iPSCs)raises the prospect of patient-specific treatment for many diseases through the replacement of affected cells.However,whether iPSC-derived functional cell lineages generate a deleterious immune response upon auto-transplantation remains unclear.In this study,we differentiated five human iPSC lines from skin fibroblasts and urine cells into neural progenitor cells(NPCs)and analyzed their immunogenicity.Through co-culture with autogenous peripheral blood mononuclear cells(PBMCs),we showed that both somatic cells and iPSC-derived NPCs do not stimulate significant autogenous PBMC proliferation.However,a significant immune reaction was detected when these cells were co-cultured with allogenous PBMCs.Furthermore,no significant expression of perforin or granzyme B was detected following stimulation of autogenous immune effector cells(CD3+CD8 T cells,CD3+CD8+T cells or CD3 CD56+NK cells)by NPCs in both PBMC and T cell co-culture systems.These results suggest that human iPSC-derived NPCs may not initiate an immune response in autogenous transplants,and thus set a base for further preclinical evaluation of human iPSCs.  相似文献   

18.
Large numbers of human induced pluripotent stem cells (hiPSCs) are required for making stable cell bank. Although suspension culture yields high cell numbers, there remain unresolved challenges for obtaining high‐density of hiPSCs because large size aggregates exhibit low growth rates. Here, we established a simple method for hiPSC aggregate break‐up using botulinum hemagglutinin (HA), which specifically bound with E‐cadherin and disrupted cell–cell connections in hiPSC aggregates. HA showed temporary activity for disrupting the E‐cadherin‐mediated cell–cell connections to facilitate the break‐up of aggregates into small sizes only 9 hr after HA addition. The transportation of HA into the aggregates was mediated by transcellular and paracellular way after HA addition to the culture medium. hiPSC aggregates broken up by HA showed a higher number of live cells, higher cell density, and higher expansion fold compared to those of aggregates dissociated with enzymatic digestion. Moreover, a maximum cell density of 4.5 ± 0.2 × 106 cells ml?1 was obtained by aggregate break‐up into small ones, which was three times higher than that with the conventional culture without aggregate break‐up. Therefore, the temporary activity of HA for disrupting E‐cadherin‐mediated cell–cell connection was key to establishing a simple in situ method for hiPSC aggregate break‐up in bioreactors, leading to high cell density in suspension culture.  相似文献   

19.
In recent years, significant progress has been made internationally in the development of human pluripotent stem cell (hPSC)‐derived products for serious and widespread disorders. Biobanking of the cellular starting materials is a crucial component in the delivery of safe and regulatory compliant cell therapies. In China, key players in these developments have been the recently launched National Stem Cell Resource Center (NSCRC) and its partner organizations in Guangzhou and Shanghai who together, have more than 600 hPSC lines formally recorded in the Chinese Ministry of Science and Technology''s stem cell registry. In addition, 47 of these hPSCs have also been registered with the hPSCreg project which means they are independently certified for use in European Commission funded research projects. The NSCRC are currently using their own cell lines to manufacture eight different cell types qualified for clinical use, that are being used in nine clinical studies for different indications. The Institute of Zoology at the Chinese Academy of Sciences (IOZ‐CAS) has worked with NSCRC to establish Chinese and international standards in stem cell research. IOZ‐CAS was also a founding partner in the International Stem Cell Banking Initiative which brings together key stem cell banks to agree minimum standards for the provision of pluripotent stem cells for research and clinical use. Here, we describe recent developments in China in the establishment of hPSCs for use in the manufacture of cell therapies and the significant national and international coordination which has now been established to promote the translation of Chinese hPSC‐based products into clinical use according to national and international standards.  相似文献   

20.
Research into the pathophysiological mechanisms of human disease and the development of targeted therapies have been hindered by a lack of predictive disease models that can be experimentally manipulated in vitro. This review describes the current state of modelling human diseases with the use of human induced pluripotent stem (iPS) cell lines. To date, a variety of neurodegenerative diseases, haematopoietic disorders, metabolic conditions and cardiovascular pathologies have been captured in a Petri dish through reprogramming of patient cells into iPS cells followed by directed differentiation of disease-relevant cells and tissues. However, realizing the true promise of iPS cells for advancing our basic understanding of disease and ultimately providing novel cell-based therapies will require more refined protocols for generating the highly specialized cells affected by disease, coupled with strategies for drug discovery and cell transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号