首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hyperosmolar‐induced ocular surface cell death is a key mitochondria‐mediated event in inflammatory eye diseases. Transglutaminase (TGM)‐2, a cross‐linking enzyme, is purported to mediate cell death, but its link to mitochondria is unclear. In the cornea, the integrity of the epithelial cells is important for maintaining transparency of the cornea and therefore functional vision. We evaluated the role of TGM‐2 and its involvement in hyperosmolarity‐stimulated mitochondrial cell death in human corneal epithelial (HCE‐T) cells. HCE‐T cell lines stably expressing either shRNA targeting TGM‐2 (shTG) or scrambled shRNA (shRNA) were constructed. Hyperosmolar conditions reduced viability and increased mitochondrial depolarization in shRNA cells. However, hyperosmolarity failed to induce mitochondrial depolarization to the same extent in shTG cells. Transient overexpression of TGM‐2 resulted in very high levels of TGM‐2 expression in shTG and shRNA cells. In the case of shTG cells after overexpression of TGM‐2, hyperosmolarity induced the same extent of mitochondrial depolarization as similarly treated shRNA cells. Overexpression of TGM‐2 also elevated transamidase activity and reduced viability. It also induced mitochondrial depolarization, increased caspase‐3/7 and ‐9 activity, and these increases were partially suppressed by pan‐caspase inhibitor Z‐VAD‐FMK. Corneal epithelial apoptosis via mitochondrial dysfunction after hyperosmolar stimulation is partially dependent on TGM‐2. This TGM‐2‐dependent mechanism occurs in part via caspase‐3/7 and ‐9. Protection against mitochondrial stress in the ocular surface targeting TGM‐2 may have important implications in the survival of cells in hyperosmolar stress. J. Cell. Physiol. 226: 693–699, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
Acquired chemoresistance not only blunts anticancer therapy but may also promote cancer cell migration and metastasis. Our previous studies have revealed that acquired tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance in lung cancer cells is associated with Akt-mediated stabilization of cellular caspase 8 and Fas-associated death domain (FADD)-like apoptosis regulator-like inhibitory protein (c-FLIP) and myeloid cell leukemia 1 (Mcl-1). In this report, we show that cells with acquired TRAIL resistance have significantly increased capacities in migration and invasion. By gene expression screening, tissue transglutaminase (TGM2) was identified as one of the genes with the highest expression increase in TRAIL-resistant cells. Suppressing TGM2 dramatically alleviated TRAIL resistance and cell migration, suggesting that TGM2 contributes to these two phenotypes in TRAIL-resistant cells. TGM2-mediated TRAIL resistance is likely through c-FLIP because TGM2 suppression significantly reduced c-FLIP but not Mcl-1 expression. The expression of matrix metalloproteinase 9 (MMP-9) was suppressed when TGM2 was inhibited, suggesting that TGM2 potentiates cell migration through up-regulating MMP-9 expression. We found that EGF receptor (EGFR) was highly active in the TRAIL-resistant cells, and suppression of EGFR dramatically reduced TGM2 expression. We further determined JNK and ERK, but not Akt and NF-κB, are responsible for EGFR-mediated TGM2 expression. These results identify a novel pathway that involves EGFR, MAPK (JNK and ERK), and TGM2 for acquired TRAIL resistance and cell migration in lung cancer cells. Because TGM2 couples TRAIL resistance and cell migration, it could be a molecular target for circumventing acquired chemoresistance and metastasis in lung cancer.  相似文献   

3.
Angiogenesis and apoptosis are critical for the growth of colorectal cancer (CRC). The study aimed to investigate the effects of TGM2 in CRC. Forty-two patients were recruited and their TGM2 levels were detected by performing Realtime-qPCR (RT-qPCR), Western blot and immunohistochemistry , respectively. Levels of TGM2, MMP-2 and MMP-9 in four CRC cell lines and in normal cells were determined using RT-qPCR and Western blot. TGM2-siRNA was transfected into LoVo and HCT116 cells, respectively. TGM2 levels, cell viability, cell apoptosis, angiogenesis and related factors were determined. the tumorigenesis rates of mice were detected after TGM2-siRNA transfection. TGM2 were upregulated in patients with CRC. High TGM2 level of CRC patients had a lower survival rate. The levels of TGM2, MMP-2 and MMP-9 were upregulated in all detected CRC cell lines. Silencing TGM2 could inhibit cell viabilities, angiogenesis and suppress the expressions of MMP-2, MMP-9, Wnt3a, β-catenin and Cyclin D1 , whereas cell apoptosis and the expressions of Caspase-3 and TIMP-1 were promoted. Tumor weights and volumes were reduced by TGM2-siRNA interference. The effects of TGM2-siRNA interference might be related to Wnt/β-catenin Pathway. This might prove that TGM2 could be used as a molecular target in the treatment of CRC.  相似文献   

4.
Resveratrol (RSV) is known for its antioxidant properties; however, this compound has been proposed to have cytotoxic and pro-oxidant effects depending on its concentration and time of exposure. We previously reported the cell cycle arrest effect of low doses of RSV in GRX cells, an activated hepatic stellate cell model. Here, we evaluated the effects of RSV treatment (0.1–50 μM) for 24 and 120 h on GRX viability and oxidative status. Only treatment with 50 μM of RSV reduced the amount of live cells. However, even low doses of RSV induced an increased reactive species production at both treatment times. While being diminished within 24 h, RSV induced an increase in the SOD activity in 120 h. The cellular damage was substantially increased at 24 h in the 50 μM RSV-treated group, as indicated by the high lipoperoxidation, which may be related to the significant cell death and low proliferation. Paradoxically, this cellular damage and lipoperoxidation were considerably reduced in this group after 120 h of treatment while the surviving cells proliferated. In conclusion, RSV induced a dose-dependent pro-oxidant effect in GRX cells. The highest RSV dose induced oxidative-related damage, drastically reducing cell viability; but this cytotoxicity seems to be attenuated during 120 h of treatment.  相似文献   

5.
Dysfunctions caused by genetic defects in the mitochondrial DNA (mtDNA) of humans are called mitochondrial diseases; however, mtDNA mutations are also associated with aging and age-related diseases. Here, we present an original cellular model that allows gathering information on molecules that might contrast or prevent mitochondrial dysfunctions and their related diseases. This model allowed us to show that resveratrol (RSV), a phytochemical present in food, exerts protective effects at low concentrations on resting human fibroblasts carrying dysfunctional respiratory chain Complex I. Cells were maintained both in resting condition, to mimic the high energy demanding post-mitotic tissues (serum absence and gramicidin presence), and under glucose deficiency to push the synthesis of ATP via oxidative phosphorylation. Pre-incubation with RSV prolonged the viability of the fibroblasts exposed to rotenone, a well-known specific inhibitor of the respiratory chain Complex I, and decreased mitochondrial fragmentation. It significantly prevented the oxidative phosphorylation impairment indirectly caused by the rotenone-mediated Complex I inhibition, allowing for an almost complete preservation of the cellular ATP level. Indeed, RSV limited the rotenone-induced reactive oxygen species increase, allowing for the maintenance of a functional mitochondrial membrane potential. These findings indicate the potential usage of resveratrol to prevent or possibly treat many disorders, in which the bioenergetic defects and oxidative stress are the primary (mitochondrial encephalomyopathy), or the secondary (age-related diseases) causes of the pathology; and to also assist cell senescence during aging.  相似文献   

6.
Ras activation is a frequent event in human hepatocarcinoma that may contribute to resistance towards apoptosis. Salirasib is a ras and mTOR inhibitor that induces a pro-apoptotic phenotype in human hepatocarcinoma cell lines. In this work, we evaluate whether salirasib sensitizes those cells to TRAIL-induced apoptosis. Cell viability, cell death and apoptosis were evaluated in vitro in HepG2, Hep3B and Huh7 cells treated with DMSO, salirasib and YM155 (a survivin inhibitor), alone or in combination with recombinant TRAIL. Our results show that pretreatment with salirasib sensitized human hepatocarcinoma cell lines, but not normal human hepatocytes, to TRAIL-induced apoptosis. Indeed, FACS analysis showed that 25 (Huh7) to 50 (HepG2 and Hep3B) percent of the cells treated with both drugs were apoptotic. This occurred through activation of the extrinsic and the intrinsic pathways, as evidenced by a marked increase in caspase 3/7 (five to ninefold), caspase 8 (four to sevenfold) and caspase 9 (eight to 12-fold) activities in cells treated with salirasib and TRAIL compared with control. Survivin inhibition had an important role in this process and was sufficient to sensitize hepatocarcinoma cells to apoptosis. Furthermore, TRAIL-induced apoptosis in HCC cells pretreated with salirasib was dependent on activation of death receptor (DR) 5. In conclusion, salirasib sensitizes hepatocarcinoma cells to TRAIL-induced apoptosis by a mechanism involving the DR5 receptor and survivin inhibition. These results in human hepatocarcinoma cell lines and primary hepatocytes provide a rationale for testing the combination of salirasib and TRAIL agonists in human hepatocarcinoma.  相似文献   

7.
A cellular hypothesis for the induction of blossom-end rot in tomato fruit   总被引:2,自引:0,他引:2  
Ho LC  White PJ 《Annals of botany》2005,95(4):571-581
BACKGROUND: The incidence of blossom-end rot (BER) is generally associated with a calcium (Ca) deficiency in the distal portion of tomato fruits. The visible symptom is a necrotic lesion, which is presumed to be a consequence of cell death and the subsequent leakage of solutes into the extracellular space. Environmental factors that affect either fruit cell expansion or Ca delivery to the distal portion of the fruit influence the occurrence of BER. However, since no absolute, critical fruit Ca concentration for the occurrence of BER has been identified, it is now important to define the role of Ca in fruit cell physiology and to seek the cause of BER at the cellular level. HYPOTHESIS: Here, it is suggested that BER is initiated by a cellular dysfunction in the distal portion of a young fruit during rapid cell expansion. It is proposed that insufficient Ca(2+) is available for critical apoplastic and cytoplasmic functions when the cellular Ca demand imposed by vacuolation exceeds the Ca delivery to an expanding cell. A local Ca deficiency, therefore, may result in aberrant intracellular Ca(2+) signals, a weakening of cell walls and a loss of cellular integrity. Ultimately it may lead to cell death and the visible symptoms of BER. Several experimental strategies are suggested to confirm the occurrence of aberrant Ca(2+) concentrations in cells contributing to BER. PERSPECTIVE: Many genetic and genomic resources are becoming available for tomato. Ultimately, these will allow genes affecting the occurrence of BER to be identified. Such knowledge will inform breeding strategies to eliminate BER. In the meanwhile, increasing the apoplastic Ca concentration in susceptible fruit tissue should provide a simple and reliable, practical solution for the prevention of BER in tomatoes. It is suggested that current horticultural practices, such as the manipulation of the mineral composition of the feed or the growth environment, are not completely effective in reducing BER because they affect apoplastic Ca concentration in fruit tissue indirectly. Therefore, spraying Ca directly onto young fruits is recommended for the prevention of BER.  相似文献   

8.
Developing methods that evaluate the cellular uptake of magnetic nanoparticles (MNPs) and nanotoxicity effects at single-cellular level are needed. In this study, magnetophoresis combining fluorescence based cytotoxicity assay was proposed to assess the viability and the single-cellular MNPs uptake simultaneously. Malignant cells (SKHep-1, HepG2, HeLa) were incubated with 10 nm anionic iron oxide nanoparticles. Prussian blue stain was performed to visualize the distribution of magnetic nanoparticles. MTT and fluorescence based assay analyzed the cytotoxicity effects of the bulk cell population and single cell, respectively. DAPI/PI stained was applied to evaluate death mechanism. The number of intracellular MNPs was found to be strongly correlated with the cell death. Significant differences between cellular MNP uptake in living and dead cells were observed. The method could be useful for future study of the nanotoxicity induced by MNPs.  相似文献   

9.
MicroRNAs (miRNAs)是一类参与转录后调控的小分子RNA,它在调控细胞的增殖、分化及肿瘤的形成等多种生理及病理过程中发挥着重要的作用.肝癌干细胞是肝癌组织中具有自我更新能力和分化潜能的一个微群体,它能够启始肝癌的发生,并且与肝癌的抗药性及复发等密切相关.已经有研究表明miRNAs对肝癌干细胞的发生发展起着重要的调控作用,包括致癌和抑癌的作用,因此总结miRNAs在肝癌干细胞中作用,有助于更好理解肝癌干细胞的特性及肝癌肿瘤生物学.近年来,除了传统的分子生物学手段,组学和系统生物学研究策略的运用也为miRNAs在肝癌中的研究提供了新的思路.鉴于此,深入研究miRNAs在肝癌干细胞中的分子机制,将为靶向肝癌干细胞的临床治疗提供新的途径.  相似文献   

10.

Background

Palmitate, a saturated fatty acid (FA), is known to induce toxicity and cell death in various types of cells. Resveratrol (RSV) is able to prevent pathogenesis and/or decelerate the progression of a variety of diseases. Several in vitro and in vivo studies have also shown a protective effect of RSV on fat accumulation induced by FAs. Additionally, endoplasmic reticulum (ER) stress has recently been linked to cellular adipogenic responses. To address the hypothesis that the RSV effect on excessive fat accumulation promoted by elevated saturated FAs could be partially mediated by a reduction of ER stress, we studied the RSV action on experimentally induced ER stress using palmitate in several cancer cell lines.

Principal Findings

We show that, unexpectedly, RSV promotes an amplification of palmitate toxicity and cell death and that this mechanism is likely due to a perturbation of palmitate accumulation in the triglyceride form and to a less important membrane fluidity variation. Additionally, RSV decreases radical oxygen species (ROS) generation in palmitate-treated cells but leads to enhanced X-box binding protein-1 (XBP1) splicing and C/EBP homologous protein (CHOP) expression. These molecular effects are induced simultaneously to caspase-3 cleavage, suggesting that RSV promotes palmitate lipoapoptosis primarily through an ER stress-dependent mechanism. Moreover, the lipotoxicity reversion induced by eicosapentaenoic acid (EPA) or by a liver X receptor (LXR) agonist reinforces the hypothesis that RSV-mediated inhibition of palmitate channeling into triglyceride pools could be a key factor in the aggravation of palmitate-induced cytotoxicity.

Conclusions

Our results suggest that RSV exerts its cytotoxic role in cancer cells exposed to a saturated FA context primarily by triglyceride accumulation inhibition, probably leading to an intracellular palmitate accumulation that triggers a lipid-mediated cell death. Additionally, this cell death is promoted by ER stress through a CHOP-mediated apoptotic process and may represent a potential anticancer strategy.  相似文献   

11.
Worldwide, hepatocellular carcinoma (HCC) is considered the sixth most prevalent cancer and ranked third in causes leading to death. Pterostilbene (PTE), a dimethylated analog of resveratrol, is a phytochemical found in fruits such as blueberries and grapes, and is known for its anticancer effect. The current study intended to investigate the effect of PTE on HepG2 cells. Cell viability, colony-forming potential, lipid peroxidation, catalase enzyme (CAT), superoxide dismutase (SOD), and caspase 3 activities, histone release, and expression levels of mTOR, S6K1, p53, and STAT3 proteins were assessed in PTE-treated HepG2 cells. In addition, the cellular and ultrastructural alterations were evaluated by light and transmission electron microscopy. PTE induced a significant reduction in HepG2 viability in a dose-dependent manner (IC50 of PTE = 74 ± 6 μM), accompanied by a decrease in colony formation potential. PTE-treated cancer cells exhibited a decrease in lipid peroxidation and CAT activity, and an increase in histone release, caspase-3, and SOD activities. Ultrastructurally, PTE-treated cells exhibited notable cell shrinkage, reduced number of filopodia, increased vacuolization, apoptotic bodies, accumulation of lipid droplets, enlarged mitochondria, dilated endoplasmic reticulum, pyknotic nuclei, and cellular fragmentation. mTOR, S6K1, and STAT3 levels were downregulated, however p53 level was modulated in PTE-treated cells. The anticancer potential of PTE might be related to its ability to alter the ultrastructure morphology, reduce mitotic activity, and modulate some key protein required for cell proliferation, suggesting its potential to trigger cancer cells towards apoptosis.  相似文献   

12.
Transglutaminase 2 (TG2) is a multifunctional member of an enzyme family: it modifies glutamine residues by cross-linking proteins and incorporating primary amines into them, has protein disulphide isomerase and protein kinase activities, mediates trans-membrane signal transduction and interactions between cell surface proteins and the extracellular matrix. These unusual multiple roles encoded into one polypeptide chain suggest that genomic variations in the TGM2 gene should be limited. Indeed, the available information in databases shows that unlike in the case of most other transglutaminases there are no common single nucleotide polymorphisms in exons of human TGM2. We collected data on and produced some of the rare genetic variants of TGM2 by site directed mutagenesis and found that some were less stable than the most abundant (wild type) enzyme variant and the majority had deficient transamidating activity. Further studies are required to clarify the pathologic significance of these rare TGM2 alleles in the human population.  相似文献   

13.
目的:观察白藜芦醇(RSV)对过氧化氢(H2O2)所致的海马神经元HT22细胞损伤的保护作用,并探讨超氧化物歧化酶2(Mn-SOD)在其中的作用。方法:采用体外培养HT22小鼠海马神经元细胞系,H2O2作为损伤因素模拟氧化应激损伤。将细胞分为5组,分别为正常培养组(Control)、150μM H2O2损伤组(H2O2)、25μM白藜芦醇保护组(RSV+H2O2)、SOD2-si RNA干扰组(SOD2-si RNA+RSV+H2O2)和乱序RNA组(SC-si RNA+RSV+H2O2),药物暴露24 h后,应用MTT法检测HT22细胞活力、比色法检测乳酸脱氢酶(Lactate Dehydrogenase,LDH)释放量、相差显微镜观测细胞形态。结果:与对照组相比,H2O2组的活力显著下降(P0.05),LDH释放量明显增加(P0.05),细胞形态明显破坏;25μM的RSV显著恢复了HT22细胞的活力、减少了LDH释放、改善了细胞形态,而SOD2-si RNA显著逆转了RSV引起的上述保护作用,乱序RNA(SC-si RNA)未对上述保护作用产生明显影响。结论:白藜芦醇可能通过上调SOD2减轻H2O2对HT22细胞的氧化应激损伤。  相似文献   

14.
DNA base excision repair (BER) is an essential cellular process required for genome stability, and misregulation of BER is linked to premature aging, increased rate of mutagenesis, and cancer. We have now identified the cytoplasmic ubiquitin-specific protease USP47 as the major enzyme involved in deubiquitylation of the key BER DNA polymerase (Pol β) and demonstrate that USP47 is required for stability of newly synthesized cytoplasmic Pol β that is used as a source for nuclear Pol β involved in DNA repair. We further show that knockdown of USP47 causes an increased level of ubiquitylated Pol β, decreased levels of Pol β, and a subsequent deficiency in BER, leading to accumulation of DNA strand breaks and decreased cell viability in response to DNA damage. Taken together, these data demonstrate an important role for USP47 in regulating DNA repair and maintaining genome integrity.  相似文献   

15.
目的:探讨白藜芦醇对氧糖剥夺/再灌注(OGD/R)损伤的PCI2细胞的保护作用及其机制。方法:体外培养PCI2细胞,分为对照组,白藜芦醇组,OGD/R组及OGD/R+白藜芦醇组。以改良的噻唑蓝法测定细胞活性,采用AnnexinV—FITC/PI双染法检测细胞的凋亡率,用双氯罗丹明(DHR)检测细胞内活性氧簇(Ros)的水平,采用蛋白印迹法(westemblot)分析SIRTl的蛋白表达情况。结果:与对照组相比,经过OGD/R损伤后,细胞活力显著降低。而在OGD/R的同时给予10μmol/L的白藜芦醇处理。可以明显提高细胞活力。流式细胞仪检测发现,10μmol/L的白藜芦醇可以显著地减少OGD/R引起的细胞凋亡,抑制细胞内的ROS产生。westemblot的结果提示,与对照组比较,白藜芦醇可提高SIRTl的蛋白表达水平。结论:白藜芦醇可以通过抑制ROS的产生和上调SIRTl的表达等机制而发挥其对抗氧糖剥夺/再灌注损伤的神经保护性作用。  相似文献   

16.
肿瘤抑素抗肿瘤相关肽对肝癌细胞增殖和凋亡的影响   总被引:2,自引:0,他引:2  
肿瘤抑素抗肿瘤相关肽-19肽是由肿瘤抑素185~203位氨基酸组成, 具有直接抑制黑色素瘤细胞生长作用, 但其对肝癌细胞增殖和凋亡是否有影响, 对肝癌是否具有治疗作用还需进一步研究。本研究中采用基因工程技术将合成19肽基因与载体pTYB2重组后进行蛋白表达、纯化获得19肽。通过MTT法、生长曲线观察19肽对人肝癌细胞生长抑制作用; TUNEL标记法、流式细胞仪细胞周期检测法、透射电镜观察19肽对肝癌细胞凋亡的影响; 小鼠H22腹水型转移型肝癌实体瘤抑瘤实验证明其体内的抑瘤作用。MTT实验和生长曲线实验表明随着19肽浓度的增加肝癌细胞的存活率下降。在相同19肽浓度下, 随着作用时间延长存活细胞逐渐减少。电镜观察治疗组细胞出现明显凋亡, 流式细胞仪可检测到前G1峰, TUNEL标记法也证实治疗组可见明显的凋亡细胞, 体内19肽作用的小鼠H22腹水型转移型肝癌的抑瘤率达48.46%。可见, 肿瘤抑素19肽可抑制肝癌细胞生长, 促进肝癌细胞凋亡, 对肝癌具有一定的治疗作用。  相似文献   

17.
组织转谷酰胺酶(transglutaminase 2,TGM2)是一种普遍存在的多功能蛋白,与不同细胞的粘附和肿瘤形成有关.有证据表明,TGM2参与了宿主细胞与病毒间的相互作用,但是对于流感病毒在细胞内增殖的影响还未有报道.为了探究MDCK细胞中TGM2对H1N1亚型流感病毒增殖的影响,本研究构建了TGM2过表达和敲除...  相似文献   

18.
A convenient and versatile method for the accurate, time-resolved determination of cellular viability has been developed. The conventional viability indicator fluorescein diacetate (FDA), which is converted to the fluorescent compound fluorescein in living cells, was employed as a viability probe. Fluorescence emission from cells was measured using a spectrofluorimeter equipped with a magnetic stirrer. Using this assay cell suspensions exhibiting densities in the range 0.5 x 10(5) to 2.0 x 10(5) cells displayed a linear response when FDA concentrations less than 12 micro M were employed. To calibrate the method, viability standards were elaborated using different proportions of living and dead cells, and a correlation coefficient for the viability of tobacco BY-2 suspensions was calculated as 0.998. This viability assay was also found to be applicable to Chlamydomonas reinhardtii and Arabidopsis thaliana cultured cells. Using this cell viability assay, kinetic analyses of cell death could be performed. Using the proteinaceous elicitor from Phytophthora cryptogea, cryptogein, to induce cell death in tobacco cell suspensions, values for the maximum velocity of death induction rate (V(max)) and the LD50 (half-maximal velocity or k(1/2)) were calculated as 17.2 (% death/h) and 65 nM, respectively.  相似文献   

19.
Growing evidence confirms that ferroptosis plays an important role in tumor growth inhibition. However, some non-small-cell lung cancer (NSCLC) cell lines are less sensitive to erastin-induced ferroptotic cell death. Elucidating the mechanism of resistance of cancer cells to erastin-induced ferroptosis and increasing the sensitivity of cancer cells to erastin need to be addressed. In our experiment, erastin and acetaminophen (APAP) cotreatment inhibited NSCLC cell viability and promoted ferroptosis and apoptosis, accompanied with attenuation of glutathione and ectopic increases in lipid peroxides. Erastin and APAP promoted NSCLC cell death by regulating nucleus translocation of nuclear factor erythroid 2-related factor 2 (Nrf2); and the ferroptosis induced by erastin and APAP was abrogated by bardoxolone methyl (BM) with less generation of reactive oxygen species and malondialdehyde. As a downstream gene of Nrf2, heme oxygenase-1 expression decreased significantly with the cotreatment of erastin and APAP, which could be rescued by BM. In vivo experiment showed that the combination of erastin and APAP had a synergic therapeutic effect on xenograft of lung cancer. In short, the present study develops a new effective treatment for NSCLC by synergizing erastin and APAP to induce ferroptosis.  相似文献   

20.
Oxidative stress is associated with the pathology of acute and chronic neurodegenerative disease. We have cloned a human neuroglobin (Nb) construct and over-expressed this protein in cultured human neuronal cells to assess whether Nb ameliorates the cellular response to experimental hypoxia-reoxygenation (H/R) injury. Parental cells transfected with a blank (pDEST40) vector responded to H/R injury with a significant decrease in cellular ATP at 5 and 24 h after insult. This was coupled with increases in the cytosolic Ca2+, and the transition metals iron (Fe), copper (Cu), and zinc (Zn) within the cell body, as monitored simultaneously using X-ray fluorescence microprobe imaging. Parental cell viability decreased over the same time period with a ∼4 to 5-fold increase in cell death (maximum ∼25%) matched by an increase in caspase 3/7 activation (peaking at a 15-fold increase after 24 h) and condensation of β-actin along axonal processes. Over-expression of Nb inhibited ATP loss and except for significant decreases in the sulfur (S), chlorine (Cl), potassium (K) and Ca2+ contents, maintained cellular ion homeostasis after H/R insult. This resulted in increased cell viability, significantly diminished caspase activation and maintenance of the β-actin cytoskeletal structure and receptor-mediated endocytosis. These data indicate that bolstering the cellular content of Nb inhibits neuronal cell dysfunction promoted by H/R insult through multiple protective actions including: (i) maintenance of cellular bioenergetics; (ii) inhibition of Ca2+ influx; (iii) a reduction in cellular uptake of Fe, Cu and Zn at the expense of S, Cl and K; and (iv) an enhancement of cell viability through inhibiting necrosis and apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号