首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 429 毫秒
1.
Neuronal nicotinic acetylcholine receptors (nAChRs) containing α4 and β2 subunits are the principal receptors in the mammalian central nervous system that bind nicotine with high affinity. These nAChRs are involved in nicotine dependence, mood disorders, neurodegeneration and neuroprotection. However, our understanding of the interactions between α4β2-containing (α4β21) nAChRs and other proteins remains limited. In this study, we identified proteins that interact with α4β21 nAChRs in a genedose dependent pattern by immunopurifying β21 nAChRs from mice that differ in α4 and β2 subunit expression and performing proteomic analysis using isobaric tags for relative and absolute quantitation (iTRAQ). Reduced expression of either the α4 or the β2 subunit results in a correlated decline in the expression of a number of putative interacting proteins. We identified 208 proteins co-immunoprecipitated with these nAChRs. Furthermore, stratified linear regression analysis indicated that levels of 17 proteins was correlated significantly with expression of α4β2 nAChRs, including proteins involved in cytoskeletal rearrangement and calcium signaling. These findings represent the first application of quantitative proteomics to produce a β21 nAChR interactome and describe a novel technique used to discover potential targets for pharmacological manipulation of α4β2 nAChRs and their downstream signaling mechanisms.  相似文献   

2.
Nicotine is an agonist of nicotinic acetylcholine receptors (nAChRs) that has been extensively used as a template for the synthesis of α4β2-preferring nAChRs. Here, we used the N-methyl-pyrrolidine moiety of nicotine to design and synthesise novel α4β2-preferring neonicotinic ligands. We increased the distance between the basic nitrogen and aromatic group of nicotine by introducing an ester functionality that also mimics acetylcholine (Fig. 2). Additionally, we introduced a benzyloxy group linked to the benzoyl moiety. Although the neonicotinic compounds fully inhibited binding of both [α-125I]bungarotoxin to human α7 nAChRs and [3H]cytisine to human α4β2 nAChRs, they were markedly more potent at displacing radioligand binding to human α4β2 nAChRs than to α7 nAChRs. Functional assays showed that the neonicotinic compounds behave as antagonists at α4β2 and α4β2α5 nAChRs. Substitutions on the aromatic ring of the compounds produced compounds that displayed marked selectivity for α4β2 or α4β2α5 nAChRs. Docking of the compounds on homology models of the agonist binding site at the α4/β2 subunit interfaces of α4β2 nAChRs suggested the compounds inhibit function of this nAChR type by binding the agonist binding site.  相似文献   

3.
4.
Pathological angiogenesis contributes to tobacco‐related diseases such as malignancy, atherosclerosis and age‐related macular degeneration. Nicotine acts on endothelial nicotinic acetylcholine receptors (nAChRs) to activate endothelial cells and to augment pathological angiogenesis. In the current study, we studied nAChR subunits involved in these actions. We detected mRNA for all mammalian nAChR subunits except α2, α4, γ, and δ in four different types of ECs. Using siRNA methodology, we found that the α7 nAChR plays a dominant role in nicotine‐induced cell signaling (assessed by intracellular calcium and NO imaging, and studies of protein expression and phosphorylation), as well as nicotine‐activated EC functions (proliferation, survival, migration, and tube formation). The α9 and α7 nAChRs have opposing effects on nicotine‐induced cell proliferation and survival. Our studies reveal a critical role for the α7 nAChR in mediating the effects of nicotine on the endothelium. Other subunits play a modulatory role. These findings may have therapeutic implications for diseases characterized by pathological angiogenesis. J. Cell. Biochem. 108: 433–446, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Homology models of nicotinic acetylcholine receptors (nAChRs) suggest that subtype specificity is due to non-conserved residues in the complementary subunit of the ligand-binding pocket. Cytisine and its derivatives generally show a strong preference for heteromeric α4β21 nAChRs over the homomeric α7 subtype, and the structural modifications studied do not cause large changes in their nAChR subtype selectivity. In the present work we docked cytisine, N-methylcytisine, and several pyridone ring-substituted cytisinoids into the crystallographic structure of the Lymnaea stagnalis acetylcholine binding protein (AChBP) co-crystallized with nicotine (1UW6). The graphical analysis of the best poses showed that cytisinoids have weak interactions with the side chains of the non-conserved amino acids in the complementary subunit justifying the use of PDB 1UWB as a surrogate for nAChR. Furthermore, we found a high correlation (R2 = 0.96) between the experimental pIC50 values at α4β21 nAChR and docking energy (S) of the best cytisinoid poses within the AChBP. Due to the quality of the correlation we suggest that this equation might be used as a predictive model to propose new cytisine-derived nAChRs ligands. Our docking results also suggest that further structural modifications of these cytisinoids will not greatly alter their α4β21/α7 selectivity.  相似文献   

6.
Nicotinic acetylcholine α4β21 receptors (nAChRs) are implicated in various neurodegenerative diseases and smoking addiction. Imaging of brain high-affinity α4β21 nAChRs at the cellular and subcellular levels would greatly enhance our understanding of their functional role. Since better resolution could be achieved with fluorescent probes, using our previously developed positron emission tomography (PET) imaging agent [18F]nifrolidine, we report here design, synthesis and evaluation of two fluorescent probes, nifrodansyl and nifrofam for imaging α4β21 nAChRs. The nifrodansyl and nifrofam exhibited nanomolar affinities for the α4β21 nAChRs in [3H]cytisine-radiolabeled rat brain slices. Nifrofam labeling was observed in α4β21 nAChR-expressing HEK cells and was upregulated by nicotine exposure. Nifrofam co-labeled cell-surface α4β21 nAChRs, labeled with antibodies specific for a β2 subunit extracellular epitope indicating that nifrofam labels α4β21 nAChR high-affinity binding sites. Mouse brain slices exhibited discrete binding of nifrofam in the auditory cortex showing promise for examining cellular distribution of α4β21 nAChRs in brain regions.  相似文献   

7.
The present study describes our ongoing efforts toward the discovery of drugs that selectively target nAChR subtypes. We exploited knowledge on nAChR ligands and their binding site that were previously identified by our laboratory through virtual screenings and identified benzamide analogs as a novel chemical class of neuronal nicotinic receptor (nAChR) ligands. The lead molecule, compound 1 (4-(allyloxy)-N-(6-methylpyridin-2-yl)benzamide) inhibits nAChR activity with an IC50 value of 6.0 (3.4–10.6) μM on human α4β2 nAChRs with a ~5-fold preference against human α3β4 nAChRs. Twenty-six analogs of compound 1 were also either synthesized or purchased for structure–activity relationship (SAR) studies and provided information relating the chemical/structural properties of the molecules to their ability to inhibit nAChR activity. The discovery of subtype-selective ligands of nAChRs described here should contribute significantly to our understanding of the involvement of specific nAChR subtypes in normal and pathophysiological states.  相似文献   

8.
The most abundant subtype of cerebral nicotinic acetylcholine receptors (nAChR), α4β2, plays a critical role in various brain functions and pathological states. Imaging agents suitable for visualization and quantification of α4β2 nAChRs by positron emission tomography (PET) would present unique opportunities to define the function and pharmacology of the nAChRs in the living human brain. In this study, we report the synthesis, nAChR binding affinity, and pharmacological properties of several novel 3-pyridyl ether compounds. Most of these derivatives displayed a high affinity to the nAChR and a high subtype selectivity for α4β2-nAChR. Three of these novel nAChR ligands were radiolabeled with the positron-emitting isotope 11C and evaluated in animal studies as potential PET radiotracers for imaging of cerebral nAChRs with improved brain kinetics.  相似文献   

9.
Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol.  相似文献   

10.
Long‐term treatment with nicotine or selective α7 nicotinic acetylcholine receptor (nAChR) agonists increases the number of α7 nAChRs and this up‐regulation may be involved in the mechanism underlying the sustained procognitive effect of these compounds. Here, we investigate the influence of type I and II α7 nAChR positive allosteric modulators (PAMs) on agonist‐induced α7 nAChR up‐regulation. We show that the type II PAMs, PNU‐120596 (10 μM) or TQS (1 and 10 μM), inhibit up‐regulation, as measured by protein levels, induced by the α7 nAChR agonist A‐582941 (10 nM or 10 μM), in SH‐EP1 cells stably expressing human α7 nAChR, whereas the type I PAMs AVL‐3288 or NS1738 do not. Contrarily, neither type I nor II PAMs affect 10 μM nicotine‐induced receptor up‐regulation, suggesting that nicotine and A‐582941 induce up‐regulation through different mechanisms. We further show in vivo that 3 mg/kg PNU‐120596 inhibits up‐regulation of the α7 nAChR induced by 10 mg/kg A‐582941, as measured by [125I]‐bungarotoxin autoradiography, whereas 1 mg/kg AVL‐3288 does not. Given that type II PAMs decrease desensitization of the receptor, whereas type I PAMs do not, these results suggest that receptor desensitization is involved in A‐582941‐induced up‐regulation. Our results are the first to show an in vivo difference between type I and II α7 nAChR PAMs, and demonstrate an agonist‐dependent effect of type II PAMs occurring on a much longer time scale than previously appreciated. Furthermore, our data suggest that nicotine and A‐582941 induce up‐regulation through different mechanisms, and that this confers differential sensitivity to the effects of α7 nAChR PAMs. These results may have implications for the clinical development of α7 nAChR PAMs.  相似文献   

11.
12.
Presynaptic nicotinic acetylcholine receptors (nAChRs) have long been implicated in the modulation of CNS circuits. We previously reported that brief exposure to low concentrations of nicotine induced sustained potentiation of glutamatergic transmission at ventral hippocampal (vHipp)-striatal synapses. Here, we exploited nAChR subtype-selective antagonists and agonists and α7*nAChR knockout mutant mice (α7-/-) to elucidate the signaling mechanisms underlying nAChR-mediated modulation of synaptic transmission. Using a combination of micro-slices culture from WT and α7-/-mice, calcium imaging, and immuno-histochemical techniques, we found that nicotine elicits localized and oscillatory increases in intracellular Ca2+ along vHipp axons that persists for up to 30 minutes. The sustained phase of the nicotine-induced Ca2+ response was blocked by α-BgTx but not by DHβE and was mimicked by α7*nAChR agonists but not by non-α7*nAChR agonists. In vHipp slices from α7-/- mice, nicotine elicited only transient increases of axonal Ca2+ signals and did not activate CaMKII. The sustained phase of the nicotine-induced Ca2+ response required localized activation of CaMKII, phospholipase C, and IP3 receptor mediated Ca2+-induced Ca2+ release (CICR). In conclusion, activation of presynaptic nAChRs by nicotine elicits Ca2+ influx into the presynaptic axons, the sustained phase of the nicotine-induced Ca2+ response requires that axonal α7*nAChR activate a downstream signaling network in the vHipp axons.  相似文献   

13.
Cholinergic neurons in the CNS are involved in synaptic plasticity and cognition. Both muscarinic and nicotinic acetylcholine receptors (nAChRs) influence plasticity and cognitive function. The mechanism underlying nAChR‐induced plasticity, however, has remained elusive. Here, we demonstrate morphological changes in dendritic spines following activation of α4β2* nAChRs, which are expressed on glutamatergic pre‐synaptic termini of cultured hippocampal neurons. Exposure of the neurons to nicotine resulted in a lateral enlargement of spine heads. This was abolished by dihydro‐β‐erythroidine, an antagonist of α4β2* nAChRs, but not by α‐bungarotoxin, an antagonist of α7 nAChRs. Tetanus toxin or a mixture of 2‐amino‐5‐phosphonovaleric acid and 6‐cyano‐7‐nitroquinoxaline‐2,3‐dione, antagonists of NMDA‐ and AMPA‐type glutamate receptors, blocked the nicotine‐induced spine remodeling. In addition, nicotine exerted full spine‐enlarging response in the post‐synaptic neuron whose β2 nAChR expression was knocked down. Finally, pre‐treatment with nicotine enhanced the Ca2+‐response of the neurons to glutamate. These data suggest that nicotine influences the activity of glutamatergic neurotransmission through the activation of pre‐synaptic α4β2 nAChRs, resulting in the modulation of spinal architecture and responsiveness. The present findings may represent one of the cellular mechanisms underlying cholinergic tuning of brain function.

  相似文献   


14.

Background

Nicotinic acetylcholine receptors (nAChR) have been identified on a variety of cells of the immune system and are generally considered to trigger anti-inflammatory events. In the present study, we determine the nAChR inventory of rat alveolar macrophages (AM), and investigate the cellular events evoked by stimulation with nicotine.

Methods

Rat AM were isolated freshly by bronchoalveolar lavage. The expression of nAChR subunits was analyzed by RT-PCR, immunohistochemistry, and Western blotting. To evaluate function of nAChR subunits, electrophysiological recordings and measurements of intracellular calcium concentration ([Ca2+]i) were conducted.

Results

Positive RT-PCR results were obtained for nAChR subunits α3, α5, α9, α10, β1, and β2, with most stable expression being noted for subunits α9, α10, β1, and β2. Notably, mRNA coding for subunit α7 which is proposed to convey the nicotinic anti-inflammatory response of macrophages from other sources than the lung was not detected. RT-PCR data were supported by immunohistochemistry on AM isolated by lavage, as well as in lung tissue sections and by Western blotting. Neither whole-cell patch clamp recordings nor measurements of [Ca2+]i revealed changes in membrane current in response to ACh and in [Ca2+]i in response to nicotine, respectively. However, nicotine (100 μM), given 2 min prior to ATP, significantly reduced the ATP-induced rise in [Ca2+]i by 30%. This effect was blocked by α-bungarotoxin and did not depend on the presence of extracellular calcium.

Conclusions

Rat AM are equipped with modulatory nAChR with properties distinct from ionotropic nAChR mediating synaptic transmission in the nervous system. Their stimulation with nicotine dampens ATP-induced Ca2+-release from intracellular stores. Thus, the present study identifies the first acute receptor-mediated nicotinic effect on AM with anti-inflammatory potential.  相似文献   

15.
The american cockroach (Periplaneta americana) dorsal unpaired median (DUM) neurons provide an native tool to analyze the functional and pharmacological properties of ion channels and membrane receptors, such as nicotine acetylcholine receptors (nAChRs). Here the imidacloprid-activated nAChR subtypes were examined in DUM neurons by the patch-clamp technique and the potential subunits involved in important subtypes were analyzed by combining with RNA interference (RNAi) technique. Imidacloprid exerted agonist activities on one subtype in α-Bgt-sensitive nAChRs and another subtype in α-Bgt-resistant nAChRs, in which the α-Bgt-resistant subtype showed much higher sensitivity to imidacloprid than the α-Bgt-sensitive subtype, with the difference close to 200-fold. In α-Bgt-resistant nAChRs, nicotine exerted the agonist activity on two subtypes (nAChR1 and nAChR2), although imidacloprid only activated nAChR1. RNAi against Paα3, Paα8 and Paβ1 significantly reduced both imidacloprid- and nicotine-activated currents on nAChR1. In contrast, RNAi against Paα1, Paα2 and Paβ1 decreased nicotine-activated currents on nAChR2. The results indicated that, in α-Bgt-resistant nAChRs, Paα3, Paα8 and Paβ1 might be involved in the subunit composition of nAChR1, and Paα1, Paα2 and Paβ1 in nAChR2. In summary, from the present study and previous reports, we deduced that there are at least three nAChR subtypes that are sensitive to imidacloprid in the cockroach DUM neurons.  相似文献   

16.
Subtype selective molecules for α4β2 neuronal nicotinic acetylcholine receptors (nAChRs) have been sought as novel therapeutics for nicotine cessation. α4β2 nAChRs have been shown to be involved in mediating the addictive properties of nicotine while other subtypes (i.e., α3β4 and α7) are believed to mediate the undesired effects of potential CNS drugs. To obtain selective molecules, it is important to understand the physiochemical features of ligands that affect selectivity and potency on nAChR subtypes. Here we present novel QSAR/QSSR models for negative allosteric modulators of human α4β2 nAChRs and human α3β4 nAChRs. These models support previous homology model and site-directed mutagenesis studies that suggest a novel mechanism of antagonism. Additionally, information from the models presented in this work was used to synthesize novel molecules; which subsequently led to the discovery of a new selective antagonist of human α4β2 nAChRs.  相似文献   

17.
3,7-Diazabicyclo[3.3.1]nonane (bispidine) based nicotinic acetylcholine receptor (nAChR) ligands have been synthesized and evaluated for nAChRs interaction. Diverse spacer motifs were incorporated between the hydrogen bond acceptor (HBA) part and a variety of substituted (hetero)aryl moieties. Bispidine carboxamides bearing spacer motifs often showed high affinity in the low nanomolar range and selectivity for the α4β21 nAChR. Compounds 15, 25, and 47 with Ki values of about 1 nM displayed the highest affinities for α4β21 nAChR. All evaluated compounds are partial agonists or antagonists at α4β21, with reduced or no effects on α3β41 with the exception of compound 15 (agonist), and reduced or no effect at α7 and muscle subtypes.  相似文献   

18.
Nicotine, a major component of cigarette smoking, is the important risk factor for the development of periodontal disease. However, the mechanisms that underlie the cytotoxicity of nicotine in human periodontal ligament stem cells (PDLSCs) are largely unknown. Thus, the purpose of this study was to determine the cytotoxic effect of nicotine by means of nicotinic acetylcholine receptor (nAChR) activation in PDLSCs. We first detected α7 and β4 nAChRs in PDLSCs. The gene expressions of α7 and β4 nAChR were increased by nicotine administration. Nicotine significantly decreased cell viability at a concentration higher than 10−5 M. DNA fragmentation was also detected at high doses of nicotine treatment. Moreover, the detection of sub G1 phase and TUNEL assay demonstrated that nicotine significantly induced apoptotic cell death at 10−2 M concentration. Western blot analysis confirmed that p53 proteins were phosphorylated by nicotine. Under various doses of nicotine, a decrease in the anti-apoptotic protein Bcl-2, but an increase in p53 and cleaved caspase-3 protein levels, was detected in a dose-dependent manner. However, the apoptotic effect of nicotine was inhibited by the pretreatment of α-bungarotoxin, a selective α7 nAChR antagonist or mecamylamine, a non-selective nAChR antagonist. Finally, increases in the subG1 phase and DNA fragmentation by nicotine was attenuated by each nAChR antagonist. Collectively, the presence of α7 and β4 nAChRs in PDLSCs supports a key role of nAChRs in the modulation of nicotine-induced apoptosis.  相似文献   

19.
20.
In this study, we evaluate the effects of (3β)‐3‐[2‐(diethylamino)ethoxy]androst‐5‐en‐17‐one dihydrochloride (U18666A), a cholesterol synthesis/transporter inhibitor, on selected human neuronal nicotinic acetylcholine receptors (nAChRs) heterologously expressed in the SH‐EP1 cell line using whole‐cell patch‐clamp recordings. The results indicate that with 2‐min pretreatment, U18666A inhibited different nAChR subtypes with a rank‐order of potency (IC50 of whole‐cell peak current): α4β2 (8.0 ± 3.0 nM) > α3β2 (1.7 ± 0.4 μM) > α4β4 (26 ± 7.2 μM) > α7 (> 100 μM), suggesting this compound is more selective to α4β2‐nAChRs. Thus, the pharmacological profiles and mechanisms of U18666A acting on α4β2‐nAChRs were investigated in detail. U18666A suppresses both peak and steady state components of whole‐cell currents mediated by human α4β2‐nAChRs in response to nicotine. In nicotine‐induced concentration–response curves, U18666A reduces nicotine‐induced current at maximally effective agonist concentrations without influencing nicotine’s EC50 value, suggesting a non‐competitive inhibition. U18666A‐induced inhibition of nAChR function is concentration‐, voltage‐, and use‐dependent, suggesting an open channel block. Taken into consideration of ~10 000‐fold enhancement of the potency of U18666A after 2‐min pre‐treatment, this compound also likely inhibits α4β2‐nAChRs through a close channel block. In addition, the U18666A‐induced inhibition in α4β2‐nAChRs is not mediated by either increased receptor endocytosis or altered cell cholesterol. These data indicate that U18666A is a potent antagonist of α4β2‐nAChRs and may be useful as a tool in the functional characterization and pharmacological profiling of nAChRs, as well as a potential candidate for smoking cessation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号