首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transduction of the liver with single-stranded adeno-associated virus serotype 2 (AAV2) vectors is inefficient; less than 10% of hepatocytes are permissive for stable transduction, and transgene expression is characterized by a lag phase of up to 6 weeks. AAV2-based vector genomes packaged inside AAV6 or AAV8 capsids can transduce the liver with higher efficiency, but the molecular mechanisms underlying this phenomenon have not been determined. We now show that the primary barrier to transduction of the liver with vectors based on AAV2 capsids is uncoating of vector genomes in the nucleus. The majority of AAV2 genomes persist as encapsidated single-stranded molecules within the nucleus for as long as 6 weeks after vector administration. Double-stranded vector genomes packaged inside AAV2 capsids are at least 50-fold more active than single-stranded counterparts, but these vectors also exhibit a lag phase before maximal gene expression. Vector genomes packaged inside AAV6 or AAV8 capsids do not persist as encapsidated molecules and are more biologically active than vector genomes packaged inside AAV2 capsids. Our data suggest that the rate of uncoating of vector genomes determines the ability of complementary plus and minus single-stranded genomes to anneal together and convert to stable, biologically active double-stranded molecular forms.  相似文献   

2.
Activation of T cells to the capsid of adeno-associated virus (AAV) serotype 2 vectors has been implicated in liver toxicity in a recent human gene therapy trial of hemophilia B. To further investigate this kind of toxicity, we evaluated T-cell responses to AAV capsids after intramuscular injection of vectors into mice and nonhuman primates. High levels of T cells specific to capsids of vectors based on AAV2 and a phylogenetically related AAV variant were detected. Vectors from other AAV clades such as AAV8 (ref. 3), however, did not lead to activation of capsid-specific T cells. Through the generation of AAV2-AAV8 hybrids and the creation of site-directed mutations, we mapped the domain that directs the activation of T cells to the RXXR motif on VP3, which was previously shown to confer binding of the virion to heparan sulfate proteoglycan (HSPG). Evaluation of natural and engineered AAV variants showed direct correlations between heparin binding, uptake into human dendritic cells (DCs) and activation of capsid-specific T cells. The role of heparin binding in the activation of CD8(+) T cells may be useful in modulating the immunogenicity of antigens and improving the safety profile of existing AAV vectors for gene therapy.  相似文献   

3.
Vectors derived from adeno-associated virus serotype 2 (AAV-2) represent a most promising tool for human gene transfer because these vectors are neither pathogenic nor toxic to the target cell, and allow long-term gene expression in a large variety of tissues. However, they are rather inefficient at infecting a number of clinically relevant cell types, and transduction by these vectors is likely hampered by neutralizing antibodies that are highly prevalent in the human population. Therefore, an increasing number of researchers are currently turning their attention to the five other serotypes of AAV, to try and develop these as novel vectors for human gene transfer, hoping to overcome the problems associated with AAV-2 vectors. Here I describe and discuss the methodology to produce these alternative AAV vectors in tissue culture. In detail, two strategies are compared that rely on transfection of cells in culture with either two or three plasmids, containing the AAV vector genome and encoding AAV and adenoviral helper functions. Either of these protocols can be used to package a recombinant AAV genome into capsids of its own serotype (generation of "real" serotypes) or to "cross-package" this vector DNA into capsids derived from another AAV serotype ("pseudotyping"). As these approaches are still in their early stages, the existing limitations of current technology are discussed, and possible further improvements proposed.  相似文献   

4.
The production of viral vectors or virus-like particles for gene therapy or vaccinations using the baculovirus expression system is gaining in popularity. Recently, reports of a viral vector based on adeno-associated virus (AAV) produced in insect cells using the baculovirus expression vector system have been published. This system requires the triple infection of cells with baculovirus vectors containing the AAV gene for replication proteins (BacRep), the AAV gene for structural proteins (BacCap), and the AAV vector genome (BacITR). A statistical approach was used to investigate the multiplicities of infection of the three baculoviruses and the results were extended to the production of AAVs containing various transgenes. Highest AAV yields were obtained when BacRep and BacCap, the baculovirus vectors containing genes that code for proteins necessary for the formation of the AAV vector, were added in equal amounts at high multiplicities of infection. These combinations also resulted in the closest ratios of infectious to total AAV particles produced. Overexpression of the AAV structural proteins led to the production of empty AAV capsids, which is believed to overload the cellular machinery, preventing proper encapsidation of the AAV vector transgene, and decreased the viability of the insect cells. Delaying the input of BacCap, to reduce the amount of capsids produced, resulted in lower infectious AAV titers then when all three baculoviruses were put into the system at the same time. The amount of BacITR added to the system can be less than the other two without loss of AAV yield.  相似文献   

5.
Efficiency and specificity of viral vectors are vital issues in gene therapy. Insertion of peptide ligands into the adeno-associated viral (AAV) capsid at receptor binding sites can re-target AAV2-derived vectors to alternative cell types. Also, the use of serotypes AAV8 and -9 is more efficient than AAV2 for gene transfer to certain tissues in vivo. Consequently, re-targeting of these serotypes by ligand insertion could be a promising approach but has not been explored so far. Here, we generated AAV8 and -9 vectors displaying peptides in the threefold spike capsid domain. These peptides had been selected from peptide libraries displayed on capsids of AAV serotype 2 to optimize systemic gene delivery to murine lung tissue and to breast cancer tissue in PymT transgenic mice (PymT). Such peptide insertions at position 590 of the AAV8 capsid and position 589 of the AAV9 capsid changed the transduction properties of both serotypes. However, both peptides inserted in AAV8 did not result in the same changes of tissue tropism as they did in AAV2. While the AAV2 peptides selected on murine lung tissue did not alter tropism of serotypes 8 and -9, insertion of the AAV2-derived peptide selected on breast cancer tissue augmented tumor gene delivery in both serotypes. Further, this peptide mediated a strong but unspecific in vivo gene transfer for AAV8 and abrogated transduction of various control tissues for AAV9. Our findings indicate that peptide insertion into defined sites of AAV8 and -9 capsids can change and improve their efficiency and specificity compared to their wild type variants and to AAV2, making these insertion sites attractive for the generation of novel targeted vectors in these serotypes.  相似文献   

6.
Adeno associated vectors (AAV) have shown considerable promise to treat various genetic disorders in both preclinical and clinical settings mainly because of its safety profile. However, efficient use of AAV to deliver genes in immune-competent sites like muscles and liver requires very high doses which are associated with concomitant cellular immune response against the viral capsids leading to destruction of the transduced cells. Coupled with that, there are enough evidences that at high doses, AAV particles are subjected to increased cellular phosphorylation/uniquitination leading to proteasome mediated degradation and loss of the viral particles. The presence of preexisting immunity against AAV further adds on to the problem which is acting as a major roadblock to efficiently use it as a gene therapy vector in the clinics. To overcome this, rational bioengineering of AAV capsid becomes a prime tool by which specific amino acid residue(s) can be suitably modified/replaced by compatible residue(s) to create vectors having lower host immune response and higher intracellular trafficking rate. This article reviews the various aspects of rationally designing AAV capsids like by site-directed mutagenesis, directed evolution and combinatorial libraries which can create vectors having not only immune evasive property but also enhanced gene expression and transduction capability. One or more combinations of these strategies have strong potential to create novel vectors which will have suitable clinical efficiency even at a low dose.  相似文献   

7.
Random peptide ligands displayed on viral capsids are emerging tools for selection of targeted gene transfer vectors even without prior knowledge of the potential target cell receptor. We have previously introduced adeno-associated viral (AAV)-displayed peptide libraries that ensure encoding of displayed peptides by the packaged AAV genome. A major limitation of these libraries is their contamination with wild-type (wt) AAV. Here we describe a novel and improved library production system that reliably avoids generation of wt AAV by use of a synthetic cap gene. Selection of targeted AAV vectors from wt-containing and the novel wt-free libraries on cell types with different permissivity for wt AAV2 replication suggested the superiority of the wt-free library. However, from both libraries highly specific peptide sequence motifs were selected which improved transduction of cells with moderate or low permissivity for AAV2 replication. Strong reduction of HeLa cell transduction compared to wt AAV2 and only low level transduction of non-target cells by some selected clones showed that not only the efficiency but also the specificity of gene transfer was improved. In conclusion, our study validates and improves the unique potential of virus display libraries for the development of targeted gene transfer vectors.  相似文献   

8.
《Cytotherapy》2023,25(3):254-260
Adeno-associated virus (AAV) is one of the most exciting and most versatile templates for engineering of gene-delivery vectors for use in human gene therapy, owing to the existence of numerous naturally occurring capsid variants and their amenability to directed molecular evolution. As a result, the field has witnessed an explosion of novel “designer” AAV capsids and ensuing vectors over the last two decades, which have been isolated from comprehensive capsid libraries generated through technologies such as DNA shuffling or peptide display, and stratified under stringent positive and/or negative selection pressures. Here, we briefly highlight a panel of recent, innovative and transformative methodologies that we consider to have exceptional potential to advance directed AAV capsid evolution and to thereby accelerate AAV vector revolution. These avenues comprise original technologies for (i) barcoding and high-throughput screening of individual AAV variants or entire capsid libraries, (ii) selection of transduction-competent AAV vectors on the DNA level, (iii) enrichment of expression-competent AAV variants on the RNA level, as well as (iv) high-resolution stratification of focused AAV capsid libraries on the single-cell level. Together with other emerging AAV engineering stratagems, such as rational design or machine learning, these pioneering techniques promise to provide an urgently needed booster for AAV (r)evolution.  相似文献   

9.
ObjectivesGene therapy based on recombinant adeno‐associated viral (rAAV) vectors has been proved to be clinically effective for genetic diseases. However, there are still some limitations, including possible safety concerns for high dose delivery and a decreasing number of target patients caused by the high prevalence of pre‐existing neutralizing antibodies, hindering its application. Herein, we explored whether there was an engineering strategy that can obtain mutants with enhanced transduction efficiency coupled with reduced immunogenicity.MethodsWe described a new strategy for AAV capsids engineering by combining alterations of N‐linked glycosylation and the mutation of PLA2‐like motif. With this combined strategy, we generated novel variants derived from AAV8 and AAVS3.ResultsThe variants mediated higher transduction efficiency in human liver carcinoma cell lines and human primary hepatocytes as well as other human tissue cell lines. Importantly, all the variants screened out showed lower sensitivity to neutralizing antibody in vitro and in vivo. Moreover, the in vivo antibody profiles of variants were different from their parental AAV capsids.ConclusionsOur work proposed a new combined engineering strategy and engineered two liver‐tropic AAVs. We also obtained several AAV variants with a higher transduction efficiency and lower sensitivity of neutralizing antibodies. By expanding the gene delivery toolbox, these variants may further facilitate the success of AAV gene therapy.

Transduction efficiency and immune responses hinder the application of recombinant adeno‐associated viral (rAAV) vectors in gene therapy. Here, Han et al. describe a new combined strategy for AAV capsid engineering and obtain several AAV variants with higher liver transduction efficiency and less immune activation.  相似文献   

10.
Adeno-associated viral (AAV) vectors represent some of the most potent and promising vehicles for therapeutic human gene transfer due to a unique combination of beneficial properties1. These include the apathogenicity of the underlying wildtype viruses and the highly advanced methodologies for production of high-titer, high-purity and clinical-grade recombinant vectors2. A further particular advantage of the AAV system over other viruses is the availability of a wealth of naturally occurring serotypes which differ in essential properties yet can all be easily engineered as vectors using a common protocol1,2. Moreover, a number of groups including our own have recently devised strategies to use these natural viruses as templates for the creation of synthetic vectors which either combine the assets of multiple input serotypes, or which enhance the properties of a single isolate. The respective technologies to achieve these goals are either DNA family shuffling3, i.e. fragmentation of various AAV capsid genes followed by their re-assembly based on partial homologies (typically >80% for most AAV serotypes), or peptide display4,5, i.e. insertion of usually seven amino acids into an exposed loop of the viral capsid where the peptide ideally mediates re-targeting to a desired cell type. For maximum success, both methods are applied in a high-throughput fashion whereby the protocols are up-scaled to yield libraries of around one million distinct capsid variants. Each clone is then comprised of a unique combination of numerous parental viruses (DNA shuffling approach) or contains a distinctive peptide within the same viral backbone (peptide display approach). The subsequent final step is iterative selection of such a library on target cells in order to enrich for individual capsids fulfilling most or ideally all requirements of the selection process. The latter preferably combines positive pressure, such as growth on a certain cell type of interest, with negative selection, for instance elimination of all capsids reacting with anti-AAV antibodies. This combination increases chances that synthetic capsids surviving the selection match the needs of the given application in a manner that would probably not have been found in any naturally occurring AAV isolate. Here, we focus on the DNA family shuffling method as the theoretically and experimentally more challenging of the two technologies. We describe and demonstrate all essential steps for the generation and selection of shuffled AAV libraries (Fig. 1), and then discuss the pitfalls and critical aspects of the protocols that one needs to be aware of in order to succeed with molecular AAV evolution.  相似文献   

11.
Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene, making it a potential target for gene therapy. There is, however, a scarcity of vectors that can accommodate the 14-kb DMD cDNA and permanently genetically correct muscle tissue in vivo or proliferating myogenic progenitors in vitro for use in autologous transplantation. Here, a dual high-capacity adenovirus-adeno-associated virus (hcAd/AAV) vector with two full-length human dystrophin-coding sequences flanked by AAV integration-enhancing elements is presented. These vectors are generated from input linear monomeric DNA molecules consisting of the Ad origin of replication and packaging signal followed by the recently identified AAV DNA integration efficiency element (p5IEE), the transgene(s) of interest, and the AAV inverted terminal repeat (ITR). After infection of producer cells with a helper Ad vector, the Ad DNA replication machinery, in concert with the AAV ITR-dependent dimerization, leads to the assembly of vector genomes with a tail-to-tail configuration that are efficiently amplified and packaged into Ad capsids. These dual hcAd/AAV hybrid vectors were used to express the dystrophin-coding sequence in rat cardiomyocytes in vitro and to restore dystrophin synthesis in the muscle tissues of mdx mice in vivo. Introduction into human cells of chimeric genomes, which contain a structure reminiscent of AAV proviral DNA, resulted in AAV Rep-dependent targeted DNA integration into the AAVS1 locus on chromosome 19. Dual hcAd/AAV hybrid vectors may thus be particularly useful to develop safe treatment modalities for diseases such as DMD that rely on efficient transfer and stable expression of large genes.  相似文献   

12.
A chemical approach for selective masking of arginine residues on viral capsids featuring an exogenous glycation reaction has been developed. Reaction of adeno-associated viral (AAV) capsids with the α-dicarbonyl compound, methylglyoxal, resulted in formation of arginine adducts. Specifically, surface-exposed guanidinium side chains were modified into charge neutral hydroimidazolones, thereby disrupting a continuous cluster of basic amino acid residues implicated in heparan sulfate binding. Consequent loss in heparin binding ability and decrease in infectivity were observed. Strikingly, glycated AAV retained the ability to infect neurons in the mouse brain and were redirected from liver to skeletal and cardiac muscle following systemic administration in mice. Further, glycated AAV displayed altered antigenicity demonstrating the potential for evading antibody neutralization. Generation of unnatural amino acid side chains through capsid glycation might serve as an orthogonal strategy to engineer AAV vectors displaying novel tissue tropisms for gene therapy applications.  相似文献   

13.
Effective gene therapy is dependent on safe gene delivery vehicles that can achieve efficient transduction and sustained transgene expression. We are developing a hybrid viral vector system that combines in a single particle the large cloning capacity and efficient cell cycle-independent nuclear gene delivery of adenovirus (Ad) vectors with the long-term transgene expression and lack of viral genes of adeno-associated virus (AAV) vectors. The strategy being pursued relies on coupling the AAV DNA replication mechanism to the Ad encapsidation process through packaging of AAV-dependent replicative intermediates provided with Ad packaging elements into Ad capsids. The generation of these high-capacity AAV/Ad hybrid vectors takes place in Ad early region 1 (E1)-expressing cells and requires an Ad vector with E1 deleted to complement in trans both AAV helper functions and Ad structural proteins. The dependence on a replicating helper Ad vector leads to the contamination of AAV/Ad hybrid vector preparations with a large excess of helper Ad particles. This renders the further propagation and ultimate use of these gene delivery vehicles very difficult. Here, we show that Cre/loxP-mediated genetic selection against the packaging of helper Ad DNA can reduce helper Ad vector contamination by 99.98% without compromising hybrid vector rescue. This allowed amplification of high-capacity AAV/Ad hybrid vectors to high titers in a single round of propagation.  相似文献   

14.
Recently, we demonstrated that inverted repeat sequences inserted into first-generation adenovirus (Ad) vector genomes mediate precise genomic rearrangements resulting in vector genomes devoid of all viral genes that are efficiently packaged into functional Ad capsids. As a specific application of this finding, we generated adenovirus-adeno-associated virus (AAV) hybrid vectors, first-generation Ad vectors containing AAV inverted terminal repeat sequences (ITRs) flanking a reporter gene cassette inserted into the E1 region. We hypothesized that the AAV ITRs present within the hybrid vector genome could mediate the formation of rearranged vector genomes (DeltaAd.AAV) and stimulate transgene integration. We demonstrate here that DeltaAd.AAV vectors are efficiently generated as by-products of first-generation adenovirus-AAV vector amplification. DeltaAd.AAV genomes contain only the transgene flanked by AAV ITRs, Ad packaging signals, and Ad ITRs. DeltaAd.AAV vectors can be produced at a high titer and purity. In vitro transduction properties of these deleted hybrid vectors were evaluated in direct comparison with first-generation Ad and recombinant AAV vectors (rAAVs). The DeltaAd.AAV hybrid vector stably transduced cultured cells with efficiencies comparable to rAAV. Since cells transduced with DeltaAd.AAV did not express cytotoxic viral proteins, hybrid viruses could be applied at very high multiplicities of infection to increase transduction rates. Southern analysis and pulsed-field gel electrophoresis suggested that DeltaAd.AAV integrated randomly as head-to-tail tandems into the host cell genome. The presence of two intact AAV ITRs was crucial for the production of hybrid vectors and for transgene integration. DeltaAd.AAV vectors, which are straightforward in their production, represent a promising tool for stable gene transfer in vitro and in vivo.  相似文献   

15.
Virus families have evolved different strategies for genome uncoating, which are also followed by recombinant vectors. Vectors derived from adeno-associated viruses (AAV) are considered as leading delivery tools for in vivo gene transfer, and in particular gene therapy. Using a combination of atomic force microscopy (AFM), biochemical experiments, and physical modeling, we investigated here the physical properties and stability of AAV vector particles. We first compared the morphological properties of AAV vectors derived from two different serotypes (AAV8 and AAV9). Furthermore, we triggered ssDNA uncoating by incubating vector particles to increasing controlled temperatures. Our analyses, performed at the single-particle level, indicate that genome release can occur in vitro via two alternative pathways: either the capsid remains intact and ejects linearly the ssDNA molecule, or the capsid is ruptured, leaving ssDNA in a compact entangled conformation. The analysis of the length distributions of ejected genomes further revealed a two-step ejection behavior. We propose a kinetic model aimed at quantitatively describing the evolution of capsids and genomes along the different pathways, as a function of time and temperature. This model allows quantifying the relative stability of AAV8 and AAV9 particles.  相似文献   

16.
Adeno-associated viruses are members of the genus dependoviruses of the parvoviridae family. AAV vectors are considered promising vectors for gene therapy and genetic vaccination as they can be easily produced, are highly stable and non-pathogenic. Nevertheless, transduction of cells in vitro and in vivo by AAV in the absence of a helper virus is comparatively inefficient requiring high multiplicity of infection. Several bottlenecks for AAV transduction have previously been described, including release from endosomes, nuclear transport and conversion of the single stranded DNA into a double stranded molecule. We hypothesized that the bottlenecks in AAV transduction are, in part, due to the presence of host cell restriction factors acting directly or indirectly on the AAV-mediated gene transduction. In order to identify such factors we performed a whole genome siRNA screen which identified a number of putative genes interfering with AAV gene transduction. A number of factors, yielding the highest scores, were identified as members of the SUMOylation pathway. We identified Ubc9, the E2 conjugating enzyme as well as Sae1 and Sae2, enzymes responsible for activating E1, as factors involved in restricting AAV. The restriction effect, mediated by these factors, was validated and reproduced independently. Our data indicate that SUMOylation targets entry of AAV capsids and not downstream processes of uncoating, including DNA single strand conversion or DNA damage signaling. We suggest that transiently targeting SUMOylation will enhance application of AAV in vitro and in vivo.  相似文献   

17.
18.
Gene therapy vectors based on adeno-associated viruses (AAVs) show promise for the treatment of retinal degenerative diseases. In prior work, subretinal injections of AAV2, AAV5, and AAV2 pseudotyped with AAV5 capsids (AAV2/5) showed variable retinal pigmented epithelium (RPE) and photoreceptor cell transduction, while AAV2/1 predominantly transduced the RPE. To more thoroughly compare the efficiencies of gene transfer of AAV2, AAV3, AAV5, and AAV6, we quantified, using stereological methods, the kinetics and efficiency of AAV transduction to mouse photoreceptor cells. We observed persistent photoreceptor and RPE transduction by AAV5 and AAV2 up to 31 weeks and found that AAV5 transduced a greater volume than AAV2. AAV5 containing full-length or half-length genomes and AAV2/5 transduced comparable numbers of photoreceptor cells with similar rates of onset of expression. Compared to AAV2, AAV5 transduced significantly greater numbers of photoreceptor cells at 5 and 15 weeks after surgery (greater than 1,000 times and up to 400 times more, respectively). Also, there were 30 times more genome copies in eyes injected with AAV2/5 than in eyes injected with AAV2. Comparing AAVs with half-length genomes, AAV5 transduced only four times more photoreceptor cells than AAV2 at 5 weeks and nearly equivalent numbers at 15 weeks. The enhancement of transduction was seen at the DNA level, with 50 times more viral genome copies in retinas injected with AAV having short genomes than in retinas injected with AAV containing full-length ones. Subretinal injection of AAV2/6 showed only RPE transduction at 5 and 15 weeks, while AAV2/3 did not transduce retinal cells. We conclude that varying genome length and AAV capsids may allow for improved expression and/or gene transfer to specific cell types in the retina.  相似文献   

19.
Adeno-associated viruses (AAVs) are being developed as gene therapy vectors, and their efficacy could be improved by a detailed understanding of their viral capsid structures. AAV serotype 8 (AAV8) shows a significantly greater liver transduction efficiency than those of other serotypes, which has resulted in efforts to develop this virus as a gene therapy vector for hemophilia A and familial hypercholesterolemia. Pseudotyping studies show that the differential tissue tropism and transduction efficiencies exhibited by the AAVs result from differences in their capsid viral protein (VP) amino acids. Towards identifying the structural features underpinning these disparities, we report the crystal structure of the AAV8 viral capsid determined to 2.6-A resolution. The overall topology of its common overlapping VP is similar to that previously reported for the crystal structures of AAV2 and AAV4, with an eight-stranded beta-barrel and long loops between the beta-strands. The most significant structural differences between AAV8 and AAV2 (the best-characterized serotype) are located on the capsid surface at protrusions surrounding the two-, three-, and fivefold axes at residues reported to control transduction efficiency and antibody recognition for AAV2. In addition, a comparison of the AAV8 and AAV2 capsid surface amino acids showed a reduced distribution of basic charge for AAV8 at the mapped AAV2 heparin sulfate receptor binding region, consistent with an observed non-heparin-binding phenotype for AAV8. Thus, this AAV8 structure provides an additional platform for mutagenesis efforts to characterize AAV capsid regions responsible for differential cellular tropism, transduction, and antigenicity for these promising gene therapy vectors.  相似文献   

20.
Although adeno-associated virus type 2 (AAV) has gained attention as a potentially useful alternative to the more commonly used retrovirus- and adenovirus-based vectors for human gene therapy, efficient gene transfer and transgene expression by AAV vectors require that the following two obstacles be overcome. First, the target cell must express the receptor and the coreceptor for AAV infection, and second, the cell must allow for viral second-strand DNA synthesis. We now describe a third obstacle, impaired intracellular trafficking of AAV to the nucleus, which results in the lack of transgene expression in murine fibroblasts which do express the AAV receptor and the coreceptor and which are permissive for viral second-strand DNA synthesis. We document that AAV vectors bind efficiently and gain entry successfully into NIH 3T3 cells, but trafficking into the nucleus is significantly impaired in these cells. In contrast, viral trafficking to the nucleus in cells known to be efficiently transduced by AAV vectors is both rapid and efficient. The demonstration of yet another obstacle in AAV-mediated gene transfer has implications for the optimal use of these vectors in human gene therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号