首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Advances in bioanalytical techniques have become crucial for both basic research and medical practice. One example, bioluminescence imaging (BLI), is based on the application of natural reactants with light‐emitting capabilities (photoproteins and luciferases) isolated from a widespread group of organisms. The main challenges in cardiac regeneration remain unresolved, but a vast number of studies have harnessed BLI with the discovery of aequorin and green fluorescent proteins. First described in the luminous hydromedusan Aequorea victoria in the early 1960s, bioluminescent proteins have greatly contributed to the design and initiation of ongoing cell‐based clinical trials on cardiovascular diseases. In conjunction with advances in reporter gene technology, BLI provides valuable information about the location and functional status of regenerative cells implanted into numerous animal models of disease. The purpose of this review was to present the great potential of BLI, among other existing imaging modalities, to refine effectiveness and underlying mechanisms of cardiac cell therapy. We recount the first discovery of natural primary compounds with light‐emitting capabilities, and follow their applications to bioanalysis. We also illustrate insights and perspectives on BLI to illuminate current efforts in cardiac regeneration, where the future is bright.  相似文献   

2.
Bioluminescence imaging (BLI) of luciferase reporters provides a cost-effective and sensitive means to image biological processes. However, transport of luciferase substrates across the cell membrane does affect BLI readout intensity from intact living cells. To investigate the effect of ATP-binding cassette (ABC) transporters on BLI readout, we generated click beetle (cLuc), firefly (fLuc), Renilla (rLuc), and Gaussia (gLuc) luciferase HEK-293 reporter cells that overexpressed different ABC transporters (ABCB1, ABCC1, and ABCG2). In vitro studies showed a significant BLI intensity decrease in intact cells compared to cell lysates, when ABCG2 was overexpressed in HEK-293/cLuc, fLuc, and rLuc cells. Selective ABC transporter inhibitors were also applied. Inhibition of ABCG2 activity increased the BLI intensity more than two-fold in HEK-293/cLuc, fLuc, and rLuc cells; inhibition of ABCB1 elevated the BLI intensity two-fold only in HEK-293/rLuc cells. BLI of xenografts derived from HEK-293/ABC transporter/luciferase reporter cells confirmed the results of inhibitor treatment in vivo. These findings demonstrate that coelenterazine-based rLuc-BLI intensity can be modulated by ABCB1 and ABCG2. ABCG2 modulates d-luciferin-based BLI in a luciferase type-independent manner. Little ABC transporter effect on gLuc-BLI intensity is observed because a large fraction of gLuc is secreted. The expression level of ABC transporters is one key factor affecting BLI intensity, and this may be particularly important in luciferase-based applications in stem cell research.  相似文献   

3.
Multimodal bioluminescence (BLI) and single-photon emission computed tomography/computed tomography (SPECT/CT) imaging were investigated as means to monitor somatostatin receptor subtype 2 (SST2)-positive neuroendocrine tumors as both a subcutaneously implanted and a liver metastasis animal model in mice and rats. Ultimately, such a model will be of use for studying SST2-targeted peptide receptor radionuclide therapy (PRRT). CA20948 cells were transfected with a green fluorescent protein/luciferase plasmid construct. Cells were inoculated subcutaneously in the shoulder of nude mice: nontransfected cells in the left shoulder and transfected cells in the right shoulder. BLI, SPECT/CT imaging, biodistribution analysis, and ex vivo autoradiography of the tumors were performed. BLI and SPECT/CT imaging were also performed on an intrahepatic tumor model in the rat. Caliper volume measurement of transfected tumors could be correlated with BLI measurements (R2 = .76). SPECT/CT imaging showed high levels of accumulation of 111In-DTPA-octreotide in control and transfected tumors, which was confirmed by biodistribution analysis and autoradiography. Subcapsular inoculation of transfected cells in rat liver resulted in an intrahepatic tumor, which could be visualized by both SPECT/CT and BLI. Transfection of CA20948 tumor cells did not alter the growth properties of the cell line or the expression of SST2. Transfected tumors could be clearly visualized by BLI and SPECT/CT imaging. The transfected SST2-positive tumor cell line could represent a novel preclinical model for tumor monitoring in studies that aim at further optimizing PRRT for neuroendocrine tumors.  相似文献   

4.
Tracking the fate and function of cells in vivo is paramount for the development of rational therapies for cardiac injury. Bioluminescence imaging (BLI) provides a means for monitoring physiological processes in real time, ranging from cell survival to gene expression to complex molecular processes. In mice and rats, BLI provides unmatched sensitivity because of the absence of endogenous luciferase expression in mammalian cells and the low background luminescence emanating from animals. In the field of stem cell therapy, BLI provides an unprecedented means to monitor the biology of these cells in vivo, giving researchers a greater understanding of their survival, migration, immunogenicity, and potential tumorigenicity in a living animal. In addition to longitudinal monitoring of cell survival, BLI is a useful tool for semiquantitative measurements of gene expression in vivo, allowing a better optimization of drug and gene therapies. Overall, this technology not only enables rapid, reproducible, and quantitative monitoring of physiological processes in vivo but also can measure the influences of therapeutic interventions on the outcome of cardiac injuries.  相似文献   

5.
During the past decade, stem cell transplantation has gained increasing interest as primary or secondary therapeutic modality for a variety of diseases, both in preclinical and clinical studies. However, to date results regarding functional outcome and/or tissue regeneration following stem cell transplantation are quite diverse. Generally, a clinical benefit is observed without profound understanding of the underlying mechanism(s). Therefore, multiple efforts have led to the development of different molecular imaging modalities to monitor stem cell grafting with the ultimate aim to accurately evaluate survival, fate and physiology of grafted stem cells and/or their micro-environment. Changes observed in one or more parameters determined by molecular imaging might be related to the observed clinical effect. In this context, our studies focus on the combined use of bioluminescence imaging (BLI), magnetic resonance imaging (MRI) and histological analysis to evaluate stem cell grafting. BLI is commonly used to non-invasively perform cell tracking and monitor cell survival in time following transplantation, based on a biochemical reaction where cells expressing the Luciferase-reporter gene are able to emit light following interaction with its substrate (e.g. D-luciferin). MRI on the other hand is a non-invasive technique which is clinically applicable and can be used to precisely locate cellular grafts with very high resolution, although its sensitivity highly depends on the contrast generated after cell labeling with an MRI contrast agent. Finally, post-mortem histological analysis is the method of choice to validate research results obtained with non-invasive techniques with highest resolution and sensitivity. Moreover end-point histological analysis allows us to perform detailed phenotypic analysis of grafted cells and/or the surrounding tissue, based on the use of fluorescent reporter proteins and/or direct cell labeling with specific antibodies. In summary, we here visually demonstrate the complementarities of BLI, MRI and histology to unravel different stem cell- and/or environment-associated characteristics following stem cell grafting in the CNS of mice. As an example, bone marrow-derived stromal cells, genetically engineered to express the enhanced Green Fluorescent Protein (eGFP) and firefly Luciferase (fLuc), and labeled with blue fluorescent micron-sized iron oxide particles (MPIOs), will be grafted in the CNS of immune-competent mice and outcome will be monitored by BLI, MRI and histology (Figure 1).  相似文献   

6.
In vivo bioluminescence imaging   总被引:3,自引:0,他引:3  
In vivo bioluminescent imaging (BLI) is a versatile and sensitive tool that is based on detection of light emission from cells or tissues. Bioluminescence, the biochemical generation of light by a living organism, is a naturally occurring phenomenon. Luciferase enzymes, such as that from the North American firefly (Photinus pyralis), catalyze the oxidation of a substrate (luciferin), and photons of light are a product of the reaction. Optical imaging by bioluminescence allows a low-cost, noninvasive, and real-time analysis of disease processes at the molecular level in living organisms. Bioluminescence has been used to track tumor cells, bacterial and viral infections, gene expression, and treatment response. Bioluminescence in vivo imaging allows longitudinal monitoring of a disease course in the same animal, a desirable alternative to analyzing a number of animals at many time points during the course of the disease. We provide a brief introduction to BLI technology, specific examples of in vivo BLI studies investigating bacterial/viral pathogenesis and tumor growth in animal models, and highlight some future perspectives of BLI as a molecular imaging tool.  相似文献   

7.
A growing body of literature has shown that stem cells are very effective for the treatment of degenerative diseases in rodents but these exciting results have not translated to clinical practice. The difference results from the divergence in genetic, metabolic, and physiological phenotypes between rodents and humans. The high degree of similarity between non-human primates(NHPs) and humans provides the most accurate models for preclinical studies of stem cell therapy. Using a NHP model to understand the following key issues, which cannot be addressed in humans or rodents, will be helpful for extending stem cell applications in the basic science and the clinic. These issues include pluripotency of primate stem cells, the safety and efficiency of stem cell therapy, and transplantation procedures of stem cells suitable for clinical translation. Here we review studies of the above issues in NHPs and current challenges of stem cell applications in both basic science and clinical therapies. We propose that the use of NHP models, in particular combining the serial production and transplantation procedures of stem cells is the most useful for preclinical studies designed to overcome these challenges.  相似文献   

8.
The ability to track microbes in real time in vivo is of enormous value for preclinical investigations in infectious disease or gene therapy research. Bacteria present an attractive class of vector for cancer therapy, possessing a natural ability to grow preferentially within tumours following systemic administration. Bioluminescent Imaging (BLI) represents a powerful tool for use with bacteria engineered to express reporter genes such as lux. BLI is traditionally used as a 2D modality resulting in images that are limited in their ability to anatomically locate cell populations. Use of 3D diffuse optical tomography can localize the signals but still need to be combined with an anatomical imaging modality like micro-Computed Tomography (μCT) for interpretation.In this study, the non-pathogenic commensal bacteria E. coli K-12 MG1655 and Bifidobacterium breve UCC2003, or Salmonella Typhimurium SL7207 each expressing the luxABCDE operon were intravenously (i.v.) administered to mice bearing subcutaneous (s.c) FLuc-expressing xenograft tumours. Bacterial lux signal was detected specifically in tumours of mice post i.v.-administration and bioluminescence correlated with the numbers of bacteria recovered from tissue. Through whole body imaging for both lux and FLuc, bacteria and tumour cells were co-localised. 3D BLI and μCT image analysis revealed a pattern of multiple clusters of bacteria within tumours. Investigation of spatial resolution of 3D optical imaging was supported by ex vivo histological analyses. In vivo imaging of orally-administered commensal bacteria in the gastrointestinal tract (GIT) was also achieved using 3D BLI. This study demonstrates for the first time the potential to simultaneously image multiple BLI reporter genes three dimensionally in vivo using approaches that provide unique information on spatial locations.  相似文献   

9.
10.
Bioluminescence imaging (BLI) takes advantage of the light-emitting properties of luciferase enzymes, which produce light upon oxidizing a substrate (i.e., d-luciferin) in the presence of molecular oxygen and energy. Photons emitted from living tissues can be detected and quantified by a highly sensitive charge-coupled device camera, enabling the investigator to noninvasively analyze the dynamics of biomolecular reactions in a variety of living model organisms such as transgenic mice. BLI has been used extensively in cancer research, cell transplantation, and for monitoring of infectious diseases, but only recently experimental models have been designed to study processes and pathways in neurological disorders such as Alzheimer disease, Parkinson disease, or amyotrophic lateral sclerosis. In this review, we highlight recent applications of BLI in neuroscience, including transgene expression in the brain, longitudinal studies of neuroinflammatory responses to neurodegeneration and injury, and in vivo imaging studies of neurogenesis and mitochondrial toxicity. Finally, we highlight some new developments of BLI compounds and luciferase substrates with promising potential for in vivo studies of neurological dysfunctions.  相似文献   

11.
Effective development of therapeutics that target the molecular basis of disease is dependent on testing new therapeutic moieties and delivery strategies in animal models of human disease. Accelerating the analyses of these models and improving their predictive value through whole animal imaging methods, which provide data in real time and are sensitive to the subtle changes, are crucial for rapid advancement of these approaches. Modalities based on optics are rapid, sensitive, and accessible methods for in vivo analyses with relatively low instrumentation costs. In vivo bioluminescent imaging (BLI) is one of these optically based imaging methods that enable rapid in vivo analyses of a variety of cellular and molecular events with extreme sensitivity. BLi is based on the use of light-emitting enzymes as internal biological light sources that can be detected externally as biological indicators. BLI has been used to test spatio-temporal expression patterns of both target and therapeutic genes in living laboratory animals where the contextual influences of whole biological systems are preserved. BLI has also been used to analyze gene delivery, immune cell therapies, and the in vivo efficacy of inhibitory RNAs. New tools for BLI are being developed that will offer greater flexibility in detection and analyses. BLI can be used to accelerate the evaluation of experimental therapeutic strategies and whole body imaging offers the opportunity of revealing the effects of novel approaches on key steps in disease processes.  相似文献   

12.
Although stem cell research is a rather new field in modern medicine, media soon popularized it. The reason for this hype lies in the potential of stem cells to drastically increase quality of life through repairing aging and diseased organs. Nevertheless, the essence of stem cell research is to understand how tissues are maintained during adult life. In this article, we summarize the various types of stem cells and their differentiation potential in vivo and in vitro. We review current clinical applications of stem cells and highlight problems encountered when going from animal studies to clinical practice. Furthermore, we describe the current state of induced pluripotent stem cell technology and applications for disease modelling and cell replacement therapy.  相似文献   

13.
Cardiac stem cell therapy remains hampered by acute donor cell death posttransplantation and the lack of reliable methods for tracking cell survival in vivo. We hypothesize that cells transfected with inducible vascular endothelial growth factor 165 (VEGF(165)) can improve their survival as monitored by novel molecular imaging techniques. Mouse embryonic stem (ES) cells were transfected with an inducible, bidirectional tetracycline (Bi-Tet) promoter driving VEGF(165) and renilla luciferase (Rluc). Addition of doxycycline induced Bi-Tet expression of VEGF(165) and Rluc significantly compared to baseline (p<0.05). Expression of VEGF(165) enhanced ES cell proliferation and inhibited apoptosis as determined by Annexin-V staining. For noninvasive imaging, ES cells were transduced with a double fusion (DF) reporter gene consisting of firefly luciferase and enhanced green fluorescence protein (Fluc-eGFP). There was a robust correlation between cell number and Fluc activity (R(2)=0.99). Analysis by immunostaining, histology, and RT-PCR confirmed that expression of Bi-Tet and DF systems did not affect ES cell self-renewal or pluripotency. ES cells were differentiated into beating embryoid bodies expressing cardiac markers such as troponin, Nkx2.5, and beta-MHC. Afterward, 5 x 10(5) cells obtained from these beating embryoid bodies or saline were injected into the myocardium of SV129 mice (n=36) following ligation of the left anterior descending (LAD) artery. Bioluminescence imaging (BLI) and echocardiography showed that VEGF(165) induction led to significant improvements in both transplanted cell survival and cardiac function (p<0.05). This is the first study to demonstrate imaging of embryonic stem cell-mediated gene therapy targeting cardiovascular disease. With further validation, this platform may have broad applications for current basic research and further clinical studies.  相似文献   

14.
To interrogate endogenous p21(WAF1/CIP1) (p21) promoter activity under basal conditions and in response to various forms of stress, knock-in imaging reporter mice in which expression of firefly luciferase (FLuc) was placed under the control of the endogenous p21 promoter within the Cdkn1a gene locus were generated. Bioluminescence imaging (BLI) of p21 promoter activity was performed noninvasively and repetitively in mice and in cells derived from these mice. We demonstrated that expression of FLuc accurately reported endogenous p21 expression at baseline and under conditions of genotoxic stress and that photon flux correlated with mRNA abundance and, therefore, bioluminescence provided a direct readout of p21 promoter activity in vivo. BLI confirmed that p53 was required for activation of the p21 promoter in vivo in response to ionizing radiation. Interestingly, imaging of reporter cells demonstrated that p53 prevents the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway from activating p21 expression when quiescent cells are stimulated with serum to reenter the cell cycle. In addition, low-light BLI identified p21 expression in specific regions of individual organs that had not been observed previously. This inducible p21(FLuc) knock-in reporter strain will facilitate imaging studies of p53-dependent and -independent stress responses within the physiological context of the whole animal.  相似文献   

15.
Studies on stem cell are rapidly developing since these cells have great therapeutic potential for numerous diseases and has generated much promise as well as confusion due to contradictory results. Major questions in this research field have been raised as to how and in which numbers stem cells home to target tissues after administration, whether the cells engraft and differentiate, and what their long-term fate is. To answer these questions, reliable in vivo tracking techniques are essential. In vivo molecular imaging techniques using magnetic resonance imaging, bioluminescence, and scintigraphy have been applied for this purpose in experimental studies. The aim of this review is to discuss various radiolabeling techniques for early stem cell tracking, the need for validation of viability and performance of the cells after labeling, and the routes of administration in experimental animal models. In addition, we evaluate current problems and directions related to stem cell tracking using radiolabels, including a possible role for their clinical implementation.  相似文献   

16.
The identification of organs bearing luciferase activity by in vivo bioluminescence imaging (BLI) is often difficult, and ex vivo imaging of excised organs plays a complementary role. This study investigated the importance of exposure to the atmosphere in ex vivo BLI. Mice were inoculated with murine pro-B cell line Ba/F3 transduced with firefly luciferase and p190 BCR-ABL. They were killed following in vivo BLI, and whole-body imaging was done after death and then after intraperitoneal air injection. In addition, the right knee was exposed and imaged before and after the adjacent bones were cut. Extensive light signals were seen on in vivo imaging. The luminescence disappeared after the animal was killed, and air injection restored the light emission from the abdomen only, suggesting a critical role of atmospheric oxygen in luminescence after death. Although no substantial light signal at the right knee was seen before bone cutting, light emission was evident after cutting. In conclusion, in ex vivo BLI, light emission requires exposure to the atmosphere. Bone destruction is required to demonstrate luciferase activity in the bone marrow after death.  相似文献   

17.
Radiolabeled annexin V may provide an early indication of the success or failure of anticancer therapy on a patient-by-patient basis as an in vivo marker of tumor cell killing. An important question that remains is when, after initiation of treatment, should annexin V imaging be performed. To address this issue, we obtained simultaneous in vivo measurements of tumor burden and uptake of radiolabeled annexin V in the syngeneic orthotopic murine BCL1 lymphoma model using in vivo bioluminescence imaging (BLI) and small animal single-photon emission computed tomography (SPECT). BCL1 cells labeled for fluorescence and bioluminescence assays (BCL1-gfp/luc) were injected into mice at a dose that leads to progressive disease within two to three weeks. Tumor response was followed by BLI and SPECT before and after treatment with a single dose of 10 mg/kg doxorubicin. Biodistribution analyses revealed a biphasic increase of annexin V uptake within the tumor-bearing tissues of mice. An early peak occurring before actual tumor cells loss was observed between 1 and 5 hr after treatment, and a second longer sustained rise from 9 to 24 hr after therapy, which heralds the onset of tumor cell loss as confirmed by BLI. Multimodality imaging revealed the temporal patterns of tumor cell loss and annexin V uptake revealing a better understanding of the timing of radiolabeled annexin V uptake for its development as a marker of therapeutic efficacy.  相似文献   

18.
Although bioluminescence imaging (BLI) shows promise for monitoring tumor burden in animal models of cancer, these analyses remain mostly qualitative. Here we describe a method for bioluminescence imaging to obtain a semi-quantitative analysis of tumor burden and treatment response. This method is based on the calculation of a luminoscore, a value that allows comparisons of two animals from the same or different experiments. Current BLI instruments enable the calculation of this luminoscore, which relies mainly on the acquisition conditions (back and front acquisitions) and the drawing of the region of interest (manual markup around the mouse). Using two previously described mouse lymphoma models based on cell engraftment, we show that the luminoscore method can serve as a noninvasive way to verify successful tumor cell inoculation, monitor tumor burden, and evaluate the effects of in situ cancer treatment (CpG-DNA). Finally, we show that this method suits different experimental designs. We suggest that this method be used for early estimates of treatment response in preclinical small-animal studies.  相似文献   

19.
20.
What is clear is we are in the era of the stem cell and its potential in ameliorating human disease. Our perspective is generated from an in vivo model in a large animal that offers significant advantages (complete transplantation tolerance, large size and long life span). This review is an effort to meld our preclinical observations with others for the reader and to outline potential avenues to improve the present outlook for patients with diabetes. This effort exams the history or background of stem cell research in the laboratory and the clinic, types of stem cells, pluripotency or lack thereof based on a variety of pre-clinical investigations attempting endocrine pancreas recovery using stem cell transplantation. The focus is on the use of hematopoietic and mesenchymal stem cells. This review will also examine recent clinical experience following stem cell transplantation in patients with type 1 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号