首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background: Oxidative degradation of human recombinant erythropoietin (hrEPO) may occur in manufacturing process or therapeutic applications. This unfavorable alteration may render EPO inefficient or inactive. We investigated the effect of methionine/54 oxidative changes on the amino acid sequences, glycoform distribution and biological activity of hrEPO. Methods: Mass spectrometry was applied to verify the sequence and determine the methionine oxidation level of hrEPO. Isoform distribution was studied by capillary zone electrophoresis method. In vivo normocythemic mice assay was used to assess the biological activity of three different batches (A, B, and C) of the proteins. Results: Nano-LC/ESI/MS/MS data analyses confirmed the amino acid sequences of all samples. The calculated area percent of three isoforms (2–4 of the 8 obtained isoforms) were decreased in samples of C, B, and A with 27.3, 16.7, and 6.8% of oxidation, respectively. Specific activities were estimated as 53671.54, 95826.47, and 112994.93?mg/mL for the samples of A, B, and C, respectively. Conclusion: The observed decrease in hrEPO biological activity, caused by increasing methionine oxidation levels, was rather independent of its amino acid structure and mainly associated with the higher contents of acidic isoforms.  相似文献   

2.
The oxidation of protein-bound methionines to form methionine sulfoxides has a broad range of biological ramifications, making it important to delineate factors that influence methionine oxidation rates within a given protein. This is especially important for biopharmaceuticals, where oxidation can lead to deactivation and degradation. Previously, neighboring residue effects and solvent accessibility have been shown to impact the susceptibility of methionine residues to oxidation. In this study, we provide proteome-wide evidence that oxidation rates of buried methionine residues are also strongly influenced by the thermodynamic folding stability of proteins. We surveyed the Escherichia coli proteome using several proteomic methodologies and globally measured oxidation rates of methionine residues in the presence and absence of tertiary structure, as well as the folding stabilities of methionine-containing domains. These data indicated that buried methionines have a wide range of protection factors against oxidation that correlate strongly with folding stabilities. Consistent with this, we show that in comparison to E. coli, the proteome of the thermophile Thermus thermophilus is significantly more stable and thus more resistant to methionine oxidation. To demonstrate the utility of this correlation, we used native methionine oxidation rates to survey the folding stabilities of E. coli and T. thermophilus proteomes at various temperatures and propose a model that relates the temperature dependence of the folding stabilities of these two species to their optimal growth temperatures. Overall, these results indicate that oxidation rates of buried methionines from the native state of proteins can be used as a metric of folding stability.  相似文献   

3.
Oxidation is known to affect the structure, activity, and rate of degradation of proteins, and is believed to contribute to a variety of pathological conditions. Metal-catalyzed oxidation (MCO) is a primary oxidizing system in many cell types. In this study, the oxidative effects of a MCO system (the Fenton reaction) on the structure of the tryptophan residues of alpha-crystallin were determined. Tandem mass spectrometry (MS/MS) was utilized to identify specific tryptophan and methionine oxidation products in the bovine alpha-crystallin sequence. After oxidative exposure, alpha-crystallin was digested with trypsin, and the resulting peptides were fractionated by reverse-phase HPLC. Structural analysis by mass spectrometry revealed that tryptophan 9 of alphaA- and tryptophan 60 of alphaB-crystallin were each converted into hydroxytryptophans (HTRP), N-formylkynurenine (NFK), and kynurenine (KYN). However, only HTRP and KYN formation were detected at residue 9 of alphaB-crystallin. Oxidation of methionine 1 of alphaA- and methionine 1 and 68 of alphaB-crystallin was also detected. The products NFK and KYN are of particular importance in the lens, as they themselves are photosensitizers that can generate reactive oxygen species (ROS) upon UV light absorption. The unambiguous identification of HTRP, NFK, and KYN in intact alpha-crystallin represents the first structural proof of the formation of these products in an intact protein, and provides a basis for detailed structural analysis of oxidized proteins generated in numerous pathological conditions.  相似文献   

4.
Antimicrobial peptides (AMPs) are mostly endogenous, cationic, amphipathic polypeptides, produced by many natural sources. Recently, many biological functions beyond antimicrobial activity have been attributed to AMPs, and some of these have attracted the attention of the cosmetics industry. AMPs have revealed antioxidant, self-renewal and pro-collagen effects, which are desirable in anti-aging cosmetics. Additionally, AMPs may also be customized to act on specific cellular targets. Here, we review the recent literature that highlights the many possibilities presented by AMPs, focusing on the relevance and impact that this potentially novel class of active cosmetic ingredients might have in the near future, creating new market outlooks for the cosmetic industry with these molecules as a viable alternative to conventional cosmetics.  相似文献   

5.
Froelich JM  Reid GE 《Proteomics》2008,8(7):1334-1345
The origin and control of ex vivo sample handling related oxidative modifications of methionine-, S-alkyl cysteine-, and tryptophan-containing peptides obtained from typical "in-solution" or "in-gel" proteolytic digestion strategies, have been examined by capillary HPLC and MS/MS. The origin of increased oxidation levels were found to be predominantly associated with the extensive ex vivo sample handling steps required for gel electrophoresis and/or in-gel proteolytic digestion of proteins prior to analysis by MS. Conditions for deliberately controlling the oxidation state (both oxidation and reduction) of these peptides, as well as for those containing cysteine, have been evaluated using a series of model synthetic peptides and standard tryptic protein digests. Essentially complete oxidation of methionine- and S-alkyl cysteine-containing peptides was achieved by reaction with 30% hydrogen peroxide/5% acetic acid at room temperature for 30 min. Under these conditions, cysteine was also converted to cysteic acid, while only limited oxidation of tryptophan to oxindolylalanine, and methionine and S-alkyl cysteine sulfoxides to their respective sulfones, were observed. Efficient reduction of methionine- and S-alkyl cysteine sulfoxide-containing peptides was achieved by reaction in 1 M dimethylsulfide/10 M hydrochloric acid at room temperature for 10 and 45 min, respectively. None of the reduction conditions evaluated were found to result in the reduction of oxindolylalanine, cysteic acid, or methionine sulfone.  相似文献   

6.
《MABS-AUSTIN》2013,5(5):891-900
Oxidation of methionine (Met) residues is one of several chemical degradation pathways for recombinant IgG1 antibodies. Studies using several methodologies have indicated that Met oxidation in the constant IgG1 domains affects in vitro interaction with human neonatal Fc (huFcRn) receptor, which is important for antibody half-life. Here, a completely new approach to investigating the effect of oxidative stress conditions has been applied. Quantitative ultra-performance liquid chromatography mass spectrometry (MS) peptide mapping, classical surface plasmon resonance and the recently developed FcRn column chromatography were combined with the new fast-growing approach of native MS as a near native state protein complex analysis in solution. Optimized mass spectrometric voltage and pressure conditions were applied to stabilize antibody/huFcRn receptor complexes in the gas phase for subsequent native MS experiments with oxidized IgG1 material. This approach demonstrated a linear correlation between quantitative native MS and IgG-FcRn functional analysis.

In our study, oxidation of the heavy chain Met-265 resulted in a stepwise reduction of mAb3/huFcRn receptor complex formation. Remarkably, a quantitative effect of the heavy chain Met-265 oxidation on relative binding capacity was only detected for doubly oxidized IgG1, whereas IgG1 with only one oxidized heavy chain Met-265 was not found to significantly affect IgG1 binding to huFcRn. Thus, mono-oxidized IgG1 heavy chain Met-265 most likely does not represent a critical quality attribute for pharmacokinetics.  相似文献   

7.
Hepatocellular carcinoma (HCC) is the fifth most common neoplasm with more than 500 000 new cases diagnosed yearly. Although major risk factors of HCC are currently known, the identification of biological targets leading to an early diagnosis of the disease is considered one of the priorities of clinical hepatology. In this work we have used a proteomic approach to identify markers of hepatocarcinogenesis in the serum of a knockout mice deficient in hepatic AdoMet synthesis (MAT1A(-/-)), as well as in patients with HCC. Three isoforms of apolipoprotein A-I (Apo A-I) with different pI were identified in murine serum. Isoform 1 is up-regulated in the serum of MAT1A(-/-) mice much earlier than any histological manifestation of liver disease. Further characterization of the differential isoform by electrospray MS/MS revealed specific oxidation of methionine 85 and 216 to methionine sulfoxide while the sequence of the analogous peptides on isoforms 2 and 3 showed the nonoxidized methionine residues. Enrichment of an acidic isoform of Apo A-I was also assessed in the serum of hepatitis B virus patients who developed HCC. Specific oxidation of methionine 112 to methionine sulfoxide and tryptophans 50 and 108 to formylkinurenine were identified selectively in the up-regulated isoform. Although it is not clear at present whether the occurrence of these modifications has a causal role or simply reflects secondary epiphenomena, this selectively oxidized Apo A-I isoform may be considered as a pathological hallmark that may help to the understanding of the molecular pathogenesis of HCC.  相似文献   

8.
Electron capture dissociation (ECD) represents one of the most recent and significant advancements in tandem mass spectrometry (MS/MS) for the identification and characterization of polypeptides. In comparison with the conventional fragmentation techniques, such as collisionally activated dissociation (CAD), ECD provides more extensive sequence fragments, while allowing the labile modifications to remain intact during backbone fragmentation—an important attribute for characterizing post-translational modifications. Herein, we present a brief overview of the ECD technique as well as selected applications in characterization of peptides and proteins. Case studies including characterization and localization of amino acid glycosylation, methionine oxidation, acylation, and “top–down” protein mass spectrometry using ECD will be presented. A recent technique, coined as electron transfer dissociation (ETD), will be also discussed briefly.  相似文献   

9.
The research draws on experimental and theoretical data about energetics and kinetics of mass spectrometric (MS) reactions of glycyl homopenta– ( G5 ) and glycyl homohexapeptides ( G6 ). It shows the great applicability of the methods of quantum chemistry to predict MS profile of peptides using energetics of collision induced dissociation (CID) fragment species. Mass spectrometry is among irreplaceable methods, providing unambiguous qualitative, quantitative and structural information about analytes, applicable to many scientific areas like environmental chemistry; food chemistry; medicinal chemistry; and more. Our study could be considered of substantial interdisciplinary significance, where MS proteomics is widely used. The experimental design involves electrospray ionization (ESI) and CID MS/MS. Theoretical design is based on ab initio and density functional theory (DFT) methods. Experimental MS and theoretical free Gibbs energies as well as rate constants of fragment reactions are compared. The thermodynamic encompasses gas–phase and polar continuum analysis, including polar protic and aprotic solvents within temperature T = 10–500 K; dielectric constant ε = 0–78, pH, and ionic strengths μ = 0.001–1.0 mol dm?1. There are computed and discussed 39 protonated forms of peptides at amide N– and –(NHC)= O centers; corresponding fragment ions studying their thermodynamic stability depending on experimental conditions. A correlation analysis between molecular conformations of parent ions and fragment species; their proton accepting ability and internal energy distribution is carried out. Data about ionization potentials (IPs) and electron affinities (EAs) are discussed, as well.  相似文献   

10.
Metal-catalysed radical oxidation of diacyl-glycerophosphatidylcholines (GPC) with ω-6 acyl polyunsaturated fatty acids (PAPC, palmitoyl-arachidonoyl-glycerophosphatidylcholine and PLPC, palmitoyl-lineloyl-glycerophosphatidylcholine) was studied. Free radical oxidation products were trapped by spin trapping with 5,5-dimethyl-1-pyrrolidine-N-oxide (DMPO) and identified by electrospray mass spectrometry (ES-MS). The spin adducts of oxidised GPC containing one and two oxygen atoms and one and two DMPO molecules were observed as doubly charged ions. Structural characterisation by tandem mass spectrometry (MS/MS) of these ions revealed product ions corresponding to loss of the acyl chains (sn-1-palmitoyl and sn-2-oxidised spin adduct of lineloyl or arachidonoyl), loss of the spin trap (DMPO) and product ions attributed to oxidised sn-2 fatty acid spin adduct (lineloyl and arachidonoyl). Product ions formed by homolytic cleavages near the spin trap and also from 1,4 hydrogen elimination cleavages involving the hydroxy group in the sn-2 fatty acid spin adduct allowed to infer the nature of the radical. Altogether, the presence of GPC hydroxy-alkyl/DMPO and hydroxy-alkoxyl/DMPO spin adducts was proposed.  相似文献   

11.
Chemical modification of proteins by reactive oxygen species affects protein structure, function and turnover during aging and chronic disease. Some of this damage is direct, for example by oxidation of amino acids in protein by peroxide or other reactive oxygen species, but autoxidation of ambient carbohydrates and lipids amplifies both the oxidative and chemical damage to protein and leads to formation of advanced glycoxidation and lipoxidation end-products (AGE/ALEs). In previous work, we have observed the oxidation of methionine during glycoxidation and lipoxidation reactions, and in the present work we set out to determine if methionine sulfoxide (MetSO) in protein was a more sensitive indicator of glycoxidative and lipoxidative damage than AGE/ALEs. We also investigated the sites of methionine oxidation in a model protein, ribonuclease A (RNase), in order to determine whether analysis of the site specificity of methionine oxidation in proteins could be used to indicate the source of the oxidative damage, i.e. carbohydrate or lipid. We describe here the development of an LC/MS/MS for quantification of methionine oxidation at specific sites in RNase during glycoxidation or lipoxidation by glucose or arachidonate, respectively. Glycoxidized and lipoxidized RNase were analyzed by tryptic digestion, followed by reversed phase HPLC and mass spectrometric analysis to quantify methionine and methionine sulfoxide containing peptides. We observed that: (1) compared to AGE/ALEs, methionine sulfoxide was a more sensitive biomarker of glycoxidative or lipoxidative damage to proteins; (2) regardless of oxidizable substrate, the relative rate of oxidation of methionine residues in RNase was Met29>Met30>Met13, with Met79 being resistant to oxidation; and (3) arachidonate produced a significantly greater yield of MetSO, compared to glucose. The methods developed here should be useful for assessing a protein's overall exposure to oxidative stress from a variety of sources in vivo.  相似文献   

12.
《Free radical research》2013,47(5):549-564
Abstract

Triacylglycerols (TAGs) are one of the major components of the cells in higher biological systems, which can act as an energy reservoir in the living cells. The unsaturated fatty acid moiety is the key site of oxidation and formation of oxidation compounds. The TAG free radical generates several primary oxidation compounds. These include hydroperoxides, hydroxides, epidioxides, hydroperoxy epidioxides, hydroxyl epidioxides, and epoxides. The presence of these oxidized TAGs in the cell increases the chances of several detrimental processes. For this purpose, several liquid chromatography (LC) methods were reported in their analyses. This review is therefore focused on the chemistry, oxidation, extraction, and the LC methods reported in the analyses of oxidized TAGs. The studies on thin-layer chromatography were mostly focused on the total oxidized TAGs separation and employ hexane as major solvent. High-performance LC (HPLC) methods were discussed in details along with their merits and demerits. It was found that most of the HPLC methods employed isocratic elution with methanol and acetonitrile as major solvents with an ultraviolet detector. The coupling of HPLC with mass spectrometry (MS) highly increases the efficiency of analysis as well as enables reliable structural elucidation. The use of MS was found to be helpful in studying the oxidation chemistry of TAGs and needs to be extended to the complex biological systems.  相似文献   

13.
In the present study, we have used a combination of 2-DE and MS to isolate and characterize two variants of the mitochondrial complex I subunit NDUFA10 from Wistar rat brain. Extensive MS/MS analysis revealed that a D/N substitution at position 120 resulting from a 353A/G transition in the coding gene is the biochemical difference between the two most abundant NDUFA10 isoforms. Moreover, 33 modifications of distinct chemical nature targeting 59 specific residues were found to be common to the acidic and basic forms. Positions C67, H149 and H322 of NDUFA10 were specially targeted by different modifications suggesting the high reactivity of these residues and their potential implication in the regulation of the protein function. Together with nonenzymatic modifications that can form in the sample isolation and workup steps, such as oxidation of methionine, tryptophan, cysteine and histidine, we describe amino acid variants of unknown chemical structure that must be further characterized, as well as accumulation of R, K and H methylations and probably K acetylations at the C-terminal region that might play a role in the control of NDUFA10 activity according to similar mechanisms to those described for histones.  相似文献   

14.
Metal-catalysed radical oxidation of diacyl-glycerophosphatidylcholines (GPC) with ω-6 acyl polyunsaturated fatty acids (PAPC, palmitoyl-arachidonoyl-glycerophosphatidylcholine and PLPC, palmitoyl-lineloyl-glycerophosphatidylcholine) was studied. Free radical oxidation products were trapped by spin trapping with 5,5-dimethyl-1-pyrrolidine-N-oxide (DMPO) and identified by electrospray mass spectrometry (ES-MS). The spin adducts of oxidised GPC containing one and two oxygen atoms and one and two DMPO molecules were observed as doubly charged ions. Structural characterisation by tandem mass spectrometry (MS/MS) of these ions revealed product ions corresponding to loss of the acyl chains (sn-1-palmitoyl and sn-2-oxidised spin adduct of lineloyl or arachidonoyl), loss of the spin trap (DMPO) and product ions attributed to oxidised sn-2 fatty acid spin adduct (lineloyl and arachidonoyl). Product ions formed by homolytic cleavages near the spin trap and also from 1,4 hydrogen elimination cleavages involving the hydroxy group in the sn-2 fatty acid spin adduct allowed to infer the nature of the radical. Altogether, the presence of GPC hydroxy-alkyl/DMPO and hydroxy-alkoxyl/DMPO spin adducts was proposed.  相似文献   

15.
We have previously reported that treatment of CsA with aqueous HCl gives rise to the formation of a number of water-soluble compounds. Two of these were identified from their FAB-MS/MS spectra as open-chain nona- and decapeptides. We describe here the identification of two other main compounds deriving from the same treatment. Identification was rendered possible from the comparison of their FAB-MS/MS spectra with those of methyl and acetyl derivatives. The two compounds are water-soluble, open-chain undecapeptides corresponding to 1,11 seco-CsA and of 4,5 seco-isoCsA, respectively.  相似文献   

16.
由于膜蛋白质尤其是内在膜蛋白的强疏水性,分析和鉴定质膜蛋白质仍然是以质谱为基础的蛋白质组学的方法中的一个难点.过甲酸氧化是一种应用广泛的打开二硫键的方法,温和的过甲酸试剂能完全的将半胱氨酸转化为半胱磺酸,将甲硫氨酸转化为甲硫氨酸砜,从而使目的蛋白更易溶于水介质.采用蔗糖密度梯度离心法纯化得到大鼠大脑皮层质膜,提取的质膜蛋白质经温和过甲酸氧化处理后经胰酶酶解消化得到肽段,利用LC-MS/MS对所得肽段进行质谱分析,采集的原始数据用Mascot软件进行库搜寻鉴定.此方法是研究质膜蛋白质的新方法,温和过甲酸氧化显示出很好的氧化效果却避免其它不利于鉴定的副反应.从大鼠大脑皮层膜提取物共鉴定出220种蛋白质,其中73种为整合膜蛋白,证明对质膜蛋白质直接进行温和过甲酸氧化然后酶解的方法辅助酶解可以有效的鉴定质膜蛋白质.  相似文献   

17.
R. Badoud  L. B. Fay 《Amino acids》1993,5(3):367-375
Summary Periodate oxidation of free and protein-bound Amadori compounds formed by the condensation of reducing sugars with primary amino groups generates, on acid hydrolysis, N-carboxymethyl derivatives of amino acids. The analysis of these modified amino acids may be used to estimate both the extent and the site of protein glycosylation. The present study describes the use of gas chromatography-mass spectrometry (GC/MS) and gas chromatographytandem mass spectrometry (GC/MS/MS) for the identification of the various N-carboxymethylamino acids. Application of this approach to the quantitation of N-carboxymethylvaline and N -carboxymethyllysine resulting from the oxidation of glycosylated haemoglobin is presented.  相似文献   

18.
Methionine oxidation in the ubiquitous calcium signaling protein calmodulin (CaM) is known to disrupt downstream signaling and target CaM for proteasomal degradation. The susceptibility of CaM to oxidation in the different conformations that are sampled during calcium signaling is currently not well defined. Using an integrative mass spectrometry (MS) approach, applying both native MS and LC/MS/MS, we unravel molecular details of CaM methionine oxidation in the context of its interaction with the Ca(2+)/CaM-dependent protein kinase II (CaMKII). Sensitivity to methionine oxidation in CaM was found to vary according to the conformational state. Three methionine residues (Met71, 72, 145) show increased reactivity in calcium-saturated CaM (holo-CaM) compared to calcium-free CaM (apo-CaM), which has important consequences for oxidation-targeted proteasomal degradation. In addition, all four methionines in the C-terminal lobe (Met109, 124, 144 and 145) are found to be protected from oxidation in a peptide-based model of the CaMKII-bound conformation (cbp-CaM). We furthermore demonstrate that the oxidation of Met144 and 145 inhibits the interaction of CaM with CaMKII. cbp-CaM, in contrast to apo- and holo-CaM, maintains its ability to bind CaMKII under simulated conditions of oxidative stress and is also protected from oxidation-induced unfolding. Thus, we show that the susceptibility towards oxidation of specific residues in CaM is tightly linked to its signaling state and conformation, which has direct implications for calcium/CaM-CaMKII related signaling.  相似文献   

19.
Increases in plasma concentrations of total homocysteine (tHcy) have recently been reported in multiple sclerosis (MS) as the alteration of the methionine cycle for the onset of autoimmune diseases. Homocysteine (Hcy) and cysteine (Cys) are generated by the methionine cycle and transsulfuration reactions. Their plasma levels are subjected to complex redox changes by oxidation and thiol/disulfide (SH/SS) exchange reactions regulated by albumin. The methionine loading test (MLT) is a useful in vivo test to assay the functionality of the methionine cycle and transsulfuration reactions. Time courses of redox species of Cys, cysteinylglycine (CGly), Hcy, and glutathione have been investigated in plasma of MS patients versus healthy subjects after an overnight fasting, and 2, 4, and 6 h after an oral MLT (100 mg/kg body weight), to detect possible dysfunctions of the methionine cycle, transsulfuration reactions and alterations in plasma distribution of redox species. After fasting, the MS group showed a significant increase in cysteine-protein mixed disulfides (bCys) and total Cys (tCys). While plasma bCys and tCys in MS group remained elevated after methionine administration when compared to control, cystine (oxCys) increased significantly with respect to control. Although increased plasma concentrations of bCys and tCys at fasting might reflect an enhance of transsulfuration reactions in MS patients, this was not confirmed by the analysis of redox changes of thiols and total thiols after MLT. This study has also demonstrated that albumin-dependent SH/SS exchange reactions are a potent regulation system of thiol redox species in plasma.  相似文献   

20.
Methionine oxidation is a common posttranslational modification (PTM) of monoclonal antibodies (mAbs). Oxidation can reduce the in-vivo half-life, efficacy and stability of the product. Peptide mapping is commonly used to monitor the levels of oxidation, but this is a relatively time-consuming method. A high-throughput, automated subunit mass analysis method was developed to monitor antibody methionine oxidation. In this method, samples were treated with IdeS, EndoS and dithiothreitol to generate three individual IgG subunits (light chain, Fd’ and single chain Fc). These subunits were analyzed by reversed phase-ultra performance liquid chromatography coupled with an online quadrupole time-of-flight mass spectrometer and the levels of oxidation on each subunit were quantitated based on the deconvoluted mass spectra using the UNIFI software. The oxidation results obtained by subunit mass analysis correlated well with the results obtained by peptide mapping. Method qualification demonstrated that this subunit method had excellent repeatability and intermediate precision. In addition, UNIFI software used in this application allows automated data acquisition and processing, which makes this method suitable for high-throughput process monitoring and product characterization. Finally, subunit mass analysis revealed the different patterns of Fc methionine oxidation induced by chemical and photo stress, which makes it attractive for investigating the root cause of oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号