首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Saikosaponin-D (SSD), an active ingredient in Bupleurum chinense, exerts anticancer effects in various cancers by inhibiting cancer proliferation and inducing apoptosis. However, whether SSD can induce other forms of cell death is unknown. The current study aims to demonstrate that SSD can induce pyroptosis in non-small-cell lung cancer. In this study, HCC827 and A549 non-small-cell lung cancer cells were treated with different concentrations of SSD for 1.5 h. HE and TUNEL staining were used to verify cell damage caused by SSD. Immunofluorescence and western blotting were performed to verify the effect of SSD on the NF-κB/NLRP3/caspase-1/gasdermin D (GSDMD) pathway. Changes in inflammatory factors were detected by ELISAs. Finally, the reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC) was introduced to verify that SSD induces pyroptosis through the ROS/NF-κB pathway. The results of the HE and TUNEL staining showed that SSD resulted in balloon-like swelling of NSCLC cells accompanied by increased DNA damage. Immunofluorescence and western blot assays confirmed that SSD treatment activated the NLRP3/caspase-1/GSDMD pathway, stimulated an increase in ROS levels and activated NF-κB in lung cancer cells. The ROS scavenger N-acetylcysteine significantly attenuated SSD-induced NF-κB/NLRP3/caspase-1/GSDMD pathway activation and inhibited the release of the inflammatory cytokines IL-1β and IL-18. In conclusion, SSD induced lung cancer cell pyroptosis by inducing ROS accumulation and activating the NF-κB/NLRP3/caspase-1/GSDMD pathway. These experiments lay the foundation for the application of SSD in the treatment of non-small-cell lung cancer and regulation of the lung cancer immune microenvironment.  相似文献   

2.
已在许多肿瘤中发现AKR1C2基因的异常表达 .为研究启东肝癌中AKR1C2基因异常表达的意义及其在肝癌发生中作用 .通过制备兔抗人AKR1C2多克隆抗体、免疫组化、蛋白质印迹、RT PCR、RNA印迹、原位杂交、cDNA表达芯片、免疫共沉淀、体内外致瘤试验等方法 ,对 68例启东肝癌标本、 8例正常肝组织、QGY 770 3启东肝癌细胞株中AKR1C2表达及作用进行分析 .并研究了AKR 1C2蛋白、mRNA表达与肝癌临床病理特征 ,侵袭性间关系 .研究表明正常及癌旁肝组织中AKR1C2蛋白为膜染色 ,偶见弱的细胞浆染色 .95 3 %肝癌显示胞浆或核染的累积型 .癌及癌旁肝组织中标记指数(LI)分别为 61 4± 2 7 8,10 2± 8 7(P <0 . 0 1) .较高的LI与HCC侵袭性密切相关 .蛋白质印迹显示癌组织中AKR1C2表达升高 .RT PCR显示 ,肝癌中AKR1C2表达指数 (EI)高于癌旁及正常组织 ,而且存在序列差异 .RNA印迹显示 91 2 %为上调表达 .原位杂交显示肝癌细胞胞浆中染色强于癌旁及正常肝 .AKR1C2过表达与肝癌转移潜能有关 .AKR1C2过表达刺激QGY770 3细胞中DNA合成与阻止细胞凋亡 .转染AKR1C2基因的QGY770 3细胞在软琼脂上集落形成能力增强 ,并能促进QGY770 3在裸鼠体内肿瘤形成能力 .cDNA表达芯片显示转染AKR1C2后导致QGY770 3细胞中一些基因表达改变 .AKR  相似文献   

3.
4.

Objectives

To determine the effect of NF-κB on cell proliferation and apoptosis, we investigate the expression of inflammation and apoptosis-related factors in the bovine mammary epithelial cell line, MAC-T.

Results

MAC-T cells were cultured in vitro and MTT and LDH assays used to determine the effects of lipopolysaccharide (LPS) on proliferation and cytotoxicity respectively. RT-PCR and western blotting were used to evaluate the effect of LPS and NF-κB inhibition [pyrrolidine dithiocarbamate (PDTC) treatment] on the expression of inflammation and apoptosis-related factors. LPS significantly inhibited MAC-T cell proliferation in a dose- and time-dependent manner. Furthermore, LPS promoted apoptosis while the NF-кB inhibitor PDTC attenuated this effect. After LPS treatment, the NF-кB signaling pathway was activated, and the expression of inflammation and apoptosis-related factors increased. When PDTC blocked NF-кB signaling, the expression of inflammation and apoptosis-related factors were decreased in MAC-T cells.

Conclusions

LPS activates the TLR4/NF-κB signaling pathway, inhibits proliferation and promotes apoptosis in MAC-T cells. NF-кB inhibition attenuates MAC-T cell apoptosis and TLR4/NF-κB signaling pathway. NF-кB inhibitor alleviating MAC-T cell apoptosis is presumably modulated by NF-кB.
  相似文献   

5.
核因子κB(NF-κB)是细胞内重要的转录因子,其介导的细胞信号转导通路在细胞凋亡中的作用是国内外研究的热点.为了筛选NF-κB通路相关新基因,建立了基于细胞水平的报告基因高通量筛选模型.利用双荧光素酶报告系统检测报告基因荧光素酶活性,通过对构建的439个人类未知功能基因的筛选,获得了一批激活NF-κB信号通路的功能基因,其中基因TMEM9B可以明显激活NF-κB通路.进一步实验显示TMEM9B激活NF-κB通路呈明显剂量依赖性,Western blot及EMSA实验证实,TMEM9B能够促进胞质内NF-κB的抑制分子IκBα的降解,并促使NF-κB由胞质向胞核转移,同时流式细胞术实验发现TMEM9B可引起293T和HeLa细胞的凋亡.总之,所建立的基于细胞水平的NF-κB通路筛选模型稳定高效,筛选并验证TMEM9B可明显激活NF-κB信号转导通路,并从而引起细胞凋亡.  相似文献   

6.
The aim of the present study was to determine the effects of ARHI (aplasia Ras homologue member I; also known as DIRAS3), a member of the Ras superfamily, on HCC (hepatocellular carcinoma) cells and to define the molecular pathways involved. Stable transfection of ARHI into the HCC cell line Hep3B that lacks expression of this gene reduced cell proliferation significantly as compared with the transfection of empty vector (P<0.01). Moreover, the re-expression of ARHI induced significant apoptosis, whereas a few vector transfectants or non-transfected cells displayed apoptosis. Mechanistically, ARHI restoration impeded the activation of both Akt (also called protein kinase B) and NF-κB (nuclear factor κB). In vivo, restoring ARHI also exerted suppressive effects on xenograft tumour growth, which was coupled with increased apoptosis. Together, these results indicate that ARHI has pro-apoptotic effects on HCC cells, which is associated with the inactivation of both Akt and NF-κB survival pathways.  相似文献   

7.
8.
Jiang  Yanfei  Nan  Hao  Shi  Na  Hao  Wenfang  Dong  Juane  Chen  Hongying 《Molecular biology reports》2021,48(3):2351-2364

Chlorogenic acid (CGA), a phenylpropanoid derived from Eucommia ulmoides Oliver, has been shown to exhibit potent cytotoxic and anti-proliferative activities against several human cancers. However, the effects of CGA on hepatocellular carcinoma (HCC) and the underlying mechanisms have not been intensively studied. In this study, the CGA treatment effects on the viability of human hepatoma cells were investigated by MTT assay. Our data showed that CGA could dose-dependently inhibit the activity of human hepatoma cells Hep-G2 and Huh-7, but did not affect the activity and growth of normal human hepatocyte QSG-7701. The genes and pathways influenced by CGA treatment were explored by RNA sequencing and bioinformatics analysis, which identified 323 differentially expressed genes (DEGs) involved in multiple pharmacological signaling pathways such as MAPK, NF-κB, apoptosis and TGF-β signaling pathways. Further analyses by real-time quantitative PCR, Western blot and flow cytometry revealed that CGA effectually suppressed the noncanonical NF-κB signaling pathway, meanwhile it activated the mitochondrial apoptosis of HCC by upregulation of the BH3-only protein Bcl-2 binding component 3 (BBC3). Our findings demonstrated the potential of CGA in suppressing human hepatoma cells and provided a new insight into the anti-cancer mechanism of CGA.

  相似文献   

9.
Our previous study found that blocking nuclear factor (NF)-κB signaling could protect human umbilical vein endothelial cells (HUVECs) from apoptosis and proliferation inhibition due to high glucose (HG). Intermittent HG makes glucose toxicity more significant. In this study, we aimed to investigate the effect of NF-κB pathway on HUVECs induced by intermittent HG (a daily alternating 5.5 or 30.5 mmol/l glucose). A recombinant adenovirus containing a RNAi cassette targeting the NF-κB/p65 gene was produced, and its silencing effect on p65 gene was detected by Western blot analysis in HUVECs cultured with intermittent HG. The subsequent effect on proliferation of HUVECs in the indicated conditions was measured by the AlamarBlue assay. The Bcl-2 expression was also detected by Western blot. The results showed that the expression of p65 protein could be inhibited efficiently by the RNAi adenovirus. Intermittent HG also induced the translocation of NF-κB in HUVECs. Inhibition of NF-κB with the RNAi adenovirus could prevent the effects. At the 6th day after HUVECs were exposed to intermittent HG, the proliferation of HUVECs with Ad-1566 was significantly higher than that of HUVECs with Ad-DEST (P < 0.01). Knockdown of NF-κB/p65 up-regulated the Bcl-2 expression of HUVECs under intermittent HG conditions (P < 0.01). These findings concluded that the NF-κB/p65-targeting RNAi adenovirus is an important tool, which can efficiently inhibit the expression of p65 gene in HUVECs. Intermittent HG reduces HUVECs proliferation with a concomitant increase in apoptosis. Knockdown of NF-κB/p65 partly protected HUVECs from proliferation inhibition and may reduce apoptosis.  相似文献   

10.
Mutations in PKHD1 (polycystic kidney and hepatic disease gene 1) gene cause the autosomal recessive polycystic kidney disease (ARPKD). Fibrocystin/polyductin (FPC), encoded by PKHD1, is a membrane-associated receptor-like protein. Although it is widely accepted that cystogenesis is mostly due to aberrant cell proliferation and apoptosis, it is still unclear how apoptosis is regulated. The aim of this study is to analyze the relationship among apoptosis, phosphatidylinositol 3-kinase (PI3K)/Akt and nuclear factor κB (NF-κB) in FPC knockdown kidney cells. We show that PKHD1-silenced HEK293 cells demonstrate a higher PI3K/Akt activity. Selective inhibition of PI3K/Akt using LY294002 or wortmannin in these cells increases serum starvation-induced HEK293 cell apoptosis with a concomitant decrease in cell proliferation and higher caspase-3 activity. PI3K/Akt inhibition also leads to increased NF-κB activity in these cells. We conclude that the PI3K/Akt pathway is involved in apoptotic function in PKHD1-silenced cells, and PI3K/Akt inhibition correlates with upregulation of NF-κB activity. These observations provide a potential platform for determining FPC function and therapeutic investigation of ARPKD.  相似文献   

11.
Oral squamous cell carcinoma (OSCC) is a usual oral cancer. Therefore, it's essential to identify targets for its early diagnosis and therapy. This research aimed to explore the roles of human β-defensin-3 (hBD-3) and nuclear factor-kappa B (NF-κB) p65 in the pathogenesis and progression of OSCC. The connection between NF-κB p65 and the carcinogenesis of oral cancer was analyzed by immunohistochemical staining. The relative expressions of hBD-3 and NF-κB p65 in OSCC cells were evaluated by qRT-PCR and Western blot. Afterward, hBD-3 was knocked down, and NF-κB p65 was overexpressed. The cell viability and invasion were tested via CCK-8 and Transwell experiment, and the expression of hBD-3, NF-κB p65, and its downstream molecules was evaluated by Western blot. The expression of NF-κB p65 was increased with the aggravation of the oral submucosal fibrosis. HBD-3 and NF-κB p65 were high-expressed in OSCC cells. The viability and invasion abilities of OSCC cells that knocked down hBD-3 were markedly decreased, while they were restored by the overexpression of NF-κB p65. The expressions of NF-κB p65 and c-myc were diminished while IκB and p21 were raised with the knockdown of hBD-3. After overexpression of NF-κB p65, the expression of hBD-3 and IκB did not change markedly, while c-myc was increased and p21 was decreased dramatically. HBD-3 and NF-κB p65 facilitate the proliferation and invasion of OSCC cells, and hBD-3 may promote this process by governing the expression of NF-κB p65 and its downstream c-myc and p21.  相似文献   

12.
Nuclear factor-κB (NF-κB) signaling is involved in regulating a great number of normal and abnormal cellular events. However, little is known about its role in ovarian follicular development. In this study, we found NF-κB signaling is activated during the transition from secondary to antral follicles. We generated active NF-κB mice and found that antral follicular numbers were higher than wild-type ovaries. Activation of NF-κB signaling could enhance granulosa cell proliferation and regress granulosa cell apoptosis of mouse ovarian follicles. Higher follicle-stimulating hormone receptor (FSHR) and luteinizing hormone/choriogonadotropin receptor expressions were observed in active NF-κB ovaries compared to wild type. Furthermore, we confirmed that NF-κB signaling was indeed involved in the granulosa cell viability and proliferation through FSHR using COV434 cell line. This is the first experimental evidence that NF-κB signaling is implicated in the control of follicular development through FSHR and its corresponding target molecules, which might be achieved by targeting proliferation and apoptosis in follicular granulosa cells.  相似文献   

13.
Zhang M  Chen H  Huang J  Li Z  Zhu C  Zhang S 《Life sciences》2005,76(18):2115-2124
Lycium barbarum polysaccharide (LBP), extracted from Lycium barbarum that is a kind of traditional Chinese herb, is found to have anticancer activity. In this study, the effect of LBP on the proliferation rate, cell cycle distribution and apoptosis in the human hepatoma QGY7703 cell line were investigated. The effects of this compound were also tested on the concentration of calcium in cells. LBP treatment caused inhibition of QGY7703 cell growth with cycle arrest in S phase and apoptosis induction. The amount of RNA in cells and the concentration of intracellular Ca2+ were increased. Moreover, the distribution of calcium in cells was changed. Taken together, the study suggests that the induction of cell cycle arrest and the increase of intracellular calcium in apoptotic system may participate in the antiproliferative activity of LBP in QGY7703 cells.  相似文献   

14.
Liu YQ  Hu XY  Lu T  Cheng YN  Young CY  Yuan HQ  Lou HX 《PloS one》2012,7(5):e38000
Previously, we reported that retigeric acid B (RB), a natural pentacyclic triterpenic acid isolated from lichen, inhibited cell growth and induced apoptosis in androgen-independent prostate cancer (PCa) cells. However, the mechanism of action of RB remains unclear. In this study, we found that using PC3 and DU145 cells as models, RB inhibited phosphorylation levels of IκBα and p65 subunit of NF-κB in a time- and dosage-dependent manner. Detailed study revealed that RB blocked the nuclear translocation of p65 and its DNA binding activity, which correlated with suppression of NF-κB-regulated proteins including Bcl-2, Bcl-x(L), cyclin D1 and survivin. NF-κB reporter assay suggested that RB was able to inhibit both constitutive activated-NF-κB and LPS (lipopolysaccharide)-induced activation of NF-κB. Overexpression of RelA/p65 rescued RB-induced cell death, while knockdown of RelA/p65 significantly promoted RB-mediated inhibitory effect on cell proliferation, suggesting the crucial involvement of NF-κB pathway in this event. We further analyzed antitumor activity of RB in in vivo study. In C57BL/6 mice carrying RM-1 homografts, RB inhibited tumor growth and triggered apoptosis mainly through suppressing NF-κB activity in tumor tissues. Additionally, DNA microarray data revealed global changes in the gene expression associated with cell proliferation, apoptosis, invasion and metastasis in response to RB treatment. Therefore, our findings suggested that RB exerted its anti-tumor effect by targeting the NF-κB pathway in PCa cells, and this could be a general mechanism for the anti-tumor effect of RB in other types of cancers as well.  相似文献   

15.
Epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma cells in suspension undergo apoptosis to a greater extent than adherent cells in a monolayer when EGFR autophosphorylation is inhibited by EGFR tyrosine kinase inhibitors (TKIs). This suggests that cell adhesion to a culture dish may activate an anti-apoptotic signaling pathway other than the EGFR pathway. Since the microenvironment of cells cultured in a monolayer are substantially different to that of cells existing in three-dimension (3D) in vivo, we assessed whether two EGFR-mutant lung adenocarcinoma cell lines, HCC827 and H1975, were more resistant to EGFR TKI-induced apoptosis when cultured in a 3D extracellular matrix (ECM) as compared with in suspension. The ECM-adherent EGFR-mutant cells in 3D were significantly less sensitive to treatment with WZ4002, an EGFR TKI, than the suspended cells. Further, a marked degradation of IκBα, the inhibitor of nuclear factor (NF)-κB, was observed only in the 3D-cultured cells, leading to an increase in the activation of NF-κB. Moreover, the inhibition of NF-κB with pharmacological inhibitors enhanced EGFR TKI-induced apoptosis in 3D-cultured EGFR-mutant cells. These results suggest that inhibition of NF-κB signaling would render ECM-adherent EGFR-mutant lung adenocarcinoma cells in vivo more susceptible to EGFR TKI-induced cell death.  相似文献   

16.
NF—κB已被证明在肿瘤和炎症过程中起到至关重要的作用。因此,建立抑制NF-κB信号通路的药物筛选模型至关重要。利用荧光素酶报告基因技术与蛋白印迹技术分别探索TNFα处理浓度及时间对NF-κB报告基因表达和NF—κB抑制亚单位It〈Bα降解的影响,进而构建NF—κB信号通路抑制剂药物筛选模型。实验结果表明,0.01nmol/LTNFα作用24h即能刺激HEK293T细胞中NF—κB报告基因较高水平的表达,且其表达量与TNFα的剂量和处理时间呈正相关性;0.01nmol/LTNFα作用5min即能使Panc-28细胞中IκBα明显降解,20min~30min几乎降解完全,之后IκBα含量又开始增加。NF-κB阳性抑制剂藤黄酸验证表明NF-κB萤光素酶报告基因检测筛选体系和NF—κB抑制亚单位降解筛选体系两种体系稳定可行。结果证明,两种模型可以用于NF—κB信号通路抑制剂药物的筛选。  相似文献   

17.
18.
Sorafenib was the first systemic therapy approved by the Food and Drug Administration to treat advanced hepatocellular carcinoma (HCC). However, sorafenib therapy is frequently accompanied by drug resistance. We aimed to explore the mechanisms of sorafenib resistance and provide feasible solutions to increase the response to sorafenib in patients with advanced HCC. The expression profile of discoidin domain receptor 2 (DDR2) in HCC tissues and cells was detected using quantitative real-time PCR (qPCR) and western blotting assays. The effects of DDR2 on sorafenib resistance were examined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, colony formation, TdT-mediated dUTP nick end labeling, and flow cytometry assays. The effect of DDR2 on the nuclear factor kappa B (NF-κB) signaling pathway was evaluated by luciferase reporter, immunofluorescence, qPCR and flow cytometry assays. We demonstrated that DDR2 expression was dramatically upregulated in sorafenib-resistant HCC tissues relative to sensitive tissues. Downregulation of DDR2 sensitized HCC cell lines to sorafenib cytotoxicity. Further analysis showed that DDR2 could increase the nuclear location of REL proto-oncogene, a NF-κB subunit, to mediate NF-κB signaling. Blocking NF-κB signaling using the NF-κB signaling inhibitor, bardoxolone methyl, increased the response of HCC cells to sorafenib. Further analysis showed that DNA amplification of DDR2 is an important mechanism leading to DDR2 overexpression in HCC. Our results demonstrated that DDR2 is a potential therapeutic target in patients with HCC, and targeting DDR2 represents a promising approach to increase sorafenib sensitivity in patients with HCC.  相似文献   

19.
BackgroundHepatocellular carcinoma (HCC) is the most common type of liver cancer with high mortality and poor prognosis. Mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways have been implicated in promoting tumor cell proliferation and invasion of HCC cells.MethodsAs a potential inhibitor of tumor metastasis, the role of Raf kinase inhibitor protein (RKIP) in HCC development and the functional relevance with MAPK and NF-κB signaling pathways were investigated. The levels of RKIP expression were examined in human HCC tissues and correlated with tumor stages and metastatic status. Function of RKIP in cellular proliferation, migration, invasion and apoptosis was investigated in HCC cell lines by either overexpressing or knocking down RKIP expression. Mouse xenograft model was established to assess the effect of RKIP expression on tumor growth.ResultsOur results demonstrated decreased RKIP expression in HCC tissues and a strong correlation with tumor grade and distant metastasis. Manipulation of RKIP expression in HCCLM3 and HepG2 cells indicated that RKIP functioned to inhibit HCC cell motility and invasiveness, and contributed to tumor growth inhibition in vivo. Mechanistic studies showed that the function of RKIP was mediated through MAPK and NF-κB signaling pathways. However, cell type-dependent RKIP regulation on these two pathways was also suggested, indicating the complex nature of signaling network.ConclusionOur study provides a better understanding on the molecular mechanisms of HCC metastasis and sets the foundation for the development of targeted therapeutics for HCC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号