首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hong HM  Song EJ  Oh E  Kabir MH  Lee C  Yoo YS 《Proteomics》2011,11(2):283-297
It is well known that the two chemical compounds endothelin-1 (ET-1) and isoproterenol (ISO) can individually induce cardiac hypertrophy through G protein-coupled receptors in cardiomyocytes. However, the cardiac hypertrophy signaling pathway activated by ET-1 and ISO is not well defined. Therefore, we investigated the protein expression profile and signaling transduction in HL-l cardiomyocyte cells treated with ET-1 and ISO. Following separation of the cell lysates by using 2-DE and silver staining, we identified 16 protein spots that were differentially expressed as compared to the controls. Of these 16 spots, three changed only after treatment with ET-1, whereas four changed only after treatment with ISO, suggesting that these two stimuli could induce different signaling pathways. In order to reveal the differences between ET-1- and ISO-induced signaling, we studied the different events that occur at each step of the signaling pathways, when selected biocomponents were blocked by inhibitors. Our results indicated that ET-1 and ISO used different pathways for phosphorylation of glycogen synthase kinase-3β (GSK3β). ET-1 mainly used the mitogen-activated protein kinase and phosphatidylinositol-3-kinase/AKT pathways to activate GSK3β, whereas under ISO stimulation, only the phosphatidylinositol-3-kinase/AKT pathway was required to trigger the GSK3β pathway. Furthermore, the strength of the GSK3β signal in ISO-induced cardiac hypertrophy was stronger than that in ET-1-induced cardiac hypertrophy. We found that these two agonists brought about different changes in the protein expression of HL-1 cardiomyocytes through distinct signaling pathways even though the destination of the two signaling pathways was the same.  相似文献   

2.
3.
Mobilization from the bone marrow and the migration of bone-marrow-derived mesenchymal stem cells (BMSCs) through the peripheral circulation to injured tissue sites are regulated by multiple mechanical and chemical factors. We previously demonstrated that mechanical stretching promotes the migration but inhibits the invasion of BMSCs. However, the involved mechanisms, especially the mechanism of stretching-inhibited BMSC invasion, have not been thoroughly elucidated to date. In this study, we found that mechanical stretching with a 10% amplitude at a 1-Hz frequency for 8 hr significantly reduces BMSC invasion and downregulates the expression of membrane type-1 matrix metalloproteinases (MT1-MMP) at both the messenger RNA and protein levels. The overexpression of MT1-MMP restores mechanical stretching-reduced BMSC invasion. Moreover, phosphatidylinositol 3-kinase (PI3K)-dependent Akt phosphorylation in BMSCs was found to be inactivated by mechanical stretching. Pharmacological inhibitors of PI3K/Akt signaling (LY294002 or A443654) reduced the expression of MT1-MMP and impaired BMSC invasion. In addition, the upregulation of Akt phosphorylation by a pharmacological activator (SC79) increased MT1-MMP expression and suppressed mechanical stretching-reduced BMSC invasion. Taken together, our results suggest that mechanical stretching inhibits BMSC invasion by downregulating MT1-MMP expression by suppressing the PI3K/Akt signaling pathway.  相似文献   

4.
5.
Xu Z  Yan L  Ge Y  Zhang Q  Yang N  Zhang M  Zhao Y  Sun P  Gao J  Tao Z  Yang Z 《Molecular biology reports》2012,39(7):7271-7279
Migration and proliferation of bone marrowderived mesenchymal stem cells (BMSCs) is critical to treatment of ischemic injury. The calcium sensing receptor (CaSR) has an important role in maintaining systemic calcium homeostasis, which is related to cell proliferation, apoptosis and paracrine signaling. We hypothesize that CaSR may enhance BMSC proliferation. Rat BMSCs were incubated with various calcium concentrations for 48 h in vitro to activate CaSR. To investigate potential mechanisms responsible for growth enhancement by calcium, the rat BMSC cell cycle progression was analyzed by fluorescence-activated cell sorting (FACS), and induction of apoptosis confirmed by cytofluorimetric analysis using propidium iodide and Annexin V-FITC double staining. Since the mitogen-activated protein kinase (MAPK) signaling pathway was one of the most significantly affected by CaSR, MAPK activation was measured by western blotting. Calcium exposure significantly enhanced rat BMSCs proliferation, as well as the proportion of the population in S phase, in a dose-dependent manner, effects which were abolished by NPS2390 (a CaSR antagonist) and U0126 (a MEK1/2 inhibitor). These results demonstrate that CaSR is involved in rat BMSC proliferation, as seen by an increased proliferation index, decreased apoptosis, and ERK1/2 activation, and provide important insight into the cellular and molecular mechanisms by which CaSR affects cell proliferation. A CaSR agonist may prove useful to enhance BMSC survival during transplantation.  相似文献   

6.
Hypertrophic growth of the cardiomyocytes is one of the core mechanisms underlying cardiac hypertrophy. However, the mechanism underlying cardiac hypertrophy remains not fully understood. Here we provided evidence that G protein-coupled receptor 39 (GPR39) promotes cardiac hypertrophy via inhibiting AMP-activated protein kinase (AMPK) signaling. GRP39 expression is overexpressed in hypertrophic hearts of humans and transverse aortic constriction (TAC)-induced cardiac hypertrophy in mice. In neonatal cardiomyocytes, adenovirus-mediated overexpression of GPR39 promoted angiotensin II-induced cardiac hypertrophy, while GPR39 knockdown repressed hypertrophic response. Adeno-associated virus 9-mediated knockdown of GPR39 suppressed TAC-induced decline in fraction shortening and ejection fraction, increase in heart weight and cardiomyocyte size, as well as overexpression of hypertrophic fetal genes. A mechanism study demonstrated that GPR39 repressed the activation of AMPK to activate the mammalian target of rapamycin (mTOR) and ribosomal protein S6 kinase β-1 (S6K1), subsequently promoted de novo protein synthesis. Inhibition of mTOR with rapamycin blocked the effects of GPR39 overexpression on protein synthesis and repressed cardiac hypertrophy. Collectively, our findings demonstrated that GPR39 promoted cardiac hypertrophy via regulating the AMPK–mTOR–S6K1 signaling pathway, and GRP39 can be targeted for the treatment of cardiac hypertrophy.  相似文献   

7.
目的探讨骨髓间充质干细胞(BMSCs)中miR-155表达水平改变后,通过诱导树突状细胞(DC)实现对免疫调节能力的影响。 方法实验分为control组、miR-155 agomir NC组、miR-155 agomir组、miR-155 antagomir NC组和miR-155 antagomir组,通过脂质体转染特异性调控BMSC中miR-155表达量后诱导DC 48 h,检测该诱导过程对DC的成熟度和迁移能力的影响;经诱导的DC与T细胞共培养72 h后检测T细胞增殖能力。多组间分析采用One-?way ANOVA进行统计学分析,两组间采用t检验进行统计学分析。 结果流式柱形直观图可见miR-155 angomir组T细胞增殖能力低于其他组。提高miR-155表达水平后,MSCs诱导的DC细胞成熟的表面标志CD40表达量由100%下降至85%(t = 33.71,P < 0.05);CD86表达水平由100%下降至75%(t = 57.00,P < 0.05)。miR-155 agomir组的BMSCs诱导的DC的迁移能力较其对照组减弱(t = 7.35,P < 0.05)。提高BMSCs中miR-155表达水平后,其诱导的DC的NF-κβ信号通路蛋白表达下降(t = 23.32,P < 0.05);AKT信号通路蛋白表达量下降(t?= 22.21,P < 0.05)。 结论BMSCs高表达miR-155后,可以通过抑制NF-κβ和AKT途径诱导耐受性DC的产生,通过诱导DC减少T细胞的增殖从而对免疫调节进行影响。  相似文献   

8.
转化生长因子β1 (TGF-β1) 是参与骨髓间充质干细胞(BMSCs)脂肪定向分化的重要调节因子,其具体的调节机制尚不清楚. 本研究证明,BMSCs在体外分化为脂肪细胞的过程中, TGF-β1的基因表达显著下调,重组TGF-β1能够抑制BMSCs体外脂肪细胞定向分化,其分化的标志蛋白C/EBPβ和αP2的表达水平显著降低. TGF-β1在激活Smad信号通路的同时,还抑制胰岛素(脂肪分化的主要诱导剂)对PI3K/Akt信号通路的激活.加入Smad特异性阻断剂后,C/EBPβ和αP2的诱导表达恢复正常,同时PI3K/Akt信号通路的活化亦得以恢复. 结果提示,TGF-β1可通过Smad信号通路干扰脂肪细胞分化的核心信号通路-PI3K/Akt的活化,从而实现对BMSCs脂肪分化的抑制.该研究结果为肥胖等导致的心血管疾病或Ⅱ型糖尿病等的临床治疗提供有价值的参考.  相似文献   

9.
Reactive oxygen species (ROS) induce matrix metalloproteinase (MMP) activity that mediates hypertrophy and cardiac remodeling. Adiponectin (APN), an adipokine, modulates cardiac hypertrophy, but it is unknown if APN inhibits ROS-induced cardiomyocyte remodeling. We tested the hypothesis that APN ameliorates ROS-induced cardiomyocyte remodeling and investigated the mechanisms involved. Cultured adult rat ventricular myocytes (ARVM) were pretreated with recombinant APN (30 μg/ml, 18 h) followed by exposure to physiologic concentrations of H(2)O(2) (1-200 μM). ARVM hypertrophy was measured by [(3)H]leucine incorporation and atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP) gene expression by RT-PCR. MMP activity was assessed by in-gel zymography. ROS was induced with angiotensin (ANG)-II (3.2 mg·kg(-1)·day(-1) for 14 days) in wild-type (WT) and APN-deficient (APN-KO) mice. Myocardial MMPs, tissue inhibitors of MMPs (TIMPs), p-AMPK, and p-ERK protein expression were determined. APN significantly decreased H(2)O(2)-induced cardiomyocyte hypertrophy by decreasing total protein, protein synthesis, ANF, and BNP expression. H(2)O(2)-induced MMP-9 and MMP-2 activities were also significantly diminished by APN. APN significantly increased p-AMPK in both nonstimulated and H(2)O(2)-treated ARVM. H(2)O(2)-induced p-ERK activity and NF-κB activity were both abrogated by APN pretreatment. ANG II significantly decreased myocardial p-AMPK and increased p-ERK expression in vivo in APN-KO vs. WT mice. ANG II infusion enhanced cardiac fibrosis and MMP-2-to-TIMP-2 and MMP-9-to-TIMP-1 ratios in APN-KO vs. WT mice. Thus APN inhibits ROS-induced cardiomyocyte remodeling by activating AMPK and inhibiting ERK signaling and NF-κB activity. Its effects on ROS and ultimately on MMP expression define the protective role of APN against ROS-induced cardiac remodeling.  相似文献   

10.
Numerous studies have demonstrated the therapeutic effect of bone mesenchymal stem cells on spinal cord injury (SCI), especially on neural stem cells (NSCs). However, the predominant mechanisms of bone mesenchymal stem cells (BMSCs) are unclear. Recently, some researchers have found that paracrine signaling plays a key role in the therapeutic capacity of BMSCs and emphasized that the protective effect of BMSCs may be due to paracrine factors. In this study, we aimed to investigate the potential mechanisms of BMSCs to protect NSCs. NSCs were identified by immunocytochemistry. The oxidative stress environment was simulated by H2O2 (50, 100, 200 μM) for 2 h. The apoptotic rate of the NSCs was detected via flow cytometry. Lactate dehydrogenase (LDH), malondialdehyde (MDA), and superoxide dismutase (SOD) activity were evaluated via corresponding assay kits. Western blot was used to detect the expressions of Notch1, HES1, caspase‐3, cleave caspase‐3, Bax, and Bcl‐2. We found that H2O2 could significantly induce the apoptosis of NSCs, increase LDH, MDA levels, and decrease SOD activity by activating the Notch1 signaling pathway. DAPT (the specific blocker of Notch1) and BMSC‐conditioned medium (BMSC‐CM) could significantly prevent the apoptotic effect and oxidative stress injury on NSCs that were treated with H2O2. We also revealed that BMSC‐CM could decrease the expression of Notch1, Hes1, cleave caspase‐3, Bax, and increases the expression of Bcl‐2 in NSCs, which was induced by H2O2. These results have revealed that BMSC‐CM can neutralize the effect against oxidative stress injury on the apoptosis of NSCs by inhibiting the Notch1 signaling pathway.  相似文献   

11.
Exosomes are served as substitutes for stem cell therapy, playing important roles in mediating heart repair during myocardial infarction injury. Evidence have indicated that lipopolysaccharide (LPS) pre‐conditioning bone marrow‐derived mesenchymal stem cells (BMSCs) and their secreted exosomes promote macrophage polarization and tissue repair in several inflammation diseases; however, it has not been fully elucidated in myocardial infarction (MI). This study aimed to investigate whether LPS‐primed BMSC‐derived exosomes could mediate inflammation and myocardial injury via macrophage polarization after MI. Here, we found that exosomes derived from BMSCs, in both Exo and L‐Exo groups, increased M2 macrophage polarization and decreased M1 macrophage polarization under LPS stimulation, which strongly depressed LPS‐dependent NF‐κB signalling pathway and partly activated the AKT1/AKT2 signalling pathway. Compared with Exo, L‐Exo had superior therapeutic effects on polarizing M2 macrophage in vitro and attenuated the post‐infarction inflammation and cardiomyocyte apoptosis by mediating macrophage polarization in mice MI model. Consequently, we have confidence in the perspective that low concentration of LPS pre‐conditioning BMSC‐derived exosomes may develop into a promising cell‐free treatment strategy for clinical treatment of MI.  相似文献   

12.
Bone marrow-derived mesenchymal stem cells (BMSCs) are a suitable option for cell-based tissue engineering therapies due to their ability to renew and differentiate into multiple different tissue types, such as bone. Over the last decade, the effect of GNAS on the regulation of osteoblast differentiation has attracted great attention. Herein, this study aimed to explore the role of GNAS in osteogenic differentiation of MSCs. A total of 85 GNASf/f male mice were selected for animal experiments and 10 GNASf/f male mice for BMSC isolation to conduct cell experiments. The mice and BMSCs were treated with Verteporfin (a Hippo signaling pathway inhibitor) to inhibit the Hippo signaling pathway or recombinant adenovirus-expressing Cre to knockout the GNAS expression. Next, computed tomography scan, Von Kossa staining, and alizarin red staining were performed to detect osteogenic differentiation ability. Moreover, immunohistochemistry and alkaline phosphatase (ALP) staining were used to assess the expression of Oc and Osx in femur tissues and ALP activity. At last, the expression of GNAS, osteogenic markers, and factors related to the Hippo signaling pathway was evaluated. Initially, the results displayed successful knockout of the GNAS gene from mice and BMSCs. Moreover, the data indicated that GNAS knockout inhibits expression of Oc, Osx, ALP, BMP-2, and Runx2, and ALP activity. Additionally, GNAS knockout promotes activation of the Hippo signaling pathway, so as to repress osteogenic differentiation. Collectively, depleted GNAS exerts an inhibitory role in osteogenic differentiation of MSCs by activating Hippo signaling pathway, providing a candidate mediator for osteoporosis.  相似文献   

13.
目的:研究硫化氢(H2S)对心肌细胞肥大的负性调控作用与miRNA-133a介导Ca2+/CaN/NFATc4信号通路的关系。方法:异丙肾上腺素(ISO)诱导体外培养的大鼠心肌细胞肥大模型;Leica图像分析软件测量心肌细胞表面积;qRT-PCR检测脑钠尿肽(BNP)、β-肌球蛋白重链(β-MHC)、H2S合酶(CSE)、miRNA-133a和钙调神经磷酸酶(CaN) mRNA表达;Western blot检测CaN、活化T细胞核因子c4(NFATc4)蛋白表达;Elisa方法检测心肌细胞H2S含量;激光共聚焦显微镜检测心肌细胞钙离子浓度;细胞免疫荧光检测NFATc4核转位变化。结果:①心肌细胞肥大时,CSE/H2S水平、miRNA-133a mRNA表达均显著下降。应用NaHS预处理,能上调心肌细胞CSE/H2S水平,增加H2S含量和miRNA-133a mRNA表达,并明显抑制心肌细胞肥大。②心肌细胞肥大时,细胞内钙离子浓度明显增加,CaN表达和NFATc4胞核蛋白表达增加,NFATc4核转位明显增强;应用NaHS预处理能明显抑制ISO诱导的上述效应。③应用antagomir-133a能逆转H2S抑制心肌细胞肥大的作用,使心肌细胞内钙离子浓度、CaN表达和NFATc4胞核蛋白表达增加,NFATc4核转位增强。结论:H2S通过负性调控作用抑制心肌细胞肥大,该作用可能与H2S上调miRNA-133a的表达,抑制其下游的Ca2+/CaN/NFATc4信号通路的激活有关。  相似文献   

14.
PP Wang  DY Xie  XJ Liang  L Peng  GL Zhang  YN Ye  C Xie  ZL Gao 《PloS one》2012,7(8):e43408

Aims

Bone marrow-derived mesenchymal stem cells (BMSCs) can reduce liver fibrosis. Apart from the paracrine mechanism by which the antifibrotic effects of BMSCs inhibit activated hepatic stellate cells (HSCs), the effects of direct interplay and juxtacrine signaling between the two cell types are poorly understood. The purpose of this study was to explore the underlying mechanisms by which BMSCs modulate the function of activated HSCs.

Methods

We used BMSCs directly and indirectly co-culture system with HSCs to evaluate the anti-fibrosis effect of BMSCs. Cell proliferation and activation were examined in the presence of BMSCs and HGF. c-met was knockdown in HSCs to evaluate the effect of HGF secreted by BMSCs. The TLR4 and Myeloid differentiation primary response gene 88(MyD88) mRNA levels and the NF-kB pathway activation were determined by real-time PCR and western blotting analyses. The effect of BMSCs on HSCs activation was investigated in vitro in either MyD88 silencing or overexpression in HSCs. Liver fibrosis in rats fed CCl4 with and without BMSCs supplementation was compared. Histopathological examinations and serum biochemical tests were compared between the two groups.

Results

BMSCs remarkably inhibited the proliferation and activation of HSCs by interfering with LPS-TLR4 pathway through a cell–cell contact mode that was partially mediated by HGF secretion. The NF-kB pathway is involved in HSCs activation inhibition by BMSCs. MyD88 over expression reduced the BMSC inhibition of NF-kB luciferase activation. BMSCs protected liver fibrosis in vivo.

Conclusion

BMSCs modulate HSCs in vitro via TLR4/MyD88/NF-kB signaling pathway through cell–cell contact and secreting HGF. BMSCs have therapeutic effects on cirrhosis rats. Our results provide new insights into the treatment of hepatic fibrosis with BMSCs.  相似文献   

15.
摘要 目的:探讨脂联素(APN)对子宫内膜癌HEC-1B细胞增殖、迁移及侵袭的抑制作用及分子机制。方法:分别采用磺酰罗丹明 B(SRB)实验、细胞迁移(Transwell)实验和划痕实验检测子宫内膜癌细胞HEC-1B的增殖、迁移和侵袭能力。采用蛋白免疫印迹(Western blot)法检测腺苷酸活化蛋白激酶(AMPK)信号通路相关蛋白、AdipoR1、AdipoR2、cyclinD1和cyclinE2蛋白表达水平。结果:与对照组相比,APN组HEC-1B细胞增殖、迁移及侵袭功能明显下降(P<0.05)。与对照组相比,APN组p-AMPK/AMPK比值明显提高,而p-mTOR/mTOR和p-4EBP1/4EBP1比值明显下降(P<0.05)。与对照组相比,APN组cyclinD1和cyclinE2蛋白表达水平明显下降(P<0.05)。APN组和对照组的AdipoR1、AdipoR2蛋白表达水平比较无统计学差异(P>0.05)。结论:APN能够激活AMPK信号通路并下调cyclinD1和cyclinE2蛋白表达,进而抑制子宫内膜癌细胞的增殖、迁移和侵袭功能。  相似文献   

16.
Lung fibrosis is characterized by vascular leakage and myofibroblast recruitment, and both phenomena are mediated by lysophosphatidic acid (LPA) via its type‐1 receptor (LPA1). Following lung damage, the accumulated myofibroblasts activate and secrete excessive extracellular matrix (ECM), and form fibrotic foci. Studies have shown that bone marrow‐derived cells are an important source of myofibroblasts in the fibrotic organ. However, the type of cells in the bone marrow contributing predominantly to the myofibroblasts and the involvement of LPA‐LPA1 signalling in this is yet unclear. Using a bleomycin‐induced mouse lung‐fibrosis model with an enhanced green fluorescent protein (EGFP) transgenic mouse bone marrow replacement, we first demonstrated that bone marrow derived‐mesenchymal stem cells (BMSCs) migrated markedly to the bleomycin‐injured lung. The migrated BMSC contributed significantly to α‐smooth muscle actin (α‐SMA)‐positive myofibroblasts. By transplantation of GFP‐labelled human BMSC (hBMSC) or EGFP transgenic mouse BMSC (mBMSC), we further showed that BMSC might be involved in lung fibrosis in severe combined immune deficiency (SCID)/Beige mice induced by bleomycin. In addition, using quantitative‐RT‐PCR, western blot, Sircol collagen assay and migration assay, we determined the underlying mechanism was LPA‐induced BMSC differentiation into myofibroblast and the secretion of ECM via LPA1. By employing a novel LPA1 antagonist, Antalpa1, we then showed that Antalpa1 could attenuate lung fibrosis by inhibiting both BMSC differentiation into myofibroblast and the secretion of ECM. Collectively, the above findings not only further validate LPA1 as a drug target in the treatment of pulmonary fibrosis but also elucidate a novel pathway in which BMSCs contribute to the pathologic process.  相似文献   

17.
Ning J  Li C  Li H  Chang J 《Cytotechnology》2011,63(5):531-539
To determine the ability of cultured bone marrow-derived mesenchymal stem cells (BMSCs) to differentiate into functional urothelium. BMSCs were isolated from the long bones of aborted fetal limbs by Percoll density gradient centrifugation and characterized by flow cytometry. Human fetal urinary bladders were cut into small pieces and cultured for 3–5 days until the growth of urothelial cells was established. BMSCs were then cocultured with neonatal urothelial cells and subsequently evaluated for antigen expression and ultramicrostructure, by immunocytochemistry and electron microscopy, respectively. A subset of BMSCs expressed the differentiation marker CD71. The BMSC markers CD34, CD45, and HLA-DR were barely detectable, confirming that these cells were not derived from hematopoietic stem cells or differentiated cells. In contrast, the stem cell markers CD29, CD44, CD105, and CD90 were highly expressed. BMSCs possessed the ability to differentiate into a variety of cellular subtypes, including osteocytes, adipocytes, and chondrocytes. The shapes of BMSCs changed, and the size of the cells increased, following in vitro coculture with urothelial cells. After 2 weeks of coculture, immunostaining of the newly differentiated BMSCs positively displayed the urothelial-specific keratin marker. Electron microscopy revealed that the cocultured BMSCs had microstructural features characteristic of epithelial cells. Pluripotent BMSCs can transdifferentiate into urothelial cells in response to an environment conditioned by neonatal urothelial cells, providing a means for the time-, labor- and cost-effective reconstruction of urinary bladder mucosa.  相似文献   

18.
Postoperative cognitive dysfunction (POCD) is a common complication in elderly patients who undergo surgery involving anesthesia. Its underlying mechanisms remain unclear. Autophagy plays an important role in the damage and repair of the nervous system and is associated with the development of POCD. Using a rat model, adenosine monophosphate-activated protein kinase α1 (AMPKα1), an important autophagy regulator, was found to be significantly downregulated in rats with POCD that was induced by sevoflurane anesthesia or by appendectomy. Overexpression of AMPKα1-ameliorated POCD, as indicated by decreased escape latencies and increased target quadrant swimming times, swimming distances, and platform crossing times during Morris water maze tests. AMPKα1 overexpression activated autophagy signals by increasing the expression of light chain 3 II (LC3-II) and Beclin1 and decreasing the expression of p62 in the hippocampus of rats with POCD. Moreover, blocking autophagy by 3-methyladenine partly attenuated AMPKα1-mediated POCD improvement. Furthermore, overexpression of AMPKα1 could upregulate the expression of p-AMPK and Sirt1 in the hippocampus of rats with POCD. Intriguingly, inhibiting AMPK signals via Compound C effectively attenuated AMPKα1-mediated POCD improvement, concomitant with the downregulation of p-AMPK, Sirt1, LC3-II, and Beclin1 and the upregulation of p62. We thus concluded that overexpression of AMPKα1 can improve POCD via the AMPK-Sirt1 and autophagy signaling pathway.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号