首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background aimsCo-transplantation of islets with mesenchymal stem cells (MSCs) has been shown to improve graft outcome in mice, which has been partially attributed to the effects of MSCs on revascularization and preservation of islet morphology. Microencapsulation of islets provides an isolated-graft model of islet transplantation that is non-vascularized and prevents islet aggregation to preserve islet morphology. The aim of this study was to investigate whether MSCs could improve graft outcome in a microencapsulated/isolated-graft model of islet transplantation.MethodsMouse islets and kidney MSCs were co-encapsulated in alginate, and their function was assessed in vitro. A minimal mass of 350 syngeneic islets encapsulated alone or co-encapsulated with MSCs (islet+MSC) were transplanted intraperitoneally into diabetic mice, and blood glucose concentrations were monitored. Capsules were recovered 6 weeks after transplantation, and islet function was assessed.ResultsIslets co-encapsulated with MSCs in vitro had increased glucose-stimulated insulin secretion and content. The average blood glucose concentration of transplanted mice was significantly lower by 3 weeks in the islet+MSC group. By week 6, 71% of the co-encapsulated group were cured compared with 16% of the islet-alone group. Capsules recovered at 6 weeks had greater glucose-stimulated insulin secretion and insulin content in the islet+MSC group.ConclusionsMSCs improved the efficacy of microencapsulated islet transplantation. Using an isolated-graft model, we were able to eliminate the impact of MSC-mediated enhancement of revascularization and preservation of islet morphology and demonstrate that the improvement in insulin secretion and content is sustained in vivo and can significantly improve graft outcome.  相似文献   

2.
The scarcity of available islets is an obstacle for clinically successful islet transplantation. One solution might be to increase the efficacy of the limited islets. Isolated islets are exposed to a variety of cellular stressors, and disruption of the cell-matrix connections damages islets. We examined the effect of fibronectin, a major component of the extracellular matrix, on islet viability, mass and function, and also examined whether fibronectin-treated islets improved the results of islet transplantation. Islets cultured with fibronectin for 48 hours maintained higher cell viability (0.146 +/- 0.010 vs. 0.173 +/- 0.007 by MTT assay), and also had a greater insulin and DNA content (86.8 +/- 3.6 vs. 72.8 +/- 3.2 ng/islet and 35.2 +/- 1.4 vs. 30.0 +/- 1.5 ng/islet, respectively) than islets cultured without fibronectin (control). Absolute values of insulin secretion were higher in fibronectin-treated islets than in controls; however, the ratio of stimulated insulin secretion to basal secretion was not significantly different (206.9 +/- 23.3 vs. 191.7 +/- 20.2% when the insulin response to 16.7 mmol/l glucose was compared to that of 3.3 mmol/l glucose); the higher insulin secretion was thus mainly due to larger islet cell mass. The rats transplanted with fibronectin-treated islets had lower plasma glucose and higher plasma insulin levels within 2 weeks after transplantation, and had more favorable glucose tolerance 9 weeks after transplantation. These results indicate that cultivation with fibronectin might preserve islet cell viability, mass and insulin secretory function, which could improve glucose tolerance following islet transplantation.  相似文献   

3.
Background aimsWe recently showed that co-transplantation of mesenchymal stromal cells (MSCs) improves islet function and revascularization in vivo. Pre-transplant islet culture is associated with the loss of islet cells. MSCs may enhance islet cell survival or function by direct cell contact mechanisms and soluble mediators. We investigated the capacity of MSCs to improve islet cell survival or β-cell function in vitro using direct and indirect contact islet-MSC configurations. We also investigated whether pre-culturing islets with MSCs improves islet transplantation outcome.MethodsThe effect of pre-culturing islets with MSCs on islet function in vitro was investigated by measuring glucose-stimulated insulin secretion. The endothelial cell density of fresh islets and islets cultured with or without MSCs was determined by immunohistochemistry. The efficacy of transplanted islets was tested in vivo using a syngeneic streptozotocin-diabetic minimal islet mass model. Graft function was investigated by monitoring blood glucose concentrations.ResultsIndirect islet-MSC co-culture configurations did not improve islet function in vitro. Pre-culturing islets using a direct contact MSC monolayer configuration improved glucose-stimulated insulin secretion in vitro, which correlated with superior islet graft function in vivo. MSC pre-culture had no effect on islet endothelial cell number in vitro or in vivo.ConclusionsPre-culturing islets with MSCs using a direct contact configuration maintains functional β-cell mass in vitro and the capacity of cultured islets to reverse hyperglycemia in diabetic mice.  相似文献   

4.
Hypoxia/reoxygenation (H/R)‐induced injury is the key factor associated with islet graft dysfunction. This study aims to examine the effect of mesenchymal stem cells (MSCs) on islet survival and insulin secretion under H/R conditions. Islets from rats were isolated, purified, cultured with or without MSCs, and exposed to hypoxia (O2 ≤ 1%) for 8 h and reoxygenation for 24 and 48 h, respectively. Islet function was evaluated by measuring basal and glucose‐stimulated insulin secretion (GSIS). Apoptotic islet cells were quantified using Annexin V‐FITC. Anti‐apoptotic effects were confirmed by mRNA expression analysis of hypoxia‐resistant molecules, HIF‐1α, HO‐1, and COX‐2, using semi‐quantitative retrieval polymerase chain reaction (RT‐PCR). Insulin expression in the implanted islets was detected by immunohistological analysis. The main results show that the stimulation index (SI) of GSIS was maintained at higher levels in islets co‐cultured with MSCs. The MSCs protected the islets from H/R‐induced injury by decreasing the apoptotic cell ratio and increasing HIF‐1α, HO‐1, and COX‐2 mRNA expression. Seven days after islet transplantation, insulin expression in the MSC‐islets group significantly differed from that of the islets‐alone group. We proposed that MSCs could promote anti‐apoptotic gene expression by enhancing their resistance to H/R‐induced apoptosis and dysfunction. This study provides an experimental basis for therapeutic strategies based on enhancing islet function. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Transplantation of human islets is an attractive alternative to daily insulin injections for patients with type 1 diabetes. However, the majority of islet recipients lose graft function within five years. Inflammation is a primary contributor to graft loss, and inhibiting pro-inflammatory cytokine activity can reverse inflammation mediated dysfunction of islet grafts. As mesenchymal stem cells (MSCs) possess numerous immunoregulatory properties, we hypothesized that MSCs could protect human islets from pro-inflammatory cytokines. Five hundred human islets were co-cultured with 0.5 or 1.0 × 10(6) human MSCs derived from bone marrow or pancreas for 24 hours followed by 48 hour exposure to interferon-γ, tumor necrosis factor-α and interleukin 1β. Controls include islets cultured alone (± cytokines) and with human dermal fibroblasts (± cytokines). For all conditions, glucose stimulated insulin secretion (GSIS), total islet cellular insulin content, islet β cell apoptosis, and potential cytoprotective factors secreted in the culture media were determined. Cytokine exposure disrupted human islet GSIS based on stimulation index and percentage insulin secretion. Conversely, culture with 1.0 × 10(6) bMSCs preserved GSIS from cytokine treated islets. Protective effects were not observed with fibroblasts, indicating that preservation of human islet GSIS after exposure to pro-inflammatory cytokines is MSC dependent. Islet β cell apoptosis was observed in the presence of cytokines; however, culture of bMSCs with islets prevented β cell apoptosis after cytokine treatment. Hepatocyte growth factor (HGF) as well as matrix metalloproteinases 2 and 9 were also identified as putative secreted cytoprotective factors; however, other secreted factors likely play a role in protection. This study, therefore, demonstrates that MSCs may be beneficial for islet engraftment by promoting cell survival and reduced inflammation.  相似文献   

6.
p8 protein expression is known to be upregulated in the exocrine pancreas during acute pancreatitis. Own previous work revealed glucose-dependent p8 expression also in endocrine pancreatic beta-cells. Here we demonstrate that glucose-induced INS-1 beta-cell expansion is preceded by p8 protein expression. Moreover, isopropylthiogalactoside (IPTG)-induced p8 overexpression in INS-1 beta-cells (p8-INS-1) enhances cell proliferation and expansion in the presence of glucose only. Although beta-cell-related gene expression (PDX-1, proinsulin I, GLUT2, glucokinase, amylin) and function (insulin content and secretion) are slightly reduced during p8 overexpression, removal of IPTG reverses beta-cell function within 24 h to normal levels. In addition, insulin secretion of p8-INS-1 beta-cells in response to 0-25 mM glucose is not altered by preceding p8-induced beta-cell expansion. Adenovirally transduced p8 overexpression in primary human pancreatic islets increases proliferation, expansion, and cumulative insulin secretion in vitro. Transplantation of mock-transduced control islets under the kidney capsule of immunosuppressed streptozotocin-diabetic mice reduces blood glucose and increases human C-peptide serum concentrations to stable levels after 3 days. In contrast, transplantation of equal numbers of p8-transduced islets results in a continuous decrease of blood glucose and increase of human C-peptide beyond 3 days, indicating p8-induced expansion of transplanted human beta-cells in vivo. This is underlined by a doubling of insulin content in kidneys containing p8-transduced islet grafts explanted on day 9. These results establish p8 as a novel molecular mediator of glucose-induced pancreatic beta-cell expansion in vitro and in vivo and support the notion of existing beta-cell replication in the adult organism.  相似文献   

7.
Previous studies have reported both positive and negative effects of culture of islets at high glucose concentrations on regulated insulin secretion. Here, we have reexamined this question in mouse islets and determined the role of changes in lipid synthesis in the effects of glucose. Glucose-stimulated insulin secretion (GSIS) and gene expression were examined in islets from C57BL/6 mice or littermates deleted for sterol-regulatory element binding protein-1 (SREBP1) after 4 days of culture at high glucose concentrations. Culture of control islets at 30 versus 8 mmol/l glucose led to enhanced secretion at both basal (3 mmol/l) and stimulatory (17 mmol/l) glucose concentrations and to enhanced triacylglycerol accumulation. These changes were associated with increases in the expression of genes involved in glucose sensing (glucose transporter 2, glucokinase, sulfonylurea receptor 1, inwardly rectifying K(+) channel 6.2), differentiation (pancreatic duodenal homeobox 1), and lipogenesis (Srebp1, fatty acid synthase, acetyl-coenzyme A carboxylase 1, stearoyl-coenzyme A desaturase 1). When cultured at either 8 or 30 mmol/l glucose, SREBP1-deficient (SREBP1(-/-)) islets displayed reduced GSIS and triacylglycerol content compared with normal islets. Correspondingly, glucose induction of the above genes in control islets was no longer observed in SREBP1(-/-) mouse islets. We conclude that enhanced lipid synthesis mediated by SREBP1c-dependent genes is required for the adaptive changes in islet gene expression and insulin secretion at high glucose concentrations.  相似文献   

8.
Allogeneic and autoimmune islet destruction limits the success of islet transplantation in autoimmune diabetic patients. This study was designed to investigate whether ex vivo gene transfer of viral interleukin-10 (vIL-10) protects BioBreeding (BB) rat islets from autoimmune destruction after transplantation into diabetic BB recipients. Islets were transduced with adenoviral constructs (Ad) expressing the enhanced green fluorescent protein (eGFP), alpha-1 antitrypsin (AAT) or vIL-10. Transduction efficiency was demonstrated by eGFP-positive cells and vIL-10 production. Islet function was determined in vitro by measuring insulin content and insulin secretion and in vivo by grafting AdvIL-10-transduced islets into syngeneic streptozotocin (SZ)-diabetic, congenic Lewis (LEW.1 W) rats. Finally, gene-modified BB rat islets were grafted into autoimmune diabetic BB rats. Ad-transduction efficiency of islets increased with virus titre and did not interfere with insulin content and insulin secretion. Ad-transduction did not induce Fas on islet cells. AdvIL-10-transduced LEW.1 W rat islets survived permanently in SZ-diabetic LEW.1 W rats. In diabetic BB rats AdvIL-10-transduced BB rat islets were rapidly destroyed. Prolongation of islet culture prior to transplantation improved the survival of gene-modified islets in BB rats. Several genes including those coding for chemokines and other peptides associated with inflammation were down-regulated in islets after prolonged culture, possibly contributing to improved islet graft function in vivo. Islets transduced ex vivo with vIL-10 are principally able to cure SZ-diabetic rats. Autoimmune islet destruction in diabetic BB rats is not prevented by ex vivo vIL-10 gene transfer to grafted islets. Graft survival in autoimmune diabetic rats may be enhanced by improvements in culture conditions prior to transplantation.  相似文献   

9.
10.
Type II diabetes progresses with inadequate insulin secretion and prolonged elevated circulating glucose levels. Also, pancreatic islets isolated for transplantation or tissue engineering can be exposed to glucose over extended timeframe. We hypothesized that isolated pancreatic islets can secrete insulin over a prolonged period of time when incubated in glucose solution and that not all islets release insulin in unison. Insulin secretion kinetics was examined and modeled from single mouse islets in response to chronic glucose exposure (2.8‐20 mM). Results with single islets were compared to those from pools of islets. Kinetic analysis of 58 single islets over 72 h in response to elevated glucose revealed distinct insulin secretion profiles: slow‐, fast‐, and constant‐rate secretors, with slow‐secretors being most prominent (ca., 50%). Variations in the temporal response to glucose therefore exist. During short‐term (<4 h) exposure to elevated glucose few islets are responding with sustained insulin release. The model allowed studying the influence of islet size, revealing no clear effect. At high‐glucose concentrations, when secretion is normalized to islet volume, the tendency is that smaller islets secrete more insulin. At high‐glucose concentrations, insulin secretion from single islets is representative of islet populations, while under low‐glucose conditions pooled islets did not behave as single ones. The characterization of insulin secretion over prolonged periods complements studies on insulin secretion performed over short timeframe. Further investigation of these differences in secretion profiles may resolve open‐ended questions on pre‐diabetic conditions and transplanted islets performance. This study deliberates the importance of size of islets in insulin secretion. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1059–1068, 2018  相似文献   

11.
Long-term total parenteral nutrition (TPN) is associated with elevated plasma lipids and a marked decrease of glucose-stimulated insulin release. Since nitric oxide (NO) has been shown to modulate negatively the insulin response to glucose, we investigated the influence of TPN-treatment on isoforms of islet NO-synthase (NOS) activities in relation to the effect of glucagon-like peptide-1 (GLP-1), a known activator of glucose-stimulated insulin release. Isolated islets from TPN rats incubated at basal glucose (1 mmol/l) showed a modestly increased insulin secretion accompanied by an enhanced accumulation of islet cAMP and cGMP. In contrast, TPN islets incubated at high glucose (16.7 mmol/l) displayed an impaired insulin secretion and a strong suppression of islet cAMP content. Moreover, islet inducible NOS (iNOS) as well as islet cGMP content were greatly increased in these TPN islets. A dose-response study of GLP-1 with glucose-stimulated islets showed that GLP-1 could overcome and completely restore the impaired insulin release in TPN islets, bringing about a marked increase in islet cAMP accumulation concomitant with heavy suppression of both glucose-stimulated increase in islet cGMP content and the activities of constitutive NOS (cNOS) and iNOS. These effects of GLP-1 were mimicked by dibutyryl-cAMP. The present results show that the impaired insulin response of glucose-stimulated insulin release seen after TPN treatment is normalized by GLP-1. This beneficial effect of GLP-1 is most probably exerted by a cAMP-induced suppression of both iNOS and cNOS activities in these TPN islets.  相似文献   

12.
Insulin-dependent diabetes mellitus is characterized by progressive autoimmune destruction of pancreatic Beta cells mediated by ill-defined effector mechanisms. Experimental data suggest that cytokines, e.g. interleukin 1 and tumor necrosis factor, could play a fundamental role. The aim of this study was to analyze the effect of recombinant IL-1 beta (rIL-1 beta) on both islet functional capacity and morphology, using long-term cultures and various glucose concentrations. Islet cultured with 1 g/l (5.5 mmol/l) glucose maintained normal insulin- secretion and morphology for more than two months. In contrast, islets cultured with 2 g/l (11 mmol/l) glucose showed an altered insulin secretion and a shorter survival (40 days). At 11 g/l (60 mmol/l) glucose, islets died by 2 weeks of culture. rIL-1 beta exerted a cytotoxic effect on islet cells only when added to cultures containing supraphysiological glucose concentrations. But, in the presence of 1 g/l glucose, the addition of rIL-1 beta (40 ng/ml) for prolonged periods (14 days), did not alter islet function. Our results suggest that in auto-immune type I diabetes, IL-1 beta represents an aggravating factor in lesion formation more than a primary pathogenic mechanism.  相似文献   

13.
The insulin/insulin-like growth factor-1 (IGF-1) signalling pathways are present in most mammalian cells and play important roles in the growth and metabolism of tissues. Most proteins in these pathways have also been identified in the beta-cells of the pancreatic islets. Tissue-specific knockout of the insulin receptor (betaIRKO) or IGF-1 receptor (betaIGFRKO) in pancreatic beta-cells leads to altered glucose-sensing and glucose intolerance in adult mice, and betaIRKO mice show an age-dependent decrease in islet size and beta-cell mass. These data indicate that these receptors are important for differentiated function and are unlikely to play a major role in the early growth and/or development of the pancreatic islets. Conventional insulin receptor substrate-1 (IRS-1) knockouts manifest growth retardation and mild insulin resistance. The IRS-1 knockouts also display islet hyperplasia, defects in insulin secretory responses to multiple stimuli both in vivo and in vitro, reduced islet insulin content and an increased number of autophagic vacuoles in the beta-cells. Re-expression of IRS-1 in cultured beta-cells is able to partially restore the insulin content indicating that IRS-1 is involved in the regulation of insulin synthesis. Taken together, these data provide evidence that insulin and IGF-1 receptors and IRS-1, and potentially other proteins in the insulin/IGF-1 signalling pathway, contribute to the regulation of islet hormone secretion and synthesis and therefore in the maintenance of glucose homeostasis.  相似文献   

14.
Glucose regulates glucokinase activity in cultured islets from rat pancreas   总被引:6,自引:0,他引:6  
In this study, we have used isolated pancreatic islets cultured for 7 days in 3 or 30 mM glucose to explore whether glucokinase is induced or activated by high glucose concentrations and has related enzyme activity to glucose-stimulated insulin release. Islets cultured in low glucose medium or low glucose medium plus 350 ng/ml insulin did not respond to high glucose stimulation. Islets cultured in medium containing high glucose concentrations showed a high rate of basal insulin secretion when perifused with 5 mM glucose, and the insulin release was greatly augmented in a biphasic secretion profile when the glucose concentration was raised to 16 mM. Islet glucokinase and hexokinase activities were determined by a sensitive and specific fluorometric method. Glucokinase activity was reduced to approximately 50% in islets cultured in low glucose medium with or without insulin present compared to results with fresh islets. However, islets cultured in 30 mM glucose showed that glucokinase activity was elevated to 236% compared to results with fresh islets. It is concluded that (a) glucose is the physiological regulator of glucokinase in the islet of Langerhans and that (b) the activity of glucokinase plays a crucial role in glucose-induced insulin secretion.  相似文献   

15.
Pituitary adenylate cyclase activating peptide (PACAP) is a ubiquitously distributed neuropeptide which also is localized to pancreatic islets and stimulates insulin secretion. We examined whether endogenous PACAP within the islets might contribute to glucose-stimulated insulin secretion by immunoneutralizing endogenous PACAP. Immunocytochemistry showed that PACAP immunoreactivity is expressed in nerve terminals within freshly isolated rat islets, but not in islets that had been cultured for 48 h. In contrast, islet endocrine cells did not display PACAP immunoreactivity. Addition of either of two specific PACAP antisera markedly inhibited glucose (11.1 mmol/l)-stimulated insulin secretion from freshly isolated rat islets, whereas a control rabbit serum did not affect glucose-stimulated insulin secretion. In contrast, the PACAP antisera had no effect on glucose-stimulated insulin secretion in cultured islets. Based on these results we therefore suggest that PACAP is an islet neuropeptide which is required for the normal insulinotropic action of glucose.  相似文献   

16.
For people with type 1 diabetes and severe hypoglycemic unawareness, islet transplants offer hope for improving the quality of life. However, islet cell death occurs quickly during or after transplantation, requiring large quantities of islets per transplant. The purpose of this study was to determine whether poor function demonstrated in large islets was a result of diffusion barriers and if removing those barriers could improve function and transplantation outcomes. Islets were isolated from male DA rats and measured for cell viability, islet survival, glucose diffusion and insulin secretion. Modeling of diffusion barriers was completed using dynamic partial differential equations for a sphere. Core cell death occurred in 100% of the large islets (diameter >150 μm), resulting in poor survival within 7 days after isolation. In contrast, small islets (diameter <100 μm) exhibited good survival rates in culture (91%). Glucose diffusion into islets was tracked with 2-NBDG; 4.2 μm/min in small islets and 2.8 μm/min in large islets. 2-NBDG never permeated to the core cells of islets larger than 150 μm diameter. Reducing the diffusion barrier in large islets improved their immediate and long-term viability in culture. However, reduction of the diffusion barrier in large islets failed to improve their inferior in vitro insulin secretion compared to small islets, and did not return glucose control to diabetic animals following transplantation. Thus, diffusion barriers lead to low viability and poor survival for large islets, but are not solely responsible for the inferior insulin secretion or poor transplantation outcomes of large versus small islets.  相似文献   

17.
《Organogenesis》2013,9(2):115-124
For people with type 1 diabetes and severe hypoglycemic unawareness, islet transplants offer hope for improving the quality of life. However, islet cell death occurs quickly during or after transplantation, requiring large quantities of islets per transplant. The purpose of this study was to determine whether poor function demonstrated in large islets was a result of diffusion barriers and if removing those barriers could improve function and transplantation outcomes. Islets were isolated from male DA rats and measured for cell viability, islet survival, glucose diffusion and insulin secretion. Modeling of diffusion barriers was completed using dynamic partial differential equations for a sphere. Core cell death occurred in 100% of the large islets (diameter > 150 μm), resulting in poor survival within 7 days after isolation. In contrast, small islets (diameter &lt; 100 μm) exhibited good survival rates in culture (91%). Glucose diffusion into islets was tracked with 2-NBDG; 4.2 μm/min in small islets and 2.8 μm/min in large islets. 2-NBDG never permeated to the core cells of islets larger than 150μm diameter. Reducing the diffusion barrier in large islets improved their immediate and long-term viability in culture. However, reduction of the diffusion barrier in large islets failed to improve their inferior in vitro insulin secretion compared to small islets, and did not return glucose control to diabetic animals following transplantation. Thus, diffusion barriers lead to low viability and poor survival for large islets, but are not solely responsible for the inferior insulin secretion or poor transplantation outcomes of large versus small islets.  相似文献   

18.
High-level expression of the low-Km glucose transporter isoform GLUT-1 is characteristic of many cultured tumor and oncogene-transformed cells. In this study, we tested whether induction of GLUT-1 occurs in tumors in vivo. Normal mouse beta islet cells express the high-Km (approximately 20 mM) glucose transporter isoform GLUT-2 but not the low-Km (1 to 3 mM) GLUT-1. In contrast, a beta cell line derived from an insulinoma arising in a transgenic mouse harboring an insulin-promoted simian virus 40 T-antigen oncogene (beta TC3) expressed very low levels of GLUT-2 but high levels of GLUT-1. GLUT-1 protein was not detectable on the plasma membrane of islets or tumors of the transgenic mice but was induced in high amounts when the tumor-derived beta TC3 cells were grown in tissue culture. GLUT-1 expression in secondary tumors formed after injection of beta TC3 cells into mice was reduced. Thus, high-level expression of GLUT-1 in these tumor cells is characteristic of culture conditions and is not induced by the oncogenic transformation; indeed, overnight culture of normal pancreatic islets causes induction of GLUT-1. We also investigated the relationship between expression of the different glucose transporter isoforms by islet and tumor cells and induction of insulin secretion by glucose. Prehyperplastic transgenic islet cells that expressed normal levels of GLUT-2 and no detectable GLUT-1 exhibited an increased sensitivity to glucose, as evidenced by maximal insulin secretion at lower glucose concentrations, compared with that exhibited by normal islets. Further, hyperplastic islets and primary and secondary tumors expressed low levels of GLUT-2 and no detectable GLUT-1 on the plasma membrane; these cells exhibited high basal insulin secretion and responded poorly to an increase in extracellular glucose. Thus, abnormal glucose-induced secretion of insulin in prehyperplastic islets in mice was independent of changes in GLUT-2 expression and did not require induction of GLUT-1 expression.  相似文献   

19.
We examined whether the additional demand for insulin secretion imposed by dietary saturated fat-induced insulin resistance during pregnancy is accommodated at late pregnancy, already characterized by insulin resistance. We also assessed whether effects of dietary saturated fat are influenced by PPARalpha activation or substitution of 7% of dietary fatty acids (FAs) with long-chain omega-3 FA, manipulations that improve insulin action in the nonpregnant state. Glucose tolerance at day 19 of pregnancy in the rat was impaired by high-saturated-fat feeding throughout pregnancy. Despite modestly enhanced glucose-stimulated insulin secretion (GSIS) in vivo, islet perifusions revealed an increased glucose threshold and decreased glucose responsiveness of GSIS in the saturated-fat-fed pregnant group. Thus, insulin resistance evoked by dietary saturated fat is partially countered by augmented insulin secretion, but compensation is compromised by impaired islet function. Substitution of 7% of saturated FA with long-chain omega-3 FA suppressed GSIS in vivo but did not modify the effect of saturated-fat feeding to impair GSIS by perifused islets. PPARalpha activation (24 h) rescued impaired islet function that was identified using perifused islets, but GSIS in vivo was suppressed such that glucose tolerance was not improved, suggesting modification of the feedback loop between insulin action and secretion.  相似文献   

20.
A role for glucagon-like peptide 1 (GLP-1) has been suggested in stimulating beta-cell lipolysis via elevation of cAMP and activation of protein kinase A, which in turn may activate hormone-sensitive lipase (HSL), thereby contributing to fatty acid generation (FFA) from intracellular triglyceride stores. FFAs may then be metabolized to a lipid signal, which is required for optimal glucose-stimulated insulin secretion. Since HSL is expressed in islet beta-cells, this effect could contribute to the stimulation of insulin secretion by GLP-1, provided that a lipid signal of importance for insulin secretion is generated. To examine this hypothesis, we have studied the acute effect of GLP-1 on isolated mouse islets from normal mice and from mice with high-fat diet induced insulin resistance. We found, however, that although GLP-1 (100 nM) markedly potentiated glucose-stimulated insulin secretion from islets of both feeding groups, the peptide was not able to stimulate islet palmitate oxidation or increase lipolysis measured as glycerol release. This indicates that a lipid signal does not contribute to the acute stimulation of insulin secretion by GLP-1. To test whether lipolysis might be involved in the islet effects of long-term GLP-1 action, mice from the two feeding groups were chronically treated with exendin-4, a peptide that lowers blood glucose by interacting with GLP-1 receptors, in order to stimulate insulin secretion, for 16 days before isolation of the islets. The insulinotropic effects of GLP-1 and forskolin were exaggerated in isolated islets from exendin-4 treated mice given a high-fat diet, with a augmented palmitate oxidation as well as islet lipolysis at high glucose levels in these islets. Exendin-4 treatment had less impact on mice fed a normal diet. From these results we conclude that while GLP-1 does not seem to induce beta-cell lipolysis acutely in mouse islets, the peptide affects beta-cell fat metabolism after long-term adaptation to GLP-1 receptor stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号