首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A key process underlying an innate immune response to pathogens or cellular stress is activation of members of the NOD-like receptor family, such as NLRP3, to assemble caspase-1-activating inflammasome complexes. Activated caspase-1 processes proinflammatory cytokines into active forms that mediate inflammation. Activation of the NLRP3 inflammasome is also associated with common diseases including cardiovascular disease, diabetes, chronic kidney disease, and Alzheimer disease. However, the molecular details of NLRP3 inflammasome assembly are not established. The adaptor protein ASC plays a key role in inflammasome assembly. It is composed of an N-terminal pyrin domain (PYD) and a C-terminal caspase recruitment domain, which are protein interaction domains of the death fold superfamily. ASC interacts with NLRP3 via a homotypic PYD interaction and recruits procaspase-1 via a homotypic caspase recruitment domain interaction. Here we demonstrate that ASC PYD contains two distinct binding sites important for self-association and interaction with NLRP3 and the modulatory protein POP1. Modeling of the homodimeric ASC PYD complex formed via an asymmetric interaction using both sites resembles a type I interaction found in other death fold domain complexes. This interaction mode also permits assembly of ASC PYDs into filaments. Furthermore, a type I binding mode is likely conserved in interactions with NLRP3 and POP1, because residues critical for interaction of ASC PYD are conserved in these PYDs. We also demonstrate that ASC PYD can simultaneously self-associate and interact with NLRP3, rationalizing the model whereby ASC self-association upon recruitment to NLRP3 promotes clustering and activation of procaspase-1.  相似文献   

2.
NLRP1炎性体   总被引:2,自引:0,他引:2  
核苷酸结合寡聚化结构域样受体蛋白1(NLRP1)炎性体是NLRP1在识别胞内病原相关分子模式(PAMP)后与凋亡相关斑点样蛋白(ASC)以及半胱天冬氨酸酶(Caspase-1、Caspase-5)前体等分子结合形成的蛋白复合物,活化后促进IL-1β、IL-18、IL-33等炎症因子的成熟和释放,在先天性免疫中发挥重要作用。本文主要介绍了NLRP1炎性体的组成、激活机制、信号通路、负向调控及生物学功能,综述了NLRP1炎性体在炭疽、弓形虫病、泛发型白癜风、肠炎、牛皮癣等疾病中作用的研究进展。  相似文献   

3.
The formation of inflammasome complexes contributes inactivation of inflammatory caspases viz caspase 1, which is generally considered essential for the innate response. Three proteins constituted this inflammasome complex, such as Nod-like receptors (NLRP or AIM2), ASC possessing caspase-recruiting domain, and caspase-1. The ASC proteins comprise two domains, the N-terminal PYD domain responsible for the interaction of various proteins, including PYD only protein 3 (POP3), and the CARD domain for association with other proteins. The PYRIN Domain-Only Protein POP3 negatively regulates responses to DNA virus infection by preventing the ALR inflammasome formation. POP3 directly interacts with ASC, therefore inhibiting ASC recruitment to AIM2-like receptors (ALRs). In the current study, we designed various constructs of the PYRIN Domain-Only Protein 3 (POP3) and ASC PYD domain to find the best-overexpressed construct for biochemical characterization as well as our complex studies. We cloned, purified, and characterized the PYD domain of pyrin only protein 3 and ASC PYD domain under physiological conditions. Our in vitro study clearly shows that the ASC PYD domain of corresponding amino acid 1–96 aa with ease self-oligomerization in physiological buffer conditions, and complex formation of POP3 PYD (1–83 aa) was inhibited by ASC PYD domain. Besides, we purified the PYD of POP3 protein in low and high salt conditions and different pH values for their biochemical characterization. Our results showed that POP3 formed a dimer under normal physiological conditions and was stable under normal buffer conditions; however, the purification in extremely low pH (pH5.0) conditions shows unstable behavior, the high salt conditions (500 mM NaCl) influence the protein aggregation. SDS PAGE arbitrated the homogeneity of the PYD domain of pyrin only protein 3 and ASC PYD domain of corresponding amino acids 1–83 and 1–96, respectively. Furthermore, our native PAGE shows the PYD domain of pyrin; only protein 3 did not form a complex with ASC PYD domain because of oligomerization mediated by the PYD domain.  相似文献   

4.
Numerous atypical mycobacteria, including Mycobacterium abscessus (Mabc), cause nontuberculous mycobacterial infections, which present a serious public health threat. Inflammasome activation is involved in host defense and the pathogenesis of autoimmune diseases. However, inflammasome activation has not been widely characterized in human macrophages infected with atypical mycobacteria. Here, we demonstrate that Mabc robustly activates the nucleotide binding and oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome via dectin-1/Syk-dependent signaling and the cytoplasmic scaffold protein p62/SQSTM1 (p62) in human macrophages. Both dectin-1 and Toll-like receptor 2 (TLR2) were required for Mabc-induced mRNA expression of pro-interleukin (IL)-1β, cathelicidin human cationic antimicrobial protein-18/LL-37 and β-defensin 4 (DEFB4). Dectin-1-dependent Syk signaling, but not that of MyD88, led to the activation of caspase-1 and secretion of IL-1β through the activation of an NLRP3/apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) inflammasome. Additionally, potassium efflux was required for Mabc-induced NLRP3/ASC inflammasome activation. Furthermore, Mabc-induced p62 expression was critically involved in NLRP3 inflammasome activation in human macrophages. Finally, NLRP3/ASC was critical for the inflammasome in antimicrobial responses to Mabc infection. Taken together, these data demonstrate the induction mechanism of the NLRP3/ASC inflammasome and its role in innate immunity to Mabc infection.  相似文献   

5.
Innate cellular immunity is the immediate host response against pathogens, and activation of innate immunity also modulates the induction of adaptive immunity. The nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are a family of intracellular receptors that recognize conserved patterns associated with intracellular pathogens, but information about their role in the host defense against DNA viruses is limited. Here we report that varicella-zoster virus (VZV), an alphaherpesvirus that is the causative agent of varicella and herpes zoster, induces formation of the NLRP3 inflammasome and the associated processing of the proinflammatory cytokine IL-1β by activated caspase-1 in infected cells. NLRP3 inflammasome formation was induced in VZV-infected human THP-1 cells, which are a transformed monocyte cell line, primary lung fibroblasts, and melanoma cells. Absent in melanoma gene-2 (AIM2) is an interferon-inducible protein that can form an alternative inflammasome complex with caspase-1 in virus-infected cells. Experiments in VZV-infected melanoma cells showed that NLRP3 protein recruits the adaptor protein ASC and caspase-1 to form an NLRP3 inflammasome complex independent of AIM2 protein and in the absence of free radical reactive oxygen species release. NLRP3 was also expressed extensively in infected skin xenografts in the severe combined immunodeficiency mouse model of VZV pathogenesis in vivo. We conclude that NLRP3 inflammasome formation is an innate cellular response to infection with this common pathogenic human herpesvirus.  相似文献   

6.
The accumulation of the scrapie prion protein PrPSc, a misfolded conformer of the cellular prion protein PrPC, is a crucial feature of prion diseases. In the central nervous system, this process is accompanied by conspicuous microglia activation. The NLRP3 inflammasome is a multi-molecular complex which can sense heterogeneous pathogen-associated molecular patterns and culminates in the activation of caspase 1 and release of IL 1β. The NLRP3 inflammasome was reported to be essential for IL 1β release after in vitro exposure to the amyloidogenic peptide PrP106-126 and to recombinant PrP fibrils. We therefore studied the role of the NLRP3 inflammasome in a mouse model of prion infection. Upon intracerebral inoculation with scrapie prions (strain RML), mice lacking NLRP3 (Nlrp3-/-) or the inflammasome adaptor protein ASC (Pycard-/-) succumbed to scrapie with attack rates and incubation times similar to wild-type mice, and developed the classic histologic and biochemical features of prion diseases. Genetic ablation of NLRP3 or ASC did not significantly impact on brain levels of IL 1β at the terminal stage of disease. Our results exclude a significant role for NLRP3 and ASC in prion pathogenesis and invalidate their claimed potential as therapeutic target against prion diseases.  相似文献   

7.
Lysosome rupture triggers NLRP3 inflammasome activation in macrophages. However, the underlying mechanism is not fully understood. Here we showed that the TAK1-JNK pathway, a MAPK signaling pathway, is activated through lysosome rupture and that this activation is necessary for the complete activation of the NLRP3 inflammasome through the oligomerization of an adapter protein, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC). We also revealed that the activation of the TAK1-JNK pathway is sustained through Ca2+ ions and that calcium/calmodulin-dependent protein kinase type II functions upstream of the TAK1-JNK pathway and specifically regulates lysosome rupture-induced NLRP3 inflammasome activation. These data suggest a novel role for the TAK1-JNK pathway as a critical regulator of NLRP3 inflammasome activation.  相似文献   

8.
The NLRP3 inflammasome is a caspase-1 containing multi-protein complex that controls the release of IL-1β and plays important roles in the innate immune response. Since NLRP3 inflammasome is implicated in the pathogenesis of a variety of diseases, it has become an increasingly interested target in developing therapies for multiple diseases. We reported the current study to determine how luteolin, a natural phenolic compound found in many vegetables and medicinal herbs, would modulate NLRP3 inflammasome in both the in vivo and in vitro settings. First, we found that a high-fat diet upregulated mRNA expression of NLRP3 inflammasome components Asc and Casp1 in adipose tissue of ovariectomized mice, which were greatly reduced by dietary supplementation with luteolin. Of note, Asc and Casp1 expression in adipose tissue correlated with mRNA levels of Adgre1 encoding F4/80, an established marker for mature macrophages. We also demonstrated that luteolin inhibited NLRP3 inflammasome-derived caspase-1 activation and IL-1β secretion in J774A.1 macrophages upon diverse stimuli including ATP, nigericin, or silica crystals. Luteolin inhibited the activation step of NLRP3 inflammasome by interfering with ASC oligomerization. Taken together, these findings suggest that luteolin supplementation may suppress NLRP3 induction and activation process and thus potentially would be protective against NLRP3-mediated inflammatory diseases.  相似文献   

9.
10.
Diabetic encephalopathy is one of the most common complications of diabetes. Inflammatory events during diabetes may be an important mechanism of diabetic encephalopathy. Inflammasome is a multiprotein complex consisting of Nod-like receptor proteins (NLRPs), apoptosis-associated speck-like protein (ASC), and caspase 1 or 5, which functions to switch on the inflammatory process and the release of inflammatory factors. The present study hypothesized that the formation and activation of NLRP1 inflammasome turns on neuroinflammation and neuron injury during hyperglycemia. The results demonstrated that the levels of interleukin-1 beta (IL-1β) were increased in the cortex of streptozocin (STZ)-induced diabetic rats. The levels of mature IL-1β and IL-18 were also elevated in culture medium of neurons treated with high glucose (50 mM). The expression of three essential components of the NLRP1 inflammasome complex, namely, NLRP1, ASC, and caspase 1, was also upregulated in vivo and in vitro under high glucose. Silencing the ASC gene prevented the caspase-1 activation, and inhibiting caspase 1 activity blocked hyperglycemia-induced release of inflammatory factors and neuron injury. Moreover, we found that pannexin 1 mediated the actvitation of NLRP1 inflammasome under high glucose. These results suggest that hyperglycemia induces neuroinflammation through activation of NLRP1 inflammasome, which represents a novel mechanism of diabetes-associated neuron injury.  相似文献   

11.
Inflammatory response plays an important role in the pathogenesis of secondary damage after traumatic brain injury (TBI). The inflammasome is a multiprotein complex involved in innate immunity and a number of studies have suggested that the inflammasome plays a critical role in a host inflammatory signaling. Nucleotide-binding domain, leucine-rich repeat, pyrin domain containing 3 (NLRP3) is a key component of the NLRP3-inflammasome, which also includes apoptotic speck-containing protein (ASC) with a cysteine protease (caspase) -activating recruitment domain and pro-caspase1. Activation of the NLRP3-inflammasome causes the processing and release of the interleukin 1 beta (IL-1β) and interleukin 18 (IL-18). Based on this, we hypothesized that the NLRP3-inflammasome could participate in the inflammatory response following TBI. However, the expression of NLRP3-inflammasome in cerebral cortex after TBI is not well known. Rats were randomly divided into control, sham and TBI groups (including 6 h, 1 day, 3 day and 7 day sub-group). TBI model was induced, and animals were sacrificed at each time point respectively. The expression of NLRP3-inflammasome was measured by quantitative real-time polymerase chain reaction, western blot and immunohistochemistry respectively. Immunofluorescent double labeling was performed to identify the cell types of NLRP3-inflammasome’s expression. Moreover, enzyme linked immunosorbent assay was used to detect the alterations of IL-1β and IL-18 at each time point post-injury. The results showed that, TBI could induce assembly of NLRP3-inflammasome complex, increased expression of ASC, activation of caspase1, and processing of IL-1β and IL-18. These results suggested that NLRP3-inflammasome might play an important role in the inflammation induced by TBI and could be a target for TBI therapy.  相似文献   

12.
13.
The NLRP3 inflammasome is a critical component of the innate immune system. NLRP3 activation is induced by diverse stimuli associated with bacterial infection or tissue damage, but its inappropriate activation is involved in the pathogenesis of inherited and acquired inflammatory diseases. However, the mechanism by which NLRP3 is activated remains poorly understood. In this study, we explored the role of kinases in NLRP3 inflammasome activation by screening a kinase inhibitor library and identified 3,4-methylenedioxy-β-nitrostyrene (MNS) as an inhibitor for NLRP3 inflammasome activation. Notably, MNS did not affect the activation of the NLRC4 or AIM2 (absent in melanoma 2) inflammasome. Mechanistically, MNS specifically prevented NLRP3-mediated ASC speck formation and oligomerization without blocking potassium efflux induced by NLRP3 agonists. Surprisingly, Syk kinase, the reported target of MNS, did not mediate the inhibitory activity of MNS on NLRP3 inflammasome activation. We also found that the nitrovinyl group of MNS is essential for the inhibitory activity of MNS. Immunoprecipitation, mass spectrometry, and mutation studies suggest that both the nucleotide binding oligomerization domain and the leucine-rich repeat domain of NLRP3 were the intracellular targets of MNS. Administration of MNS also inhibited NLRP3 ATPase activity in vitro, suggesting that MNS blocks the NLRP3 inflammasome by directly targeting NLRP3 or NLRP3-associated complexes. These studies identified a novel chemical probe for studying the molecular mechanism of NLRP3 inflammasome activation which may advance the development of novel strategies to treat diseases associated with abnormal activation of NLRP3 inflammasome.  相似文献   

14.
Microglia are important innate immune effectors against invading CNS pathogens, such as Staphylococcus aureus (S. aureus), a common etiological agent of brain abscesses typified by widespread inflammation and necrosis. The NLRP3 inflammasome is a protein complex involved in IL-1β and IL-18 processing following exposure to both pathogen- and danger-associated molecular patterns. Although previous studies from our laboratory have established that IL-1β is a major cytokine product of S. aureus-activated microglia and is pivotal for eliciting protective anti-bacterial immunity during brain abscess development, the molecular machinery responsible for cytokine release remains to be determined. Therefore, the functional role of the NLRP3 inflammasome and its adaptor protein apoptosis-associated speck-like protein (ASC) in eliciting IL-1β and IL-18 release was examined in primary microglia. Interestingly, we found that IL-1β, but not IL-18 production, was significantly attenuated in both NLRP3 and ASC knockout microglia following exposure to live S. aureus. NLRP3 inflammasome activation was partially dependent on autocrine/paracrine ATP release and α- and γ-hemolysins produced by live bacteria. A cathepsin B inhibitor attenuated IL-β release from NLRP3 and ASC knockout microglia, demonstrating the existence of alternative inflammasome-independent mechanisms for IL-1β processing. In contrast, microglial IL-18 secretion occurred independently of cathepsin B and inflammasome action. Collectively, these results demonstrate that microglial IL-1β processing is regulated by multiple pathways and diverges from mechanisms utilized for IL-18 cleavage. Understanding the molecular events that regulate IL-1β production is important for modulating this potent proinflammatory cytokine during CNS disease.  相似文献   

15.
Endothelial dysfunction caused by endothelial cells senescence and chronic inflammation is tightly linked to the development of cardiovascular diseases. NLRP3 (NOD-like receptor family pyrin domain-containing3) inflammasome plays a central role in inflammatory response that is associated with diverse inflammatory diseases. This study explores the effects and possible mechanisms of NLRP3 inflammasome in endothelial cells senescence. Results show an increment of pro-inflammatory cytokine interleukin (IL) −1β secretion and caspase-1 activation during the senescence of endothelial cells induced by bleomycin. Moreover, secreted IL-1β promoted endothelial cells senescence through up-regulation of p53/p21 protein expression. NLRP3 inflammasome was found to mediate IL-1β secretion through the production of ROS (reactive oxygen species) during the senescence of endothelial cells. Furthermore, the association of TXNIP (thioredoxin-interacting protein) with NLRP3 induced by ROS promoted NLRP3 inflammasome activation in senescent endothelial cells. In addition, the expressions of NLRP3 inflammasome related genes, ASC (apoptosis associated speck-like protein containing a CARD), TXNIP, cleaved caspase-1 and IL-1β, were also increased in vitro and in vivo studies. These findings indicate that endothelial senescence could be mediated through ROS and NLRP3 inflammasome signaling pathways, suggesting a potential target for the prevention of endothelial senescence-related cardiovascular diseases.  相似文献   

16.
Serum amyloid A (SAA) is an acute-phase protein, the serum levels of which can increase up to 1000-fold during inflammation. SAA has a pathogenic role in amyloid A-type amyloidosis, and increased serum levels of SAA correlate with the risk for cardiovascular diseases. IL-1β is a key proinflammatory cytokine, and its secretion is strictly controlled by the inflammasomes. We studied the role of SAA in the regulation of IL-1β production and activation of the inflammasome cascade in human and mouse macrophages, as well as in THP-1 cells. SAA could provide a signal for the induction of pro-IL-1β expression and for inflammasome activation, resulting in secretion of mature IL-1β. Blocking TLR2 and TLR4 attenuated SAA-induced expression of IL1B, whereas inhibition of caspase-1 and the ATP receptor P2X(7) abrogated the release of mature IL-1β. NLRP3 inflammasome consists of the NLRP3 receptor and the adaptor protein apoptosis-associated speck-like protein containing CARD (a caspase-recruitment domain) (ASC). SAA-mediated IL-1β secretion was markedly reduced in ASC(-/-) macrophages, and silencing NLRP3 decreased IL-1β secretion, confirming NLRP3 as the SAA-responsive inflammasome. Inflammasome activation was dependent on cathepsin B activity, but it was not associated with lysosomal destabilization. SAA also induced secretion of cathepsin B and ASC. In conclusion, SAA can induce the expression of pro-IL-1β and activation of the NLRP3 inflammasome via P2X(7) receptor and a cathepsin B-sensitive pathway. Thus, during systemic inflammation, SAA may promote the production of IL-1β in tissues. Furthermore, the SAA-induced secretion of active cathepsin B may lead to extracellular processing of SAA and, thus, potentially to the development of amyloid A amyloidosis.  相似文献   

17.
Inflammasomes are protein complexes assembled upon recognition of infection or cell damage signals, and serve as platforms for clustering and activation of procaspase-1. Oligomerisation of initiating proteins such as AIM2 (absent in melanoma-2) and NLRP3 (NOD-like receptor family, pyrin domain-containing-3) recruits procaspase-1 via the inflammasome adapter molecule ASC (apoptosis-associated speck-like protein containing a CARD). Active caspase-1 is responsible for rapid lytic cell death termed pyroptosis. Here we show that AIM2 and NLRP3 inflammasomes activate caspase-8 and -1, leading to both apoptotic and pyroptotic cell death. The AIM2 inflammasome is activated by cytosolic DNA. The balance between pyroptosis and apoptosis depended upon the amount of DNA, with apoptosis seen at lower transfected DNA concentrations. Pyroptosis had a higher threshold for activation, and dominated at high DNA concentrations because it happens more rapidly. Gene knockdown showed caspase-8 to be the apical caspase in the AIM2- and NLRP3-dependent apoptotic pathways, with little or no requirement for caspase-9. Procaspase-8 localised to ASC inflammasome ‘specks'' in cells, and bound directly to the pyrin domain of ASC. Thus caspase-8 is an integral part of the inflammasome, and this extends the relevance of the inflammasome to cell types that do not express caspase-1.  相似文献   

18.
Inflammasomes are multiprotein caspase‐activating complexes that enhance the maturation and release of proinflammatory cytokines (IL‐1β and IL‐18) in response to the invading pathogen and/or host‐derived cellular stress. These are assembled by the sensory proteins (viz NLRC4, NLRP1, NLRP3, and AIM‐2), adaptor protein (ASC), and effector molecule procaspase‐1. In NLRP3‐mediated inflammasome activation, ASC acts as a mediator between NLRP3 and procaspase‐1 for the transmission of signals. A series of homotypic protein‐protein interactions (NLRP3PYD:ASCPYD and ASCCARD:CASP1CARD) propagates the downstream signaling for the production of proinflammatory cytokines. Pyrin‐only protein 1 (POP1) is known to act as the regulator of inflammasome. It modulates the ASC‐mediated inflammasome assembly by interacting with pyrin domain (PYD) of ASC. However, despite similar electrostatic surface potential, the interaction of POP1 with NLRP3PYD is obscured till date. Herein, to explore the possible PYD‐PYD interactions between NLRP3PYD and POP1, a combined approach of protein‐protein docking and molecular dynamics simulation was adapted. The current study revealed that POP1's type‐Ia interface and type‐Ib interface of NLRP3PYD might be crucial for 1:1 PYD‐PYD interaction. In addition to type‐I mode of interaction, we also observed type‐II and type‐III interaction modes in two different dynamically stable heterotrimeric complexes (POP1‐NLRP3‐NLRP3 and POP1‐NLRP3‐POP1). The inter‐residual/atomic distance calculation exposed several critical residues that possibly govern the said interaction, which need further investigation. Overall, the findings of this study will shed new light on hitherto concealed molecular mechanisms underlying NLRP3‐mediated inflammasome, which will have strong future therapeutic implications.  相似文献   

19.
To observe the changes in NLR family pyrin domain containing 3 (NLRP3) inflammasome in a rat model of diabetes-induced lung injury, and investigate the effect of low-dose ethanol on the production of NLRP3 inflammasome. The type I diabetic mellitus (DM) rat model was established, and the rats were divided into four groups: normal control group (CON group), low-dose ethanol group (EtOH group), diabetes group (DM group) and DM+EtOH group. The rats were fed for 6 and 12 weeks, respectively. The ratio of lung wet weight/body weight (lung/body coefficient) was calculated, and the changes of pulmonary morphology and fibrosis were observed by HE and Masson staining. The changes in pulmonary ultra-structure were examined by electron microscopy. The expressions of mitochondrial acetaldehyde dehydrogenase 2 (ALDH2) and NLRP3 inflammasome key factors, NLRP3, ASC and caspase-1 proteins were detected by western blot. Compared with the CON group, the lung/body coefficient was increased (P<0.05), lung fibrosis occurred, ALDH2 protein expression was decreased, and NLRP3, ASC and caspase-1 protein expressions were increased in the DM rats (P<0.05). Compared with the DM group, the lung/body coefficient and fibrosis degree were decreased, ALDH2 protein expression was increased (P<0.05), and NLRP3, ASC and caspase-1 protein expressions were decreased in the DM+EtOH group (P<0.05). Hence, low-dose ethanol increased ALDH2 protein expression and alleviated diabetes-induced lung injury by inhibiting the production of NLRP3 inflammasome.  相似文献   

20.
Uric acid (UA) has been associated with renal fibrosis and progression of chronic kidney disease. However, the underlying mechanisms of this process have still not been identified. Here, we studied the role of the innate imunity receptor NLRP3/ASC in UA induced epithelial-mesenchymal transition (EMT) in kidney. Wistar rats were fed with oxonic acid 2% and UA 2% (OXA?+?U), OXA?+?U plus allopurinol (ALL) or regular chow (C) for 7 weeks. We analyzed the presence of EMT markers, the expression of NLRP3, ASC, Caspase-1 and Smad 2/3 molecules and the mitochondrial morphological and functional characteristics. High UA induced renal fibrosis, mild chronic inflammation, as well as morphological and biochemical evidence of EMT. High UA also increased the expression of NLRP3/ASC with activation of both inflammasome related caspase-1 and inflammasome unrelated Smad 2/3 pathways. Ultrastructural co-localization of NLRP3 and Smad 2/3 indicated physical interaction between the two molecules. No morphological or functional changes were found between mitochondria exposed to high UA. In conclusion, kidney epithelial NLRP3/ASC expression was increased in high UA state in rats and both inflammasome related caspase-1 and non-inflammasome related P-Smad 2/3 pathways were associated with the observed EMT, inflammation and fibrosis induced by UA in the kidney.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号