首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Food nanotechnology involves the utilization of nanocarrier systems to stabilize the bioactive materials against a range of environmental and chemical changes as well as to improve their bioavailability. Nanoliposome technology presents exciting opportunities for food technologists in areas such as encapsulation and controlled release of food materials, as well as the enhanced bioavailability, stability, and shelf-life of sensitive ingredients. Liposomes and nanoliposomes have been used in the food industry to deliver flavors and nutrients and, more recently, have been investigated for their abilityto incorporate antimicrobials that could aid in the protection of food products against microbial contamination. In this paper, the main physicochemical properties of liposomes and nanoliposomes are described and some of the industrially applicable methods for their manufacture are reviewed. A summary of the application of nanoliposomes as carrier vehicles of nutrients, nutraceuticals, enzymes, food additives, and food antimicrobials is also presented.  相似文献   

2.
Food nanotechnology involves the utilization of nanocarrier systems to stabilize the bioactive materials against a range of environmental and chemical changes as well as to improve their bioavailability. Nanoliposome technology presents exciting opportunities for food technologists in areas such as encapsulation and controlled release of food materials, as well as the enhanced bioavailability, stability, and shelf-life of sensitive ingredients. Liposomes and nanoliposomes have been used in the food industry to deliver flavors and nutrients and, more recently, have been investigated for their ability to incorporate antimicrobials that could aid in the protection of food products against microbial contamination. In this paper, the main physicochemical properties of liposomes and nanoliposomes are described and some of the industrially applicable methods for their manufacture are reviewed. A summary of the application of nanoliposomes as carrier vehicles of nutrients, nutraceuticals, enzymes, food additives, and food antimicrobials is also presented.  相似文献   

3.
From the first observation about 40 years ago that yeast cells were interesting protective structures that could be used in several industrial applications, processes have been developed enabling technologists to incorporate several compounds possessing different physico-chemical (hydrophobic/hydrophilic) properties. Technologists screened yeast diversity to choose strains possessing the best potential and modified their physiological state to increase the uptake capability and the envelope plasticity, for instance by increasing the amount of lipids. Physico-chemical treatments were also used to improve the uptake and decrease the yeast natural material impact on the final products. For example, yeast cells could be “emptied” of their plasmic material. Yeast cells can also be coated with an additional polymeric material to increase resistance to heat treatment or decrease material liberation. These capsules can be used for several applications including carbonless paper, perfuming tissues and drug targeting, but the main industrial application deals currently with flavour encapsulation, although encapsulation in yeast is also interesting for the global food industry trend for health products. This paper proposes to review the use of yeast as an encapsulation structure focusing particularly on the properties of the yeast capsule and their impact on loading, protection, targeting and release.  相似文献   

4.
The development of functional foods through the addition of bioactive compounds holds many technological challenges. Microencapsulation is a useful tool to improve the delivery of bioactive compounds into foods, particularly probiotics, minerals, vitamins, phytosterols, lutein, fatty acids, lycopene and antioxidants. Several microencapsulation technologies have been developed for use in the food industry and show promise for the production of functional foods. Moreover, these technologies could promote the successful delivery of bioactive ingredients to the gastrointestinal tract. Future research is likely to focus on aspects of delivery and the potential use of co-encapsulation methodologies, where two or more bioactive ingredients can be combined to have a synergistic effect.  相似文献   

5.
The inclusion of bioactive compounds, such as carotenoids, omega-3 fatty acids, or phytosterols, is an essential requisite for the production of functional foods designed to improve the long-term health and well-being of consumers worldwide. To incorporate these functional components successfully in a food system, structurally sophisticated encapsulation matrices have to be engineered, which provide maximal physical stability, protect ingredients against chemical degradation, and allow for precise control over the release of encapsulated components during mastication and digestion to maximize adsorption. A novel encapsulation system initially developed in the pharmaceutical industries to deliver lipophilic bioactive compounds is solid lipid nanoparticles (SLN). SLN consist of crystallized nanoemulsions with the dispersed phase being composed of a solid carrier lipid–bioactive ingredient mixture. Contrary to larger colloidal solid lipid particles, specific crystal structures can be “dialed-in” in SLN by using specific surfactant mixtures and ensuring that mean particle sizes are below 100–200 nm. Moreover, in SLN, microphase separations of the bioactive compound from the solidifying lipid matrix can be prevented resulting in an even dispersion of the encapsulated compound in the solid matrix thereby improving chemical and physical stability of the bioactive. In this review article, we will briefly introduce the structure, properties, stability, and manufacturing of solid lipid particles and discuss their emerging use in food science.  相似文献   

6.
Yeast cells can be used as biocompatible and biodegradable containers for the microencapsulation of a variety of actives. Despite the wide application of this process, e.g. in the food industry, mechanism and controlling factors are yet poorly known. In this study we have studied kinetics and mechanistic aspects of the spontaneous internalization of terpenes (as model hydrophobic compounds) in Saccharomyces cerevisiae, quantifying their encapsulation through HPLC analysis and fluorescent staining of lipidic bodies with Nile Red, while in parallel monitoring cell viability. Our results showed that this encapsulation process is essentially a phenomenon of passive diffusion with negligible relevance of active transport. Further, our evidence shows that the major determinant of the encapsulation kinetics is the solubility of the hydrophobe in the cell wall, which is inversely related to partition coefficient (log P).  相似文献   

7.
《Biotechnology advances》2019,37(8):107419
Microalgae are considered promising functional food ingredients due to their balanced composition, containing multiple nutritional and health-beneficial components. However, their functionality in food products is not limited to health aspects, since microalgae can also play a structuring role in food, for instance as a texturizing ingredient. Photoautotrophic microalgae are actually rich in structural biopolymers such as proteins, storage polysaccharides, and cell wall related polysaccharides, and their presence might possibly alter the rheological properties of the enriched food product. A first approach to benefit from these structural biopolymers consists of isolating the cell wall related polysaccharides for use as food hydrocolloids. The potential of extracted cell wall polysaccharides as food hydrocolloids has only been shown for a few microalgae species, mainly due to an enormous diversity in molecular structure and composition. Nevertheless, with intrinsic viscosities comparable or higher than those of commercial thickening agents, extracellular polysaccharides of red microalgae and cyanobacteria could be a promising source of novel food hydrocolloids. A more sustainable approach would be to incorporate the whole microalgal biomass into food products, to combine health benefits with potential structuring benefits, i.e. providing desired rheological properties of the enriched food product. If microalgal biomass would act as a thickening agent, this would actually reduce the need for additional texturizing ingredients. Even though only limitedly studied so far, food processing operations have been proven successful in establishing desired microstructural and rheological properties. In fact, the use of cell disruption techniques allows the release of intracellular compounds, which become available to create strong particle aggregates resulting in an improved viscosity and network structure. Food processing operations might not only be favorable in terms of rheological properties, but also for enhancing the bioaccessibility of several bioactive compounds. However, this research area is only very scarcely explored, and there is a demand for more standardized research studies to draw conclusions on the effect of processing on the nutritional quality of food products enriched with microalgae. Even though considered as promising food ingredients, some major scientific challenges have been pointed out throughout this review paper for the successful design of microalgal based food products.  相似文献   

8.
To develop edible delivery systems suitable for food applications, regulations require that solvents and ingredients are either generally recognized as safe or listed by the Food and Drug Administration as processing aids. In this work, we studied a food grade polymer-corn zein, a category of alcohol-soluble proteins, as the carrier material for microencapsulating bioactives. Zein is insoluble in aqueous solutions; zein-based delivery systems may thus maintain the integrity in aqueous food products during processing and storage. Three alcohols, i.e., ethanol, methanol, and isopropanol, with an appropriate amount of water were used to dissolve zein. A supercritical anti-solvent process was applied to synthesize micro- and nanoparticles of zein for edible delivery systems of bioactive compounds. We studied critical variables during the particle formation: polymer concentration, CO2 flow rate, and co-solvent chemistry. Particles were produced only when mass transfer was fast enough that the co-solvent in the atomized droplets could be extracted by the reservoir CO2 and polymers could nucleate and grow into particles. Manipulation of the above variables enabled the production of micro- and nanoparticles, which can be used as bases for microencapsulating bioactives. Our results demonstrated promising applications of the supercritical anti-solvent technology to synthesize food grade delivery systems of bioactive food ingredients that can enhance the healthfulness, safety, and quality of food products.  相似文献   

9.

In the last years, demand for functional products containing both prebiotics and probiotics (known as synbiotic) has increased, which stimulated their incorporation into other food matrices than milk-based ones. Synbiotics improve gut functionality as well as respond to the increasing demand of consumers who have become aware of the health benefits of a proper diet. The most important criterion for preserving consumer acceptance in such products is maintaining the minimum viability and activity of probiotics from the beginning of production to the end of shelf-life. For their viability, fixation and multiplying within the host, several solutions have been proposed including the fortification with prebiotics and microencapsulation of prebiotics along with probiotics. The challenge of microencapsulation is to protect the probiotic cells in foods that are not usually considered their vehicle, such as fruit matrices. It is generally known that different prebiotics may exert different degrees of protection on the entrapped bacteria cells. For food products, such as fruit beverages, few works exist that investigate the functionality of synbiotic microcapsules in protecting the survivability of probiotic cells during processing and storage. This article provides an overview of this novel trend based on a review of relevant literature. The article summarizes the synbiotic concept, challenges for synbiotic formulation in fruit beverages, and future perspectives.

  相似文献   

10.
Najafian L  Babji AS 《Peptides》2012,33(1):178-185
Fishes are rich sources of structurally diverse bioactive compounds. In recent years, much attention has been paid to the existence of peptides with biological activities and proteins derived from foods that might have beneficial effects for humans. Antioxidant and antimicrobial peptides isolated from fish sources may be used as functional ingredients in food formulations to promote consumer health and improve the shelf life of food products. This paper presents an overview of the antioxidant and antimicrobial peptides derived from various fishes. In addition, we discuss the extraction of fish proteins, enzymatic production, and the techniques used to isolate and characterize these compounds. Furthermore, we review the methods used to assay the bioactivities and their applications in food and nutraceuticals.  相似文献   

11.
细胞微囊化免疫隔离技术在移植医学中的应用   总被引:4,自引:0,他引:4  
作为一种十分有效的免疫隔离技术,细胞微囊化可排除细胞移植中出现的宿主与移植物之间的双向排斥作用,从而使能分泌生物活性物质的细胞在移植后得以存活。目前报道的多种微囊材料中,以海藻酸钠一聚赖氨酸一海藻酸钠的应用最为广泛,可通过提高其生物相容性来减弱免疫排斥反应。细胞微囊化在医学治疗上正在发挥越来越大的作用,特别是基因修饰细胞日益成为研究的焦点。尽管该技术尚需改进,但它在异体和异种组织或细胞移植等方面有着广阔的应用前景。  相似文献   

12.
Cardoon is a multi‐purpose and versatile Mediterranean crop, adapted to climate change, with a wide spectrum of potential applications due its added value as a rich source of fibers, oils and bioactive compounds. The Cynara species are a component of the Mediterranean diet and have been used as food and medicine since ancient times. The important role of cardoon in human nutrition, as a functional food, is due to its high content of nutraceutical and bioactive compounds such as oligofructose inulin, caffeoylquinic acids, flavonoids, anthocyanins, sesquiterpenes lactones, triterpenes, fatty acids and aspartic proteases. The present review highlights the characteristics and functions of cardoon biomass which permits the development of innovative products in food and nutrition, pharmaceutics and cosmetics, plant protection and biocides, oils and energy, lignocellulose materials, and healthcare industries following the actual trends of a circular economy.  相似文献   

13.
Wood-derived naturally acetylated galactoglucomannans (AcGGM) can be recovered even in ton-scale at mechanical pulp mills using spruce as raw material. These cell wall polysaccharides have a great potential as hydrocolloids and bioactive polymers in food and pharmaceutical applications, or as starting material for production of functional polymers. The immunostimulatory activity of both AcGGM and its deacetylated form (GGM) was now in vitro tested. The biological response of both AcGGM and GGM in the lymphocyte transformation test was dose-dependent. The direct mitogenic as well as comitogenic activities of the AcGGM were comparable to those of the immunogenic corn cob xylan used as control, and GGM showed significantly higher biological responses also at lower doses. In contrast to GGM, AcGGM possessed also DPPH radical-scavenging activity. The results suggested that the spruce AcGGM and GGM are potentially important as additives with immuno-potentiating and antioxidant properties in food products and pharmaceutical formulations.  相似文献   

14.
本文采用喷雾干燥法制备高纯α-亚麻酸为芯材、亚麻籽胶为壁材的微胶囊,并以微胶囊化效率和含油率为指标,考察了制备工艺.结果表明,最佳微胶囊原料配方为:芯材与壁材的比例为(m/m)3∶2,料液浓度为5%,进料温度为20℃;最佳喷雾干燥工艺条件:进风温度为180℃,出风温度为80℃,雾化器转速21000 rpm,进料速度为42.01 mL/min.在此工艺条件下亚麻酸的微胶囊化效率为96.18%,含油率为60.09%.  相似文献   

15.
Lactoferricin is a 25-amino acid antimicrobial peptide fragment that is liberated by pepsin digestion of lactoferrin present in bovine milk. Along with its antibacterial properties, lactoferricin has also been reported to have immunostimulatory, antiviral, and anticarcinogenic effects. These attributes provide lactoferricin and other natural bioactive peptides with the potential to be functional food ingredients that can be used by the food industry in a variety of applications. At present, commercial uses of these types of compounds are limited by the scarcity of information on their ability to survive food processing environments. We have monitored the degradation of lactoferricin during its incubation with two types of lactic acid bacteria used in the yogurt-making industry, Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus, with the aim of assessing the stability of this milk protein-derived peptide under simulated yogurt-making conditions. Analysis of the hydrolysis products isolated from these experiments indicates degradation of this peptide near neutral pH by lactic acid bacteria-associated peptidases, the extent of which was influenced by the bacterial strain used. However, the data also showed that compared to other milk-derived bioactive peptides that undergo complete degradation under these conditions, the 25-amino acid lactoferricin is apparently more resistant, with approximately 50% of the starting material remaining after 4 h of incubation. These findings imply that lactoferricin, as a natural milk protein-derived peptide, has potential applications in the commercial production of yogurt-like fermented dairy products as a multi-functional food ingredient.  相似文献   

16.
The growing development of biological products highlights the social and environmental responsibility that several industrial companies are facing in recent years. In this context, the advancement of bioprocessing as an alternative for exploring the potential of ecologically based products, especially in biofuels, food, and agro-industrial business, exposes the rational efficiency of the application of renewable sources in different industrial segments. Industries strongly associated with food production concentrate large amounts of wastes rich in bioactive compounds. A range of highly effective technologies has been highly explored to recover large concentrations of prominent compounds present in these materials. The advances in this scenario assurance value addition to these by-products, in addition to highlighting their various technological applications, considering the biorefinery and ecologically based production concepts. Accordingly, this review article described a detailed and systematic approach to the importance of using bioactive compounds and exploring the main sources of these elements. Also, some recent and innovative research that has achieved encouraging results was highlighted. Furthermore, the study included the main extraction technologies that have been investigated as a strategy of prospecting the application of bioactive compounds and optimizing the processes for obtaining natural compounds from plant sources. Finally, future outlooks were presented to contribute to the innovative opportunities and applicability of highly promising technologies and manipulations of bioactive compounds from a range of perspectives.  相似文献   

17.
Herbal drugs are a useful source of different bioactive compounds. Asteraceae species, as the most widespread vascular plants, can be used both as food and as medicine due to the great diversity of recorded chemical components – different phenolic compounds, terpenes, carotenoids, vitamins, alkaloids, etc. The Balkan Peninsula is characterized by great diversity of plants from Asteraceae family, including presence of rare and endemic species. In this review, results of the survey of chemical composition and biological activity, mainly focusing on antioxidant, antimicrobial and anticancer effects of selected Balkans’ Asteraceae species were provided. In addition, information on edible plants from Asteraceae family is presented, due to growing interest for the so‐called ‘healthy diet’ and possible application of Balkans’ Asteraceae species as food of high nutritional value or as a source of functional food ingredients.  相似文献   

18.
Nowadays, chemically defined cell culture media (CCM) have replaced serum- and hydrolysate-based media that rely on complex ingredients, such as yeast extracts or peptones. Benefits include a significantly lower lot-to-lot variability, more efficient manufacturing by reduction to essential components, and the ability to exclude components that may negatively influence growth, viability, or productivity. Even though current chemically defined CCMs provide an excellent basis for various mammalian biotechnological processes, vitamin instabilities are known to be a key factor contributing to the variabilities still present in liquid CCM as well as to short storage times. In this review, the chemical degradation pathways and products for the most relevant vitamins for CCM will be discussed, with a focus on the effects of light, oxygen, heat, and other CCM compounds. Different approaches to stabilize vitamins in solution, such as replacement with analogs, encapsulation, or the addition of stabilizing compounds will also be reviewed. While these vitamins and vitamin stabilization approaches are presented here as particular for CCM, the application of these concepts can also be considered relevant for pharmaceutical, medical, and food supplement purposes. More precise knowledge regarding vitamin instabilities will contribute to stabilize future formulations and thus decrease residual lot-to-lot variability.  相似文献   

19.
Tyrosinase (TYR) inhibitors are in great demand in the food, cosmetic and medical industrials due to their important roles. Therefore, the discovery of high-quality TYR inhibitors is always pursued. Natural products as one of the most important sources of bioactive compounds discovery have been increasingly used for TYR inhibitors screening. However, due to their complex compositions, it is still a great challenge to rapid screening and identification of biologically active components from them. In recent years, with the help of separation technologies and the affinity and intrinsic activity of target enzymes, two advanced approaches including affinity screening and inhibition profiling showed great promises for a successful screening of bioactive compounds from natural sources. This review summarises the recent progress of separation-based methods for TYR inhibitors screening, with an emphasis on the principle, application, advantage, and drawback of each method along with perspectives in the future development of these screening techniques and screened hit compounds.  相似文献   

20.
Legume seeds are employed as a protein source for animal and human nutrition not only for their nutritional value (high in protein, lipids and dietary fibre), but also their adaptability to marginal soils and climates. Human consumption of legumes has been increased in recent years, being regarded as beneficial food ingredients. Legume seeds contain a great number of compounds which qualify as bioactive compounds with significant potentials benefits to human health. These compounds vary considerably in their biochemistry and they can be proteins, glycosides, tannins, saponins, alkaloids, etc. Hence, methods for their extraction, determination and quantification are specific of each compound. They do not appear equally distributed in all legumes, and their physiological effects are diverse. Some of these compounds are important in plant defence mechanisms against predators or environmental conditions. Others are reserve compounds, accumulated in seeds as energy stores in readiness for germination. Processing generally improves the nutrient profile of legume seed by increasing in vitro digestibility of proteins and carbohydrates and at the same time there are reductions in some antinutritional compounds. Most antinutritional factors are heat-labile, such as protease inhibitors and lectins, so thermal treatment would remove any potential negative effects from consumption. On the other hand tannins, saponins and phytic acid are heat stable but can be reduced by dehulling, soaking, germination and/or fermentation. New directions in bioactive compounds research in the last decade have led to major developments in our understanding of their role in nutrition. The scientific interest in these compounds is now also turning to studies of their possible useful and beneficial applications as gut, metabolic and hormonal regulators and as probiotic/prebiotic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号