首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Engineering biological systems to test new pathway variants containing different enzyme homologs is laborious and time-consuming. To tackle this challenge, a strategy was developed for rapidly prototyping enzyme homologs by combining cell-free protein synthesis (CFPS) with split green fluorescent protein (GFP). This strategy featured two main advantages: (1) dozens of enzyme homologs were parallelly produced by CFPS within hours, and (2) the expression level and activity of each homolog was determined simultaneously by using the split GFP assay. As a model, this strategy was applied to optimize a 3-step pathway for nicotinamide mononucleotide (NMN) synthesis. Ten enzyme homologs from different organisms were selected for each step. Here, the most productive homolog of each step was identified within 24 h rather than weeks or months. Finally, the titer of NMN was increased to 1213 mg/L by improving physiochemical conditions, tuning enzyme ratios and cofactor concentrations, and decreasing the feedback inhibition, which was a more than 12-fold improvement over the initial setup. This strategy would provide a promising way to accelerate design-build-test cycles for metabolic engineering to improve the production of desired products.  相似文献   

2.
Cell-free protein synthesis (CFPS) systems are an attractive method to complement the usual cell-based synthesis of proteins, especially for screening approaches. The literature describes a wide variety of CFPS systems, but their performance is difficult to compare since the reaction components are often used at different concentrations. Therefore, we have developed a calculation tool based on amino acid balancing to evaluate the performance of CFPS by determining the fractional yield as the ratio between theoretically achievable and experimentally achieved protein molar concentration. This tool was applied to a series of experiments from our lab and to various systems described in the literature to identify systems that synthesize proteins very efficiently and those that still have potential for higher yields. The well-established Escherichia coli system showed a high efficiency in the utilization of amino acids, but interestingly, less considered systems, such as those based on Vibrio natriegens or Leishmania tarentolae, also showed exceptional fractional yields of over 70% and 90%, respectively, implying very efficient conversions of amino acids. The methods and tools described here can quickly identify when a system has reached its maximum or has limitations. We believe that this approach will facilitate the evaluation and optimization of existing CFPS systems and provides the basis for the systematic development of new CFPS systems.  相似文献   

3.
Protein folding is usually slowed-down at low temperatures, and thus low-temperature expression is an effective strategy to improve the soluble yield of aggregation-prone proteins. In this study, we investigated the effects of a variety of cold shock proteins and domains (Csps) on an Escherichia coli cell extract-based cell-free protein synthesis system (CF). Most of the 12 Csps that were successfully prepared dramatically improved the protein yields, by factors of more than 5 at 16°C and 2 at 23°C, to levels comparable to those obtained at 30°C. Their stimulatory effects were complementary to each other, while CspD and CspH were inhibitory. The Csps’ effects correlated well with their Pfam CSD family scores (PF00313.22). All of the investigated Csps, except CspH, similarly possessed RNA binding and chaperon activities and increased the messenger RNA amount irrespective of their effect, suggesting that the proper balance between these activities was required for the enhancement. Unexpectedly, the 5′-untranslated region of cspA was less effective as the leader sequence. Our results demonstrated that the use of the Csps presented in this study will provide a simple and highly effective strategy for the CF, to improve the soluble yields of aggregation-prone proteins.  相似文献   

4.
Cell-free protein synthesis (CFPS) has recently undergone a resurgence partly due to the proliferation of synthetic biology. The variety of hosts used for cell-free extract production has increased, which harnesses the diversity of cellular biosynthetic, protein folding, and posttranslational modification capabilities available. Here we describe a CFPS platform derived from Pichia pastoris, a popular recombinant protein expression host both in academia and the biopharmaceutical industry. A novel ribosome biosensor was developed to optimize the cell extract harvest time. Using this biosensor, we identified a potential bottleneck in ribosome content. Therefore, we undertook strain engineering to overexpress global regulators of ribosome biogenesis to increase in vitro protein production. CFPS extracts from the strain overexpressing FHL1 had a three-fold increase in recombinant protein yield compared with those from the wild-type X33 strain. Furthermore, our novel CFPS platform can produce complex therapeutic proteins, as exemplified by the production of human serum albumin to a final yield of 48.1 μg ml −1. Therefore, this study not only adds to the growing number of CFPS systems from diverse organisms but also provides a blueprint for rapidly engineering new strains with increased productivity in vitro that could be applied to other organisms.  相似文献   

5.
High-throughput protein production systems have become an important issue, because protein production is one of the bottleneck steps in large-scale structural and functional analyses of proteins. We have developed a dialysis reactor and a fully automated system for protein production using the dialysis cell-free synthesis method, which we previously established to produce protein samples on a milligram scale in a high-throughput manner. The dialysis reactor was designed to be suitable for an automated system and has six dialysis cups attached to a flat dialysis membrane. The automated system is based on a Tecan Freedom EVO 200 workstation in a three-arm configuration, and is equipped with shaking incubators, a vacuum module, a robotic centrifuge, a plate heat sealer, and a custom-made tilting carrier for collection of reaction solutions from the flat-bottom cups with dialysis membranes. The consecutive process, from the dialysis cell-free protein synthesis to the partial purification by immobilized metal affinity chromatography on a 96-well filtration plate, was performed within ca. 14 h, including 8 h of cell-free protein synthesis. The proteins were eluted stepwise in a high concentration using EDTA by centrifugation, while the resin in the filtration plate was washed on the vacuum manifold. The system was validated to be able to simultaneously and automatically produce up to 96 proteins in yields of several milligrams with high well-to-well reliability, sufficient for structural and functional analyses of proteins. The protein samples produced by the automated system have been utilized for NMR screening to judge the protein foldedness and for structure determinations using heteronuclear multi-dimensional NMR spectroscopy. The automated high-throughput protein production system represents an important breakthrough in the structural and functional studies of proteins and has already contributed a massive amount of results in the structural genomics project at the RIKEN Structural Genomics/Proteomics Initiative (RSGI).  相似文献   

6.
无细胞蛋白合成体系实现胰岛素原可溶性表达   总被引:1,自引:0,他引:1  
胰岛素原(Proinsulin,Pins)是胰岛素的合成前体。在大肠杆菌表达系统中,其一般以包涵体的形式存在,需要经过变性复性等后续加工过程才能得到有活性的胰岛素。而无细胞蛋白合成体系(Cell-free protein synthesis,CFPS)作为一种新型体外蛋白合成手段,突破了细胞的生理限制,已成功应用于多种重组蛋白药物的生产。为了探索胰岛素合成的新方法以满足其在新型给药途径研发中的需求,本研究运用CFPS体系进行胰岛素原的可溶性表达。通过将胰岛素原与荧光蛋白进行融合来增加其可溶性,成功在CFPS体系中表达了胰岛素原融合蛋白。最后使用Western blotting对融合红色荧光蛋白的胰岛素原(Pins-mCherry)进行鉴定,利用酶标仪对融合绿色荧光蛋白的胰岛素原(Pins-eGFP)在上清中的表达进行定量分析,结果表明Pins-eGFP部分可溶,其表达量为(12.28±3.45)μg/m L。本研究首次实现了融合胰岛素原在CFPS系统中的可溶性表达,其融合荧光蛋白的策略显著提升了胰岛素原的可溶性,该结果为探究胰岛素合成新方法及开发基于CFPS系统的新型胰岛素给药途径奠定了基础。  相似文献   

7.
Cell-free protein synthesis (CFPS) is an established method for rapid recombinant protein production. Advantages like short synthesis times and an open reaction environment make CFPS a desirable platform for new and difficult-to-express products. Most recently, interest has grown in using the technology to make larger amounts of material. This has been driven through a variety of reasons from making site specific antibody drug conjugates, to emergency response, to the safe manufacture of toxic biological products. We therefore need robust methods to determine the appropriate reaction conditions for product expression in CFPS. Here we propose a process development strategy for Escherichia coli lysate-based CFPS reactions that can be completed in as little as 48 hr. We observed the most dramatic increases in titer were due to the E. coli strain for the cell extract. Therefore, we recommend identifying a high-producing cell extract for the product of interest as a first step. Next, we manipulated the plasmid concentration, amount of extract, temperature, concentrated reaction mix pH levels, and length of reaction. The influence of these process parameters on titer was evaluated through multivariate data analysis. The process parameters with the highest impact on titer were subsequently included in a design of experiments to determine the conditions that increased titer the most in the design space. This proposed process development strategy resulted in superfolder green fluorescent protein titers of 0.686 g/L, a 38% improvement on the standard operating conditions, and hepatitis B core antigen titers of 0.386 g/L, a 190% improvement.  相似文献   

8.
Enhancing multiple disulfide bonded protein folding in a cell-free system   总被引:6,自引:0,他引:6  
A recombinant plasminogen activator (PA) protein with nine disulfide bonds was expressed in our cell-free protein synthesis system. Due to the unstable and reducing environment in the initial E. coli-based cell-free system, disulfide bonds could not be formed efficiently. By treating the cell extract with iodoacetamide and utilizing a mixture of oxidized and reduced glutathione, a stabilized redox potential was optimized. Addition of DsbC, replacing polyethylene glycol with spermidine and putrescine to create a more natural environment, adding Skp, an E. coli periplasmic chaperone, and expressing PA at 30 degrees C increased the solubility of the protein product as well as the yield of active PA. Taken together, the modifications enabled the production of more than 60 microg/mL of bioactive PA in a simple 3-h batch reaction.  相似文献   

9.
Multi-wavelength anomalous diffraction phasing is especially useful for high-throughput structure determinations. Selenomethionine substituted proteins are commonly used for this purpose. However, the cytotoxicity of selenomethionine drastically reduces the efficiency of its incorporation in in vivo expression systems. In the present study, an improved E. coli cell-free protein synthesis system was used to incorporate selenomethionine into a protein, so that highly efficient incorporation could be achieved. A milligram quantity of selenomethionine-containing Ras was obtained using the cell-free system with dialysis. The mass spectrometry analysis showed that more than 95% of the methionine residues were substituted with selenomethionine. The crystal of this protein grew under the same conditions and had the same unit cell constants as those of the native Ras protein. The three-dimensional structure of this protein, determined by multi-wavelength anomalous diffraction phasing, was almost the same as that of the Ras protein prepared by in vivo expression. Therefore, the cell-free synthesis system could become a powerful protein expression method for high-throughput structure determinations by X-ray crystallography.  相似文献   

10.
11.
Caspase-3 (CASP3) cleaves many proteins including protein kinases (PKs). Understanding the relationship(s) between CASP3 and its PK substrates is necessary to delineate the apoptosis signaling cascades that are controlled by CASP3 activity. We report herein the characterization of a CASP3-substrate kinome using a simple cell-free system to synthesize a library that contained 304 PKs tagged at their N- and C-termini (NCtagged PKs) and a luminescence assay to report CASP3 cleavage events. Forty-three PKs, including 30 newly identified PKs, were found to be CASP3 substrates, and 28 cleavage sites in 23 PKs were determined. Interestingly, 16 out of the 23 PKs have cleavage sites within 60 residues of their N- or C-termini. Furthermore, 29 of the PKs were cleaved in apoptotic cells, including five that were cleaved near their termini in vitro. In total, approximately 14% of the PKs tested were CASP3 substrates, suggesting that CASP3 cleavage of PKs may be a signature event in apoptotic-signaling cascades. This proteolytic assay method would identify other protease substrates.  相似文献   

12.
Eukaryotic cell-free protein synthesis (CFPS) can accelerate expression and high-throughput analysis of complex proteins with functionally relevant post-translational modifications (PTMs). However, low yields and difficulties scaling such systems have prevented their widespread adoption in protein research and manufacturing. Here, we provide detailed demonstrations for the capabilities of a CFPS system derived from Nicotiana tabacum BY-2 cell culture (BY-2 lysate; BYL). BYL is able to express diverse, functional proteins at high yields in 48 h, complete with native disulfide bonds and N-glycosylation. An optimized version of the technology is commercialized as ALiCE® and advances in scaling of BYL production methodologies now allow scaling of eukaryotic CFPS reactions. We show linear, lossless scale-up of batch mode protein expression from 100 µL microtiter plates to 10 and 100 mL volumes in Erlenmeyer flasks, culminating in preliminary data from a litre-scale reaction in a rocking-type bioreactor. Together, scaling across a 20,000x range is achieved without impacting product yields. Production of multimeric virus-like particles from the BYL cytosolic fraction were then shown, followed by functional expression of multiple classes of complex, difficult-to-express proteins using the native microsomes of the BYL CFPS. Specifically: a dimeric enzyme; a monoclonal antibody; the SARS-CoV-2 receptor-binding domain; a human growth factor; and a G protein-coupled receptor membrane protein. Functional binding and activity are demonstrated, together with in-depth PTM characterization of purified proteins through disulfide bond and N-glycan analysis. Taken together, BYL is a promising end-to-end R&D to manufacturing platform with the potential to significantly reduce the time-to-market for high value proteins and biologics.  相似文献   

13.
无细胞蛋白表达系统是一种将目的蛋白在体外进行表达的新技术和新方法,已广泛应用到蛋白质组学、蛋白质结构和功能等领域的研究中。在无细胞蛋白表达系统中,细胞抽提物的制备是关键因素之一。通过对大肠杆菌细胞抽提物制备过程中离心速度、预孵化和透析等参数的考察,利用绿色荧光蛋白作为报告蛋白,可以得到一个细胞抽提物制备的简化方案。采用相对低的转速(12 000×g,10 min),简易空孵化即可制备出活性高的细胞抽提物,用于无细胞体系蛋白表达,其表达的绿色荧光蛋白产量为209μg/mL。与传统的大肠杆菌细胞抽提物S30相比较,新方案将使时间与成本节省62%,产量是传统方法的2.6倍,使无细胞蛋白表达技术的操作快速、高通量的优势更加明显。  相似文献   

14.
Protein phosphorylation is one of the main process in the signal transduction pathway. In recent years, there has been increasing attention to plant phosphorylation signaling and many laboratories are trying to elucidate pathways using various approaches. Although more than 1000 protein kinase (PK) genes have been annotated in the Arabidopsis genome, biochemical characterization of those PKs is limited. In this work, we demonstrate high-throughput profiling of serine/threonine autophosphorylation activity by a combination of the 759N-terminal biotinylated proteins library, produced using a wheat germ cell-free protein production system, and a commercially available luminescence system. Luminescent analysis revealed that 179 of the 759 PKs had autophosphorylation activity. From these 179 PKs, 67 of the most active PKs were analyzed to determine their function using the PlantP database. This analysis revealed that 35 (53%) of the proteins were classified as non-transmembrane protein kinases, and 15 (23%) were receptor-like protein kinases. Additionally, PKs from Group 4.4-MAP3K, Group 1.6, Group 4.5-MAPK/CDC/CK2/GSK kinases and Group 1.10-receptor like cytoplasmic kinases contained the highest percentage of autophosphorylated activity. Next, to get a better overview of the annotated 67 PKs, we used the gene ontology annotation search on the TAIR website to classify the 67 PKs into functional category. As a result, some of these PKs may be involved in phospho-signaling pathways such as signal transduction, stress response, and the regulation of cell division. Information from this study may shed light on many unknown plant PKs. This study will be a basis for understanding the function of PKs in phosphorylation network for future research.  相似文献   

15.
Bacterial small RNAs (sRNAs) that regulate gene expression have been engineered for uses in synthetic biology and metabolic engineering. Here, we designed a novel non-Hfq-dependent sRNA scaffold that uses a modifiable 20 nucleotide antisense binding region to target mRNAs selectively and influence protein expression. The system was developed for regulation of a fluorescent reporter in vivo using Escherichia coli, but the system was found to be more responsive and produced statistically significant results when applied to protein synthesis using in vitro cell-free systems (CFS). Antisense binding sequences were designed to target not only translation initiation regions but various secondary structures in the reporter mRNA. Targeting a high-energy stem loop structure and the 3′ end of mRNA yielded protein expression knock-downs that approached 70%. Notably, targeting a low-energy stem structure near a potential RNase E binding site led to a statistically significant 65% increase in protein expression (p < 0.05). These results were not obtainable in vivo, and the underlying mechanism was translated from the reporter system to achieve better than 75% increase in recombinant diaphorase expression in a CFS. It is possible the designs developed here can be applied to improve/regulate expression of other proteins in a CFS.  相似文献   

16.
In crude extract-based cell-free protein synthesis (CFPS), DNA templates are transcribed and translated into functional proteins. Although linear expression templates (LETs) are less laborious and expensive to generate, plasmid templates are often desired over polymerase chain reaction-generated LETs due to increased stability and protection against exonucleases present in the extract of the reaction. Here we demonstrate that addition of a double stranded DNA-binding protein to the CFPS reaction, termed single-chain Cro protein (scCro), achieves terminal protection of LETs. This CroP-LET (scCro-based protection of LET) method effectively increases superfolder green fluorescent protein (sfGFP) expression levels from LETs in Escherichia coli CFPS reactions by sixfold. Our yields are comparable to other strategies that provide chemical and enzymatic DNA stabilization in E. coli CFPS. Notably, we also report that the CroP-LET method successfully enhanced yields in CFPS platforms derived from nonmodel organisms. Our results show that CroP-LET increased sfGFP yields by 18-fold in the Vibrio natriegens CFPS platform. With the fast-expanding applications of CFPS platforms, this method provides a practical and generalizable solution to protect linear expression DNA templates.  相似文献   

17.
A mathematical model was developed to study O2 transport in a convection enhanced hepatic hollow fiber (HF) bioreactor, with hemoglobin‐based O2 carriers (HBOCs) present in the flowing cell culture media stream of the HF lumen. In this study, four HBOCs were evaluated: PEG‐conjugated human hemoglobin (MP4), human hemoglobin (hHb), bovine hemoglobin (BvHb) and polymerized bovine hemoglobin (PolyBvHb). In addition, two types of convective flow in the HF extra capillary space (ECS) were considered in this study. Starling flow naturally occurs when both of the ECS ports are closed. If one of the ECS ports is open, forced convective flow through the ECS will occur due to the imposed pressure difference between the lumen and ECS. This type of flow is referred to as cross‐flow in this work, since some of the fluid entering the HF lumen will pass across the HF membrane and exit via the open ECS port. In this work, we can predict the dissolved O2 concentration profile as well as the O2 transport flux in an individual HF of the bioreactor by solving the coupled momentum and mass transport equations. Our results show that supplementation of the cell culture media with HBOCs can dramatically enhance O2 transport to the ECS (containing hepatocytes) and lead to the formation of an in vivo‐like O2 spectrum for the optimal culture of hepatocytes. However, both Starling flow and cross‐flow have a very limited effect on O2 transport in the ECS. Taken together, this work represents a novel predictive tool that can be used to design or analyze HF bioreactors that expose cultured cells to defined overall concentrations and gradients of O2. Biotechnol. Bioeng. 2009;102: 1603–1612. © 2008 Wiley Periodicals, Inc.  相似文献   

18.
19.
Cell-free translation systems generally utilize high-energy phosphate compounds to regenerate the adenosine triphosphate (ATP) necessary to drive protein synthesis. This hampers the widespread use and practical implementation of this technology in a batch format due to expensive reagent costs; the accumulation of inhibitory byproducts, such as phosphate; and pH change. To address these problems, a cell-free protein synthesis system has been engineered that is capable of using pyruvate as an energy source to produce high yields of protein. The "Cytomim" system, synthesizes chloramphenicol acetyltransferase (CAT) for up to 6 h in a batch reaction to yield 700 microg/mL of protein. By more closely replicating the physiological conditions of the cytoplasm of Escherichia coli, the Cytomim system provides a stable energy supply for protein expression without phosphate accumulation, pH change, exogenous enzyme addition, or the need for expensive high-energy phosphate compounds.  相似文献   

20.
For high-throughput protein structural analyses, it is indispensable to develop a reliable protein overexpression system. Although many protein overexpression systems, such as ones utilizing E. coli cells, have been developed, a lot of proteins functioning in solution still were synthesized as insoluble forms. Recently, a novel wheat germ cell-free protein synthesis system was developed, and many of such proteins were synthesized as soluble forms. This means that the applicability of this protein synthesis method to determination of the functional structures of soluble proteins. In our previous work, we synthesized (15)N-labeled proteins with this wheat germ cell-free system, and confirmed this applicability on the basis of the strong similarity between the (1)H-(15)N HSQC spectra for native proteins and the corresponding ones for synthesized ones.In this study, we developed a convenient and reliable method for amino acid selective assignment in (1)H-(15)N HSQC spectra of proteins, using several inhibitors for transaminases and glutamine synthase in the process of protein synthesis. Amino acid selective assignment in (1)H-(15)N HSQC spectra is a powerful means to monitor the features of proteins, such as folding, intermolecular interactions and so on. This is also the first direct experimental evidence of the presence of active transaminases and glutamine synthase in wheat germ extracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号