首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Amphiphilic lysine-ligated neomycin B building blocks were prepared by reductive amination of a protected C5″-modified neomycin B-based aldehyde and side chain-unprotected lysine or lysine-containing peptides. It was demonstrated that a suitably protected lysine-ligated neomycin B conjugate (NeoK) serves as a building block for peptide synthesis, enabling incorporation of aminoglycoside binding sites into peptides. Antibacterial testing of three amphiphilic lysine-ligated neomycin B conjugates against a representative panel of Gram-positive and Gram-negative strains demonstrates that C5″-modified neomycin-lysine conjugate retains antibacterial activity. However, in most cases the lysine-ligated neomycin B analogs display reduced potency against Gram-positive strains when compared to unmodified neomycin B or unligated peptide. An exception is MRSA where an eightfold enhancement was observed. When compared to unmodified neomycin B, the prepared lysine-neomycin conjugates exhibited a 4–8-fold enhanced Gram-negative activity against Pseudomonas aeruginosa and up to 12-fold enhanced activity was observed when compared to unligated reference peptides.  相似文献   

2.
Solid phase synthesis was used to produce 5 hybrid peptides containing sequences from the antibacterial peptide, cecropin A, and from the bee venom toxin, melittin. Four of these chimeric peptides showed good antibacterial activity against representative Gram-negative and Gram-positive bacterial species. The best hybrid, cecropin A(1-13)-melittin(1-13) was 100-fold more active than cecropin A against Staphylococcus aureus. It was also a 10-fold better antimalarial agent than cecropin B or magainin 2. Sheep red cells were lysed by melittin at low concentrations, but not by the hybrid molecules, even at 50 times higher concentrations.  相似文献   

3.
AIM: To evaluate the activity against fungal phytopathogens of two synthetic peptides derived from the protein bovine lactoferricin: the antibacterial active core of six amino acid residues (LfcinB(20-25)) and an extension of 15 amino acids (LfcinB(17-31)). METHODS AND RESULTS: In vitro activity against fungal pathogens was determined and compared with that against model micro-organisms. Activity was demonstrated against fungi of agronomic relevance. Distinct antimicrobial properties in vitro were found for the two peptides. LfcinB(17-31) had growth inhibitory activity higher than LfcinB(20-25). However, LfcinB(17-31) was not fungicidal to quiescent conidia of Penicillium digitatum at the concentrations assayed, while LfcinB(20-25) killed conidia more efficiently. Microscopical observations showed that the mycelium of P. digitatum treated with LfcinB(17-31) developed alterations of growth, sporulation and chitin deposition, and permeation of hyphal cells. In experimental inoculations of mandarins, both peptides showed limited protective effect against the disease caused by P. digitatum. CONCLUSIONS: LfcinB(20-25) and LfcinB(17-31) peptides were shown to have antimicrobial activity against plant pathogenic filamentous fungi, with distinct properties and mode of action. SIGNIFICANCE AND IMPACT OF THE STUDY: LfcinB(20-25) and LfcinB(17-31) peptides offer novel alternatives to develop resistant plants by molecular breeding.  相似文献   

4.
Human α-defensin 5 (HD5, HD5(ox) to specify the oxidized and disulfide linked form) is a 32-residue cysteine-rich host-defense peptide, expressed and released by small intestinal Paneth cells, that exhibits antibacterial activity against a number of Gram-negative and -positive bacterial strains. To ascertain the contributions of its disulfide array to structure, antimicrobial activity, and proteolytic stability, a series of HD5 double mutant peptides where pairs of cysteine residues corresponding to native disulfide linkages (Cys(3)-Cys(31), Cys(5)-Cys(20), Cys(10)-Cys(30)) were mutated to Ser or Ala residues, overexpressed in E. coli, purified, and characterized. A hexa mutant peptide, HD5[Ser(hexa)], where all six native Cys residues are replaced by Ser residues, was also evaluated. Removal of a single native S-S linkage influences oxidative folding and regioisomerization, antibacterial activity, Gram-negative bacterial membrane permeabilization, and proteolytic stability. Whereas the majority of the HD5 mutant peptides show low micromolar activity against Gram-negative E. coli ATCC 25922 in colony counting assays, the wild-type disulfide array is essential for low micromolar activity against Gram-positive S. aureus ATCC 25923. Removal of a single disulfide bond attenuates the activity observed for HD5(ox) against this Gram-positive bacterial strain. This observation supports the notion that the HD5(ox) mechanism of antibacterial action differs for Gram-negative and Gram-positive species [Wei et al. (2009) J. Biol. Chem. 284, 29180-29192] and that the native disulfide array is a requirement for its activity against S. aureus.  相似文献   

5.
In our effort to develop synthetic immunogens as vaccines, we have focused on the combination of a known T-cell stimulating peptide with putative B-cell stimulating peptide epitopes derived from the sequences of respiratory syncytial (RS) virus proteins. The T-cell stimulating peptide consists of residues 45 through 60 of the 1A protein of RS virus, and it also contains an overlapping antibody binding (B-cell) site. Herein, we have combined the 1A T-cell stimulating peptide with a putative B-cell peptide epitope derived from the viral G glycoprotein using linear synthesis or using chemical crosslinking. The chimeric immunogens were compared to each other and to free peptides for their T- and B-cell stimulating properties. Both chimeras had potent T-cell stimulating and antibody-inducing activity. However, T-cells primed to free peptide differentially recognized the two chimeras and immunization with the chimeras primed T-cells with different specificity. Most strikingly, the two chimeras had opposite antibody-inducing properties: The chimera constructed by linear synthesis overwhelmingly elicited antibody directed against the G peptide, whereas the chimera constructed by chemical crosslinking overwhelmingly elicited antibody directed against the 1A peptide. Competition blocking studies revealed that the chimeras adopted different configurations in solution. The resulting antibody response, and hence the B-cell clone elicited, was consistent with the antibody accessibility of the individual peptide epitope.  相似文献   

6.
A novel series of acylides 4 were designed to overcome antibacterial resistance and evaluated for in vitro and in vivo activity. This series of acylides was designed from clarithromycin by changing the substitution on the desosamine nitrogen, followed by conversion to 3-O-acyl and 11,12-carbamate. These compounds showed significantly potent antibacterial activity against not only Gram-positive pathogens, including macrolide-lincosamide-streptogramin B (MLS(B))-resistant and efflux-resistant strains, but also Gram-negative pathogens such as Haemophilus influenzae. These acylides also showed better activity against telithromycin resistant Streptococcus pneumoniae strains.  相似文献   

7.
Hemoglobin is an animal protein described as a source of biologically active peptides. Peptic digestion of bovine hemoglobin alpha-chain allowed obtaining peptide fractions with antimicrobial activity. These peptides were purified by reverse-phase High-Performance Liquid Chromatography (HPLC) and characterized by mass spectrometry. The minimal inhibitory concentration and mode of action of these peptides were studied against five bacterial strains including Escherichia coli and Salmonella enteritidis as Gram-negative bacteria and Listeria innocua, Micrococcus luteus and Staphylococcus aureus as Gram-positive bacteria. The action aforementioned peptides were studied on artificial membranes as well. The most active peptides resulted to be the short ones. Consequently, the minimal peptidic sequence necessary for the antibacterial activity was clearly determined: KYR.  相似文献   

8.
Mammals have four peptidoglycan recognition proteins (PGRPs or PGLYRPs), which are secreted innate immunity pattern recognition molecules with effector functions. In this study, we demonstrate that human PGLYRP-1, PGLYRP-3, PGLYRP-4, and PGLYRP-3:4 have Zn(2+)-dependent bactericidal activity against both Gram-positive and Gram-negative bacteria at physiologic Zn(2+) concentrations found in serum, sweat, saliva, and other body fluids. The requirement for Zn(2+) can only be partially replaced by Ca(2+) for killing of Gram-positive bacteria but not for killing of Gram-negative bacteria. The bactericidal activity of PGLYRPs is salt insensitive and requires N-glycosylation of PGLYRPs. The LD(99) of PGLYRPs for Gram-positive and Gram-negative bacteria is 0.3-1.7 muM, and killing of bacteria by PGLYRPs, in contrast to killing by antibacterial peptides, does not involve permeabilization of cytoplasmic membrane. PGLYRPs and antibacterial peptides (phospholipase A(2), alpha- and beta-defensins, and bactericidal permeability-increasing protein), at subbactericidal concentrations, synergistically kill Gram-positive and Gram-negative bacteria. These results demonstrate that PGLYRPs are a novel class of recognition and effector molecules with broad Zn(2+)-dependent bactericidal activity against both Gram-positive and Gram-negative bacteria that are synergistic with antibacterial peptides.  相似文献   

9.
Lactoferricin B (LfcinB), a 25 residue peptide derived from the N-terminal of bovine lactoferrin (bLF), causes depolarization of the cytoplasmic membrane in susceptible bacteria. Its mechanism of action, however, still needs to be elucidated. In the present study, synthetic LfcinB (without a disulfide bridge) and LfcinB (C–C; with a disulfide bridge) as well as three derivatives with 15-, 11- and 9-residue peptides were prepared to investigate their antimicrobial nature and mechanisms. The antimicrobial properties were measured via minimum inhibitory concentration (MIC) determinations, killing kinetics assays and synergy testing, and hemolytic activities were assessed by hemoglobin release. Finally, the morphology of peptide-treated bacteria was determined by atomic force microscopy (AFM). We found that there was no difference in MICs between LfcinB and LfcinB (C–C). Among the derivatives, only LfcinB15 maintained nearly the same level as LfcinB, in the MIC range of 16–128 μg/ml, and the MICs of LfcinB11 (64–256 μg/ml) were 4 times more than LfcinB, while LfcinB9 exhibited the lowest antimicrobial activity. When treated at MIC for 1 h, many blebs were formed and holes of various sizes appeared on the cell surface, but the cell still maintained its integrity. This suggested that LfcinB had a major permeability effect on the cytoplasmic membrane of both Gram-positive and Gram-negative bacteria, which also indicated it may be a possible intracellular target. Among the tested antibiotics, aureomycin increased the bactericidal activity of LfcinB against E. coli, S. aureus and P. aeruginosa, but neomycin did not have such an effect. We also found that the combination of cecropin A and LfcinB had synergistic effects against E. coli.  相似文献   

10.
We have cloned, synthesized, and characterized 11 novel antimicrobial peptides from a skin derived cDNA library of the Chungan torrent frog, Amolops chunganensis. Seven of the 11 antimicrobial peptides were present in authentic A. chunganensis skin secretions. Sequence analysis indicated that the 11 peptides belonged to the temporin, esculentin-2, palustrin-2, brevinin-1, and brevinin-2 families. The peptides displayed potent antimicrobial activities against several strains of microorganisms. One peptide, brevinin-1CG5, demonstrated antimicrobial activity against all tested Gram-positive and Gram-negative bacteria and fungi, and showed high antimicrobial potency (MIC = 0.6 μM) against Gram-positive bacterium Rhodococcus rhodochrous. Some peptides also demonstrated weak hemolytic activity against human erythrocytes in vitro. Phylogenetic analysis based on the amino acid sequences of brevinin-1, brevinin-2, and esculentin-2 peptides from family Ranidae confirmed that the current taxonomic status of A. chunganensis is correct.  相似文献   

11.
Bovine hemoglobin is an animal protein described as source of bioactive peptides. Enzymatic hydrolysis of this protein results into some peptides exhibiting antimicrobial activity against Gram-positive and Gram-negative bacteria. In this study, a family of peptides from the beta chain (beta-114-145 derived peptides) obtained by peptic hydrolysis of bovine hemoglobin, was purified by reverse-phase HPLC and characterized by different analytical techniques (mass spectrometry, circular dichroism). The minimum inhibitory concentration was determined to show the antimicrobial activity of these peptides. Four bacterial strains were used: two Gram-negative (Escherichia coli and Salmonella Enteritidis) and two Gram-positive strains (Listeria innocua and Micrococcus luteus). The effect of these peptides on artificial membrane was also measured. Our findings showed that the peptide β114-145 and its peptic derivatives contain the RYH sequence. The most antimicrobial peptide is the RYH peptide which was the shortest one.  相似文献   

12.
The synthesis and antibacterial activity of novel 1β-methylcarbapenems 1a–f bearing oxyiminopyrrolidinylamide moiety at C-5 position of pyrrolidine are described. Most compounds exhibited comparable antibacterial activity to meropenem against a wide range of Gram-positive and Gram-negative organisms including Pseudomonas aeruginosa isolates. Of these carbapenems, 1a showed potent and broad spectrum of antibacterial activity and similar stability to DHP-I to meropenem. Against clinical isolates of 40 Gram-negative bacterial species including MDR and ESBL-producing strains, the selected carbapenem 1a possessed excellent in vitro activity except for MDR P. aeruginosa, and was comparable in potency to meropenem.  相似文献   

13.
Histidine-rich glycoprotein (HRGP), an abundant heparin-binding protein found in plasma and thrombocytes, exerts antibacterial effects against Gram-positive bacteria (Enterococcus faecalis and Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). Fluorescence studies and electron microscopy to assess membrane permeation showed that HRGP induces lysis of E. faecalisbacteria in the presence of Zn2+ or at low pH. Heparin blocked binding of the protein to E. faecalis and abolished antibacterial activity. Furthermore, truncated HRGP, devoid of the heparin-binding and histidine-rich domain, was not antibacterial. It has previously been shown that peptides containing consensus heparin-binding sequences (Cardin and Weintraub motifs) are antibacterial. Thus, the peptide (GHHPH)4, derived from the histidine-rich region of HRGP and containing such a heparin-binding motif, was antibacterial for E. faecalis in the presence of Zn2+ or at low pH. The results show a previously undisclosed antibacterial activity of HRGP and suggest that the histidine-rich and heparin-binding domain of HRGP mediates the antibacterial activity of the protein.  相似文献   

14.
Synthesis and antibacterial activity of metronidazole–triazole conjugates are reported. Total 21 hybrid compounds have been synthesized with different substitution pattern on the triazole ring in order to study their influence on the antibacterial activity. These compounds demonstrated potent to weak antibacterial activity against Gram-positive, and Gram-negative bacteria. Six compounds have shown equal or better antibacterial activity against Gram-negative strains than the reference compound.  相似文献   

15.
A series of antibacterial and antifungal sulfonamide (sulfanilamide, sulfaguanidine, sulfamethaxozole, 4-aminoethylbenzene-sulfonamide and 4-amino-6-trifluoromethyl-benzene-1,3-disulfonamide) derived chromones, previously reported as inhibitors of carbonic anhydrase, have been screened for in-vitro antibacterial activity against four Gram-negative (Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi and Shigella flexener) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains, and for in-vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani, Candida glaberata. All compounds (1)-(5) showed significant antibacterial activity against all four Gram-negative species and both Gram-positive species. However, three of them, (1), (4) and (5), were found to be comparatively much more active compared to (2) and (3). Of these, (5) was found to be the most active one. For antifungal activity, generally compounds (1) and (2) showed significant activity against more than three strains whereas (3)-(5) also showed significant activity against varied fungal strains. In the brine shrimp bioassay for in-vitro cytotoxic properties, only two compounds, (4) and (5) displayed potent cytotoxic activity, LD50 = 2.732 x 10(-4)M) and LD50 = 2.290 x 10(-4)M) respectively, against Artemia salina.  相似文献   

16.
We report the synthesis of new mono, di and tri phosphonium ionic liquids and the evaluation of their antibacterial activities on both Gram-positive and Gram-negative bacteria from the ESKAPE-group. Among the molecules synthesized some of them reveal a strong bactericidal activity (MIC?=?0.5?mg/L) for Gram-positive bacteria (including resistant strains) comparable to that of standard antibiotics. A comparative Gram positive and Gram negative antibacterial activities shows that the nature of counter-ion has no significant effects. Interestingly, the increase of phosphonium lateral chains (from 4 to 8 carbons) results in a decrease of antibacterial activities. However, the increase of the spacer length has a positive influence on the activity on both Gram-positive and Gram-negative bacteria except for E. aerogenes. Finally, the increased charge density has no effect on the Gram-positive antibacterial activities (MIC between 2 and 4?mg/L) but seems to attenuate (except for P. aeruginosa) the discrimination between Gram-positive and Gram-negative. Overall these results suggest a unique mechanism of action of these triphenylamine-phosphonium ionic liquid derivatives.  相似文献   

17.
We report herein the synthesis of a series of 7-[3-alkoxyimino-4-(methyl)aminopiperidin-1-yl]quinolone/naphthyridone derivatives. In vitro antibacterial activity of these derivatives was evaluated against representative strains, and compared with ciprofloxacin (CPFX), levofloxacin (LVFX) and gemifloxacin (GMFX). The results reveal that all of the target compounds 19ac and 20 have considerable Gram-positive activity, although they are generally less active than the reference drugs against the Gram-negative strains with some exceptions. Especially, novel compounds 19a2, 19a4 and 19a5 were found to show strong antibacterial activity (MICs: <0.008–0.5 μg/mL) against all of the tested 15 Gram-positive strains including MRSA, LVFX- and GMFX-resistant MRSE, and CPFX-, LVFX- and GMFX-resistant MSSA.  相似文献   

18.
Synthetic peptides composed of multiples of the consensus heparin-binding Cardin and Weintraub sequences AKKARA and ARKKAAKA are antimicrobial. Replacement of lysine and arginine by histidine in these peptides completely abrogates their antimicrobial and heparin-binding activities at neutral pH. However, the antibacterial activity against Gram-negative (Escherichia coli, Pseudomonas aeruginosa) and Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) as well as the fungus Candida albicans, was restored at acidic conditions (pH 5.5). Fluorescence microscopy and FACS analysis showed that the binding of the histidine-rich peptides to E. coli and Candida was significantly enhanced at pH 5.5. Likewise, fluorescence studies for assessment of membrane permeation as well as electron microscopy analysis of peptide-treated bacteria, paired with studies of peptide effects on liposomes, demonstrated that the peptides induce membrane lysis only at acidic pH. No discernible hemolysis was noted for the histidine-rich peptides. Similar pH-dependent antimicrobial activities were demonstrated for peptides derived from histidine-rich and heparin-binding regions of human kininogen and histidine-rich glycoprotein. The results demonstrate that the presence of an acidic environment is an important regulator of the activity of histidine-rich antimicrobial peptides.  相似文献   

19.
Charnley M  Moir AJ  Douglas CW  Haycock JW 《Peptides》2008,29(6):1004-1009
The melanocortin peptides alpha-MSH, Lys-Pro-Val and Lys-Pro-D-Val are known to be potent anti-inflammatory agents; however their role as antibacterial peptides is less clear. The aim of this study was to determine whether these peptides displayed antibacterial properties, and specifically whether the Lys-Pro-D-Val tripeptide was more potent than Lys-Pro-Val, consistent with their anti-inflammatory actions. alpha-MSH, Ac-Lys-Pro-D-Val-NH2 and Ac-Lys-Pro-Val-NH2 were found to be antibacterial against both Gram-positive and Gram-negative bacteria (Staphylococcus aureus and Escherichia coli) over a broad range of concentrations compared to a control peptide, Ac-Ala-Ala-Ala-NH2. However, the relative potency of alpha-MSH, Ac-Lys-Pro-D-Val-NH2, Ac-Lys-Pro-Val-NH2 did not differ. Furthermore, it was found that the cationic charge on the lysine residue was not required for activity as a variant peptide Ac-Ala-Pro-D-Val-NH2 was also antibacterial. We therefore describe a novel X-Pro-D/L-Val peptide sequence with similarity to the short melanocortin peptides, which possess antibacterial activity. The combined anti-inflammatory and antibacterial action of such peptides may also have potential value therapeutically.  相似文献   

20.
Proteolytic digestion of bovine β-lactoglobulin by trypsin yielded four peptide fragments with bactericidal activity. The peptides were isolated and their sequences were found as follows: VAGTWY (residues 15–20), AASDISLLDAQSAPLR (residues 25–40), IPAVFK (residues 78–83) and VLVLDTDYK (residues 92–100). The four peptides were synthesized and found to exert bactericidal effects against the Gram-positive bacteria only. In order to understand the structural requirements for antibacterial activity, the amino acid sequence of the peptide VLVLDTDYK was modified. The replacement of the Asp (98) residue by Arg and the addition of a Lys residue at the C-terminus yielded the peptide VLVLDTRYKK which enlarged the bactericidal activity spectrum to the Gram-negative bacteria Escherichia coli and Bordetella bronchiseptica and significantly reduced the antibacterial capacity of the peptide toward Bacillus subtilis. By data base searches with the sequence VLVLDTRYKK a high homology was found with the peptide VLVATLRYKK (residues 55–64) of human blue-sensitive opsin, the protein of the blue pigment responsible for color vision. A peptide with this sequence was synthesized and assayed for bactericidal activity. VLVATLRYKK was strongly active against all the bacterial strains tested. Our results suggest a possible antimicrobial function of β-lactoglobulin after its partial digestion by endopeptidases of the pancreas and show moreover that small targeted modifications in the sequence of β-lactoglobulin could be useful to increase its antimicrobial function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号