首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Objectives

Our previous in vitro study showed that 5‐(3, 4, 5‐trimethoxybenzoyl)‐4‐methyl‐2‐(p‐tolyl) imidazol (BZML) is a novel colchicine binding site inhibitor with potent anti‐cancer activity against apoptosis resistance in A549/Taxol cells through mitotic catastrophe (MC). However, the mechanisms underlying apoptosis resistance in A549/Taxol cells remain unknown. To clarify these mechanisms, in the present study, we investigated the molecular mechanisms of apoptosis and autophagy, which are closely associated with MC in BZML‐treated A549 and A549/Taxol cells.

Methods

Xenograft NSCLC models induced by A549 and A549/Taxol cells were used to evaluate the efficacy of BZML in vivo. The activation of the mitochondrial apoptotic pathway was assessed using JC‐1 staining, Annexin V‐FITC/PI double‐staining, a caspase‐9 fluorescence metric assay kit and western blot. The different functional forms of autophagy were distinguished by determining the impact of autophagy inhibition on drug sensitivity.

Results

Our data showed that BZML also exhibited desirable anti‐cancer activity against drug‐resistant NSCLC in vivo. Moreover, BZML caused ROS generation and MMP loss followed by the release of cytochrome c from mitochondria to cytosol in both A549 and A549/Taxol cells. However, the ROS‐mediated apoptotic pathway involving the mitochondria that is induced by BZML was only fully activated in A549 cells but not in A549/Taxol cells. Importantly, we found that autophagy acted as a non‐protective type of autophagy during BZML‐induced apoptosis in A549 cells, whereas it acted as a type of cytoprotective autophagy against BZML‐induced MC in A549/Taxol cells.

Conclusions

Our data suggest that the anti‐apoptosis property of A549/Taxol cells originates from a defect in activation of the mitochondrial apoptotic pathway, and autophagy inhibitors can potentiate BZML‐induced MC to overcome resistance to mitochondrial apoptosis.
  相似文献   

2.
Non- small- cell lung cancer (NSCLC) is one of the most leading causes of cancer-related deaths worldwide. Paclitaxel based combination therapies have long been used as a standard treatment in aggressive NSCLCs. But paclitaxel resistance has emerged as a major clinical problem in combating non-small-cell lung cancer and autophagy is one of the important mechanisms involved in this phenomenon. In this study, we used microRNA (miRNA) arrays to screen differentially expressed miRNAs between paclitaxel sensitive lung cancer cells A549 and its paclitaxel-resistant cell variant (A549-T24). We identified miR-17-5p was one of most significantly downregulated miRNAs in paclitaxel-resistant lung cancer cells compared to paclitaxel sensitive parental cells. We found that overexpression of miR-17-5p sensitized paclitaxel resistant lung cancer cells to paclitaxel induced apoptotic cell death. Moreover, in this report we demonstrated that miR-17-5p directly binds to the 3′-UTR of beclin 1 gene, one of the most important autophagy modulator. Overexpression of miR-17-5p into paclitaxel resistant lung cancer cells reduced beclin1 expression and a concordant decease in cellular autophagy. We also observed similar results in another paclitaxel resistant lung adenosquamous carcinoma cells (H596-TxR). Our results indicated that paclitaxel resistance of lung cancer is associated with downregulation of miR-17-5p expression which might cause upregulation of BECN1 expression.  相似文献   

3.
Paclitaxel (Taxol)-induced cell death requires the intrinsic cell death pathway, but the specific participants and the precise mechanisms are poorly understood. Previous studies indicate that a BH3-only protein BIM (BCL-2 Interacting Mediator of cell death) plays a role in paclitaxel-induced apoptosis. We show here that BIM is dispensable in apoptosis with paclitaxel treatment using bim−/− MEFs (mouse embryonic fibroblasts), the bim−/− mouse breast tumor model, and shRNA-mediated down-regulation of BIM in human breast cancer cells. In contrast, both bak −/− MEFs and human breast cancer cells in which BAK was down-regulated by shRNA were more resistant to paclitaxel. However, paclitaxel sensitivity was not affected in bax−/− MEFs or in human breast cancer cells in which BAX was down-regulated, suggesting that paclitaxel-induced apoptosis is BAK-dependent, but BAX-independent. In human breast cancer cells, paclitaxel treatment resulted in MCL-1 degradation which was prevented by a proteasome inhibitor, MG132. A Cdk inhibitor, roscovitine, blocked paclitaxel-induced MCL-1 degradation and apoptosis, suggesting that Cdk activation at mitotic arrest could induce subsequent MCL-1 degradation in a proteasome-dependent manner. BAK was associated with MCL-1 in untreated cells and became activated in concert with loss of MCL-1 expression and its release from the complex. Our data suggest that BAK is the mediator of paclitaxel-induced apoptosis and could be an alternative target for overcoming paclitaxel resistance.  相似文献   

4.
For patients with platinum-resistant lung adenocarcinoma (LUAD), the exploration of new effective drug candidates is urgently needed. Fibroblast growth factor receptors (FGFRs) have been identified as promising targets for LUAD therapy. The purpose of this study was to determine the exact role of the irreversible FGFR1-4 inhibitor FIIN-2 in LUAD and to clarify its underlying molecular mechanisms. Our results demonstrated that FIIN-2 significantly inhibited the proliferation, colony formation, and migration of A549 and A549/DDP cells but induced the mitochondria-mediated apoptosis of these cells. Meanwhile, FIIN-2 increased the autophagy flux of A549 and A549/DDP cells by inhibiting the mammalian target of rapamycin (mTOR) and further activating the class III PI3K complex pathway. More importantly, in vivo and in vitro experiments showed that autophagy inhibitors could enhance the cytotoxicity of FIIN-2 on A549 and A549/DDP cells, confirming that FIIN-2 induced protective autophagy. These findings indicated that FIIN-2 is a potential drug candidate for LUAD treatment, and its use in combination with autophagy inhibitors might be an efficient treatment strategy, especially for patients with cisplatin resistance.Subject terms: Pharmacology, Targeted therapies, Preclinical research  相似文献   

5.
Chloride channel-3 (ClC-3), a member of the ClC family of voltage-gated Cl channels, is involved in the resistance of tumor cells to chemotherapeutic drugs. Here, we report a new mechanism for ClC-3 in mediating multidrug resistance (MDR). ClC-3 was highly expressed in the P-glycoprotein (P-gp)-dependent human lung adenocarcinoma cell line (A549)/paclitaxel (PTX) and the human breast carcinoma cell line (MCF-7)/doxorubicin (DOX) resistant cells. Changes in the ClC-3 expression resulted in the development of drug resistance in formerly drug-sensitive A549 or MCF-7 cells, and drug sensitivity in formerly drug-resistant A549/Taxol and MCF-7/DOX cells. Double transgenic MMTV-PyMT/CLCN3 mice with spontaneous mammary cancer and ClC-3 overexpression demonstrated drug resistance to PTX and DOX. ClC-3 expression upregulated the expression of MDR1 messenger RNA and P-gp by activating the nuclear factor-κB (NF-κB)-signaling pathway. These data suggest that ClC-3 expression in cancer cells induces MDR by upregulating NF-κB-signaling-dependent P-gp expression involving another new mechanism for ClC-3 in the development of drug resistance of cancers.  相似文献   

6.
Mitotic catastrophe (MC) is a newly identified type of anticancer mechanism for multidrug resistance (MDR) prevention. However, the long cellular death process resulting from MC is not beneficial for anticancer treatment. BZML is a novel colchicine-binding site inhibitor which can overcome MDR by inducing MC; however, BZML-induced MC cells underwent a long cellular death process. Thus, to improve anticancer therapies based on drug-induced MC, BZML-induced MC was served as a model to further study the underlying molecular mechanisms in the process of MC. Here, BZML could induce p53-dependent senescence in A549/Taxol cells, a MDR cell line. This senescence was a secondary effect of MC in overcoming MDR. During MC, BZML-induced destruction of protein-degradation system contributed not only to an increase of p53 protein but also to the accumulation of survivin in nucleus of A549/Taxol cells. Importantly, the nuclear accumulation of survivin was not the inducer but the result of BZML-induced MC, and it promoted the survival of senescent cells. Moreover, it provided additional vulnerability and critical opportunities for sequentially applied therapies. Further, targeting survivin with YM155 accelerated the death of MC cells by timely eliminating therapy-induced senescent cells and strengthening the efficiency of BZML in overcoming MDR in A549/Taxol cells. Collectively, nuclear accumulation of survivin delayed cellular death during MC by promoting the survival of BZML-induced senescent A549/Taxol cells. Moreover, “one-two punch” approach to cancer treatment based on combination therapy with YM155 for survivin suppression might be a new strategy for potentiating MC to overcome MDR.  相似文献   

7.
Paclitaxel is generally used to treat cancers in clinic as an inhibitor of cell division. However, the acquired resistance in tumours limits its clinical efficacy. Therefore, the aim of this study was to detect whether co‐treatment with lentinan enhanced the anti‐cancer effects of paclitaxel in A549 cells. We found that the combination of paclitaxel and lentinan resulted in a significantly stronger inhibition on A549 cell proliferation than paclitaxel treatment alone. Co‐treatment with paclitaxel and lentinan enhanced cell apoptosis rate by inducing caspase‐3 activation. Furthermore, co‐treatment with paclitaxel and lentinan significantly triggered reactive oxygen species (ROS) production, and increased thioredoxin‐interacting protein (TXNIP) expression. Moreover, co‐treatment with paclitaxel and lentinan enhanced TXNIP‐NLRP3 interaction, and activated NLRP3 inflammasome whereat interleukin‐1β levels were increased and cell apoptosis was induced. In addition, combination of paclitaxel and lentinan could activate apoptosis signal regulating kinase‐1 (ASK1)/p38 mitogen‐activated protein kinase (MAPK) signal which also contributed to cell apoptosis. Taken together, co‐treatment with paclitaxel and lentinan exerts synergistic apoptotic effects in A549 cells through inducing ROS production, and activating NLRP3 inflammasome and ASK1/p38 MAPK signal pathway.  相似文献   

8.
9.
The previous studies by this author group has shown that paclitaxel, a mitotic inhibitor used in breast cancer chemotherapy, inhibits cell growth via induction of Raf-1-dependent apoptosis. In this article, the role of autophagy in paclitaxel anticancer action was investigated using v-Ha-ras-transformed NIH 3T3 cells. Paclitaxel induced a notable increase in the number of fluorescent particles labeled with monodansylcadaverine (MDC), a specific marker for autophagic vacuoles. MDC-labeled vacuoles clearly exhibited the fluorescent-tagged LC3 in cells transiently overexpressing GFP-LC3 (a protein that associates with autophagosome membranes). However, autophagy inhibition with 3-methyladenine (3-MA) failed to rescue v-Ha-ras-transformed NIH 3T3 cells from paclitaxel-induced cell death. More interestingly, the apoptosis inhibition by overexpression of the X-linked inhibitor of apoptosis (XIAP) did not fully block the cell death by paclitaxel, implying that apoptosis inhibition might accelerate the autophagic components of the paclitaxel response. Conversely, Raf-1 shRNA expression protected against paclitaxel-induced cell death through the simultaneous inhibition of both autophagy and apoptosis. These results suggest that both autophagy and apoptosis act as cooperative partners to induce cell death in v-Ha-ras-transformed NIH 3T3 cells treated with paclitaxel.  相似文献   

10.
11.
We investigated the reversal effect of afatinib (AFT) on activity of adriamycin (ADR) in A549T cells and clarified the related molecular mechanisms. A549T cells overexpressing P‐glycoprotein (P‐gp) were resistant to anticancer drug ADR. AFT significantly increased the antitumor activity of ADR in A549T cells. AFT increased the intracellular concentration of ADR by inhibiting the function and expression of P‐gp at mRNA and protein levels in A549T cells. Additionally, the reversal effect of AFT on P‐gp mediated multidrug resistance (MDR) might be related to the inhibition of PI3K/Akt pathway. Cotreatment with AFT and ADR could enhance ADR‐induced apoptosis and autophagy in A549T cells. Meanwhile, the co‐treatment significantly induced cell apoptosis and autophagy accompanied by increased expression of cleaved caspase‐3, PARP, LC3B‐II, and beclin 1. Apoptosis inhibitors had no significant effect on cell activity, while autophagy inhibitors decreased cell viability, suggesting that autophagy may be a self protective mechanism of cell survival in the absence of chemotherapy drugs. Interestingly, when combined with AFT and ADR, inhibition of apoptosis and/or autophagy could enhance cell viability. These results indicated that in addition to inhibit P‐gp, ADR‐induced apoptosis, and autophagy promoted by AFT contributed to the antiproliferation effect of combined AFT and ADR on A549T cells. These findings provide evidence that AFT combined ADR may achieve a better therapeutic effect to lung cancer in clinic. J. Cell. Biochem. 119: 414–423, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

12.
Bortezomib is a novel proteasome inhibitor that has promising antitumor activity against various cancer cells. We have assessed its antitumor activity in non-small cell lung cancer (NSCLC) A549 and H157 cells in vitro where it inhibited cell growth and induced apoptosis, which was associated with cytochrome c release and caspase-3 activation. Bortezomib upregulated autophagic-related proteins, the Atg12–Atg5 complex and LC3-II, which indicated autophagy had occurred. The combination of bortezomib with autophagic inhibitor 3-methyladenine or chloroquine significantly enhanced suppression of cell growth and apoptosis induced by bortezomib in A549 and H157 cells. Our study indicated that inhibition of both proteasome and autophagy has great potential for NSCLC treatment.  相似文献   

13.
NSCLC (non-small cell lung cancer) often exhibits resistance to paclitaxel treatment. Identifying the elements regulating paclitaxel response will advance efforts to overcome such resistance in NSCLC therapy. Using in vitro approaches, we demonstrated that over-expression of the microRNA miR-337-3p sensitizes NCI-H1155 cells to paclitaxel, and that miR-337-3p mimic has a general effect on paclitaxel response in NSCLC cell lines, which may provide a novel adjuvant strategy to paclitaxel in the treatment of lung cancer. By combining in vitro and in silico approaches, we identified STAT3 and RAP1A as direct targets that mediate the effect of miR-337-3p on paclitaxel sensitivity. Further investigation showed that miR-337-3p mimic also sensitizes cells to docetaxel, another member of the taxane family, and that STAT3 levels are significantly correlated with taxane resistance in lung cancer cell lines, suggesting that endogenous STAT3 expression is a determinant of intrinsic taxane resistance in lung cancer. The identification of a miR-337-3p as a modulator of cellular response to taxanes, and STAT3 and RAP1A as regulatory targets which mediate that response, defines a novel regulatory pathway modulating paclitaxel sensitivity in lung cancer cells, which may provide novel adjuvant strategies along with paclitaxel in the treatment of lung cancer and may also provide biomarkers for predicting paclitaxel response in NSCLC.  相似文献   

14.
Non-small cell lung cancer (NSCLC) A549 cells are resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Therefore, combination therapy using sensitizing agents to overcome TRAIL resistance may provide new strategies for treatment of NSCLC. Here, we investigated whether lithium chloride (LiCl), a drug for mental illness, could sensitize A549 cells to TRAIL-induced apoptosis. We observed that LiCl significantly enhanced A549 cells apoptosis through up-regulation of death receptors DR4 and DR5 and activation of caspase cascades. In addition, G2/M arrest induced by LiCl also contributed to TRAIL-induced apoptosis. Concomitantly, LiCl strongly inhibited the activity of c-Jun N-terminal kinases (JNKs), and the inhibition of JNKs by SP600125 also induced G2/M arrest and augmented cell death caused by TRAIL or TRAIL plus LiCl. However, glycogen synthase kinase-3β (GSK3β) inhibition was not involved in TRAIL sensitization induced by LiCl. Collectively, these findings indicated that LiCl sensitized A549 cells to TRAIL-induced apoptosis through caspases-dependent apoptotic pathway via death receptors signaling and G2/M arrest induced by inhibition of JNK activation, but independent of GSK3β.  相似文献   

15.
Paclitaxel (Taxol?) is a widely used chemotherapeutic agent that has a major dose limiting side-effect of painful peripheral neuropathy. Currently there is no effective therapy for the prevention or treatment of chemotherapy-induced painful peripheral neuropathies. Evidence for mitochondrial dysfunction during paclitaxel-induced pain was previously indicated with the presence of swollen and vacuolated neuronal mitochondria. As mitochondria are a major source of reactive oxygen species (ROS), the aim of this study was to examine whether pharmacological inhibition of ROS could reverse established paclitaxel-induced pain or prevent the development of paclitaxel-induced pain. Using a rat model of paclitaxel-induced pain (intraperitoneal 2 mg/kg paclitaxel on days 0, 2, 4 & 6), the effects of a non-specific ROS scavenger, N-tert-Butyl-α-phenylnitrone (PBN) and a superoxide selective scavenger, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) were compared. Systemic 100 mg/kg PBN administration markedly inhibited established paclitaxel-induced mechanical hypersensitivity to von Frey 8 g and 15 g stimulation and cold hypersensitivity to plantar acetone application. Daily systemic administration of 50 mg/kg PBN (days -1 to 13) completely prevented mechanical hypersensitivity to von Frey 4 g and 8 g stimulation and significantly attenuated mechanical hypersensitivity to von Frey 15 g. Systemic 100 mg/kg TEMPOL had no effect on established paclitaxel-induced mechanical or cold hypersensitivity. High dose (250 mg/kg) systemic TEMPOL significantly inhibited mechanical hypersensitivity to von Frey 8 g & 15 g, but to a lesser extent than PBN. Daily systemic administration of 100 mg/kg TEMPOL (day -1 to 12) did not affect the development of paclitaxel-induced mechanical hypersensitivity. These data suggest that ROS play a causal role in the development and maintenance of paclitaxel-induced pain, but such effects cannot be attributed to superoxide radicals alone.  相似文献   

16.
The aim of this study was to explore whether rhein could enhance the effects of pemetrexed (PTX) on the therapy of non-small-cell lung cancer (NSCLC) and to clarify the associated molecular mechanism. Our study shows that rhein in combination with PTX could obviously increase the systemic exposure of PTX in rats, which would be mediated by the inhibition of organic anion transporters (OATs). Furthermore, the toxicity of PTX was significantly raised by rhein in A549 cells in a concentration-dependent manner. Concomitant administration of rhein and PTX-induced cell apoptosis compared with PTX alone in flow cytometry assays, which was further validated by the protein expressions of the apoptotic markers B-cell lymphoma-2/Bcl-2-associated x (Bcl-2/Bax) and Cleaved-Caspase3 (Cl-Caspase3). Meanwhile, the results of monodansylcadaverine (MDC) dyeing experiments showed that PTX-induced autophagy could be enhanced by combination therapy with rhein in A549 cells. Western blot analysis indicated that the synergistic effect of rhein on PTX-mediated autophagy may be interrelated to PI3K–AKT–mTOR pathway inhibition and to the enhancement of p-AMPK and light chain 3-II (LC3-II) protein levels. From these findings, it could be surmised that rhein enhanced the antitumor activity of PTX through influencing autophagy and apoptosis by modulating the PI3K–AKT–mTOR pathway and Bcl-2 family of proteins in A549 cells. Our findings demonstrated that the potential application of rhein as a candidate drug in combination with PTX is promising for treatment of the human lung cancer.  相似文献   

17.
Lung cancer is considered one of the most frequent causes of cancer-related death worldwide and Non-Small Cell Lung Cancer (NSCLC) accounts for 80% of all lung cancer cases. Autophagy is a cellular process responsible for the recycling of damaged organelles and protein aggregates. Transforming growth factor beta-1 (TGFβ1) is involved in Epithelial to Mesenchymal Transition (EMT) and autophagy induction in different cancer models and plays an important role in the pathogenesis of NSCLC. It is not clear how autophagy can regulate EMT in NSCLC cells. In the present study, we have investigated the regulatory role of autophagy in EMT induction in NSCLC and show that TGFβ1 can simultaneously induce both autophagy and EMT in the NSCL lines A549 and H1975. Upon chemical inhibition of autophagy using Bafilomycin-A1, the expression of the mesenchymal marker vimentin and N-cadherin was reduced. Immunoblotting and immunocytochemistry (ICC) showed that the mesenchymal marker vimentin was significantly downregulated upon TGFβ1 treatment in ATG7 knockdown cells when compared to corresponding cells treated with scramble shRNA (negative control), while E-cadherin was unchanged. Furthermore, autophagy inhibition (Bafilomycin A1 and ATG7 knockdown) decreased two important mesenchymal functions, migration and contraction, of NSCLC cells upon TGFβ1 treatment. This study identified a crucial role of autophagy as a potential positive regulator of TGFβ1-induced EMT in NSCLC cells and identifies inhibitors of autophagy as promising new drugs in antagonizing the role of EMT inducers, like TGFβ1, in the clinical progression of NSCLC.  相似文献   

18.
We assessed the capability of paclitaxel, one of the taxanes, to induce death in two prostate cancer lines, LNCaP and PC3. Paclitaxel drove an apoptotic pathway in LNCaP, but not in PC3 cells, in response to G2/M arrest. An examination of the levels of anti-apoptotic proteins revealed that Bcl-xl was much higher in PC3 cells than in LNCaP cells and Bcl2 could be detected only in PC3 cells, not in LNCaP cells. Knocking down Bcl-xl enhanced paclitaxel-induced apoptosis in LNCaP cells, while we were unable to knock down Bcl-xl efficiently in PC3 cells. Significantly, a comparison of ABT-263, a specific inhibitor of Bcl2 and Bcl-xl, with ABT-199, a Bcl2 selective inhibitor, disclosed that only ABT-263, not ABT-199, could induce apoptosis in LNCaP and PC3 cells. The results indicate that Bcl-xl has a protective role against paclitaxel-induced apoptosis in LNCaP and PC3 cells, and its overexpression causes the paclitaxel resistance seen in PC3 cells. Interestingly, combined paclitaxel with ABT-263 to treat LNCaP and PC3 cells demonstrated synergistic apoptosis activation, indicating that ABT-263 could enhance paclitaxel-induced apoptosis in LNCaP cells and overcome Bcl-xl overexpression to trigger paclitaxel-induced apoptosis in PC3 cells. We also observed that the activation of apoptosis in LNCaP cells was more efficient than in PC3 cells in response to paclitaxel plus ABT-263 or to ABT-263 alone, suggesting that the apoptosis pathway in PC3 cells might have further differences from that in LNCaP cells even after Bcl-xl overexpression is accounted for.  相似文献   

19.
Inclusion of chemotherapeutic drugs in treatment of patients with newly diagnosed head and neck cancer has improved response rates and prolonged median survival. Nevertheless, most patients with advanced head and neck cancer are destined to relapse and to develop resistance to initially used drugs such as paclitaxel. Consequently, it has been more important in cancer therapy to determine the molecular mechanisms that are related to cell-killing effects of anti-cancer agents or cancer resistance against them. Consequently, we examined whether abrogation of histone deacetylase 3 (HDAC3) expression by anti-sense oligonucleotides (ASOs) potentiates the efficacy of paclitaxel in human maxillary cancer IMC-3 cells. Here, we showed that paclitaxel-induced apoptosis was enhanced significantly by addition of ASOs for HDAC3 in cultured cells. Furthermore, paclitaxel-induced apoptosis in IMC-3 tumors transplanted in nude mice was enhanced significantly by administration of ASOs for HDAC3, thereby suppressing tumor growth. We provide new evidence that HDAC3 is a novel molecular target whose inactivation can potentiate the efficacy of anti-cancer drugs disrupting microtubules such as paclitaxel.  相似文献   

20.
Multidrug resistance (MDR) cancer toward cancer chemotherapy is one of the obstacles in cancer therapy. Therefore, it is of interested to use formoxanthone C (1,3,5,6-tetraoxygenated xanthone; XanX), a natural compound, which showed cytotoxicity against MDR human A549 lung cancer (A549RT-eto). The treatment with XanX induced not only apoptosis- in A549RT-eto cells, but also autophagy-cell death. Inhibition of apoptosis did not block XanX-induced autophagy in A549RT-eto cells. Furthermore, suppression of autophagy by beclin-1 small interfering RNAs (siRNAs) did not interrupt XanX-induced apoptosis, indicating that XanX can separately induce apoptosis and autophagy. Of interest, XanX treatment reduced levels of histone deacetylase 4 (HDAC4) protein overexpressed in A549RT-etocells. The co-treatment with XanX and HDAC4 siRNA accelerated both autophagy and apoptosis more than that by XanX treatment alone, suggesting survival of HDAC4 in A549RT-eto cells. XanX reverses etoposide resistance in A549RT-eto cells by induction of both autophagy and apoptosis, and confers cytotoxicity through down-regulation of HDAC4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号