首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phosphorylation of keratin polypeptides was examined in calf snout epidermis. When slices of epidermis were incubated in the medium containing 32Pi, the radioactivity was incorporated into several proteins. The predominant phosphorylated proteins migrated in SDS-polyacrylamide gels with apparent molecular weight between 49000 and 69000 and coincided with keratin polypeptides. The extent of keratin phosphorylation was not altered in the presence of dibutyryl cyclic AMP or reagents which elevate intracellular cyclic AMP. When homogenates of epidermis were incubated with [γ-32P]ATP, keratin polypeptides were the predominant species phosphorylated as was also observed in epidermal slices. The presence of cyclic AMP or heat-stable inhibitor of cyclic AMP-dependent protein kinase in the reaction mixture did not affect the phosphorylation of keratin polypeptides, although the phosphorylation of exogenously-added histone was stimulated and inhibited, respectively, by these additions. Keratin polypeptides extracted from calf snout epidermis by 8 M urea were phosphorylated by incubation with [γ-32P]ATP and cyclic AMP-dependent protein kinase form calf snout epidermis or bovine heart. No proteins were phosphorylated without the addition of the enzymes. The presence of cyclic AMP in the reaction mixture stimulated the keratin phosphorylation, and further addition of heat-stable protein kinase inhibitor reduced this stimulation.  相似文献   

2.
Keratins are cytoplasmic intermediate filament proteins expressed by epithelial cells. Keratin 7 (K7) is expressed in a wide range of epithelial structures in humans. We have cloned and fully sequenced the human and mouse K7 genes and mRNAs, and the K7 mRNA from the marsupial Potorous tridactylis, from which the widely used simple epithelial cell lines PtK1 and PtK2 are derived. Percentage identity plots comparing the mouse and human genomic sequences revealed a number of conserved CpG islands associated with the K7 gene. There was considerable conservation of introns between the two species, which may indicate the presence of intronic regulatory elements. Only the most proximal 500bp of the promoter was conserved, although an additional conserved sequence island was found 2-3kb upstream. Protein sequence comparisons between the three species allowed identification of conserved regions of the keratin variable domains that may be candidates for protein-protein interactions and/or regulatory modification. From the mouse sequence, we generated a polyclonal rabbit antibody specific for murine K7. This antibody was used to perform a survey of K7 expression in the mouse. The expression pattern was similar to the reported human distribution, with substantial expression observed in lung, bladder, mesothelium, hair follicle, and ductal structures. We also noted previously unreported expression of K7 in the gastrointestinal tract and filiform papillae of the tongue and specific K7 expression in a range of "hard" epithelial tissues. The distribution of K7 in mouse and availability of genomic sequence from the 129/Sv mouse strain will allow the generation and analysis of transgenic mice expressing mutant forms of K7 and to predict the phenotype of human genetic disorders caused by mutations in this keratin.  相似文献   

3.
Keratins, the intermediate filament proteins of epithelial cells, connect to desmosomes, the cell-cell adhesion structures at the surface membrane. The building elements of desmosomes include desmoglein and desmocollin, which provide the actual cell adhesive properties, and desmoplakins, which anchor the keratin intermediate filaments to desmosomes. In the work reported here, we address the role of keratin 8 in modulating desmoplakin deposition at surface membrane in mouse hepatocytes. The experimental approach is based on the use of keratin 8- and keratin 18-null mouse hepatocytes as cell models. In wild-type mouse hepatocytes, desmoplakin is aligned with desmoglein and keratin 8 at the surface membrane. In keratin 8-null hepatocytes, the intermediate filament loss leads to alterations in desmoplakin distribution at the surface membrane, but not of desmoglein. Intriguingly, a significant proportion of keratin 18-null hepatocytes express keratin 8 at the surface membrane, associated with a proper desmoplakin alignment with desmoglein at desmosomes. A Triton treatment of the monolayer reveals that most of the desmoplakin present in either wild-type, keratin 8- or keratin 18-null hepatocytes is insoluble. Deletion analysis of keratin 8 further suggests that the recovery of desmoplakin alignment requires the keratin 8 rod domain. In addition, similarly to other works revealing a key role of desmoplakin phosphorylation on its interaction with intermediate filaments, we find that the phosphorylation status of the keratin 8 head domain affects desmoplakin distribution at desmosomes. Together, the data indicate that a proper alignment/deposition of desmoplakin with keratins and desmoglein in hepatocytes requires keratin 8, through a reciprocal phosphoserine-dependent process.  相似文献   

4.
Keratin 8 and 18 are commonly used as tumorigenic markers for various types of carcinomas. They are known to be involved in cell migration, cell invasiveness, plasminogen activity and drug and radiation resistance. To ascertain a potential function for simple epithelium keratins in mammary adenocarcinoma in vivo, keratin-8-deficient mice (mK8) were mated with transgenic mice carrying the middle T oncogene driven by the MMTV promoter. The resulting mK8 knockout and control progeny carrying the middle T transgene developed mammary gland tumours with the same incidence. However, the onset of palpable mammary gland tumours occurred earlier in mK8 mutant than in control mice. This effect was prominent in males where the onset in control animals is delayed overall, because of the lower hormonal inducibility of the MMTV promoter. Metastatic foci were observed in the lungs of all females and of a few males, idependently of the genotype. Histological analysis revealed no morphological differences of the tumorigenic cells in primary tumours nor in metastatic foci. As expected, keratin 8 was absent in the mK8 tumours. Keratin 7 (mK7), keratin 18 (mK18) and keratin 19 (mK19) protein were observed in both primary and metastatic foci. These results constitute the first in vivo analysis of the role of simple epithelium keratins in mammary carcinogenesis. It demonstrates that the latency, but not the incidence nor the morphological features, of PyV middle T-induced mammary gland tumours is affected by keratin 8 deficiency  相似文献   

5.
角蛋白是哺乳动物角质形成细胞的主要结构蛋白,其基因的正确表达是细胞稳定和功能正常的基础。角蛋白的基因突变可导致一系列的遗传性疾病。近年来,转基因动物模型的建立在疾病的发病机制、基因间的相互关系方面带给了我们全新的视角。本文就角蛋白相关疾病动物模型的研究现状做一综述。  相似文献   

6.
To explore the relationship between keratin gene mutations and genetic disease, we made transgenic mice expressing a mutant keratin in the basal layer of their stratified squamous epithelia. These mice exhibited abnormalities in epidermal architecture and often died prematurely. Blistering occurred easily, and basal cell cytolysis was evidence at the light and electron microscopy levels. Keratin filament formation was markedly altered, with keratin aggregates in basal cells. In contrast, terminally differentiating cells made keratin filaments and formed a stratum corneum. Recovery of outer layer cells was attributed to down-regulation of mutant keratin expression and concomitant induction of differentiation-specific keratins as cells terminally differentiate, and the fact that these cells arose from basal cells developing at a time when keratin expression was relatively low. Collectively, the pathobiology and biochemistry of the transgenic mice and their cultured keratinocytes bore a resemblance to a group of genetic disorders known as epidermolysis bullosa simplex.  相似文献   

7.
Keratin 8 (K8) is a type II keratin that is associated with the type I keratins K18 or K19 in single layered epithelia. We generated a bacterial artificial chromosome (BAC) transgenic mouse line that expresses the tamoxifen inducible CreER(T2) inserted into the endogenous murine K8 gene. The transgenic mouse line contains two copies of the BAC transgene. To determine the expression specificity and inducibility of CreER(T2), the K8-CreER(T2) mice were bred with a Gt(ROSA 26)( ACTB-tdTomato-EGFP ) fluorescent protein-based reporter transgenic mouse line. We demonstrated that CreER(T2) and the endogenous K8 gene share the same patterns of expression and that the enzymatic activity of CreER(T2) can be efficiently induced by tamoxifen in all K8-expressing tissues. This mouse line will be useful for studying gene function in development and homeostasis of simple epithelia, and investigating both tissue lineage hierarchy and the identity of the cells of origin for epithelial cancers.  相似文献   

8.
Keratin 8 (K8) serine 73 occurs within a relatively conserved type II keratin motif ((68)NQSLLSPL) and becomes phosphorylated in cultured cells and organs during mitosis, cell stress, and apoptosis. Here we show that Ser-73 is exclusively phosphorylated in vitro by p38 mitogen-activated protein kinase. In cells, Ser-73 phosphorylation occurs in association with p38 kinase activation and is inhibited by SB203580 but not by PD98059. Transfection of K8 Ser-73 --> Ala or K8 Ser-73 --> Asp with K18 generates normal-appearing filaments. In contrast, exposure to okadaic acid results in keratin filament destabilization in cells expressing wild-type or Ser-73 --> Asp K8, whereas Ser-73 --> Ala K8-expressing cells maintain relatively stable filaments. p38 kinase associates with K8/18 immunoprecipitates and binds selectively with K8 using an in vitro overlay assay. Given that K1 Leu-160 --> Pro ((157)NQSLLQPL --> (157)NQSPLQPL) leads to epidermolytic hyperkeratosis, we tested and showed that the analogous K8 Leu-71 --> Pro leads to K8 hyperphosphorylation by p38 kinase in vitro and in transfected cells, likely due to Ser-70 neo-phosphorylation, in association with significant keratin filament collapse upon cell exposure to okadaic acid. Hence, K8 Ser-73 is a physiologic phosphorylation site for p38 kinase, and its phosphorylation plays an important role in keratin filament reorganization. The Ser-73 --> Ala-associated filament reorganization defect is rescued by a Ser-73 --> Asp mutation. Also, disease-causing keratin mutations can modulate keratin phosphorylation and organization, which may affect disease pathogenesis.  相似文献   

9.
Baculovirus p35 protein protects cells from apoptotic cell death by inhibiting caspase activation. We have established transgenic mouse lines specifically expressing p35 in cardiomyocytes, and primary cardiomyocytes isolated from these mice exhibit resistance to staurosporine-induced apoptosis. In a previous study, we observed defects in heart formation associated with abdominal hemorrhage and cardiomyocyte cell death in caspase-8-deficent animals. In order to better understand the etiology of the cardiac defects and embryonic lethality in caspase-8-deficient mice, we crossed these mice with the p35 transgenic animals. Although the newly generated mice still died in utero and exhibited some cardiac defects, cardiomyocyte apoptosis was suppressed and ventricular trabeculation was restored. Thus, cardiomyocyte expression of p35 prevented cell death induced by staurosporine or caspase-8 deficiency. Additionally, our data suggest that caspase-8 plays multiple roles in cardiac development.  相似文献   

10.
Lysine acetylation is an important posttranslational modification that regulates microtubules and microfilaments, but its effects on intermediate filament proteins (IFs) are unknown. We investigated the regulation of keratin 8 (K8), a type II simple epithelial IF, by lysine acetylation. K8 was basally acetylated and the highly conserved Lys-207 was a major acetylation site. K8 acetylation regulated filament organization and decreased keratin solubility. Acetylation of K8 was rapidly responsive to changes in glucose levels and was up-regulated in response to nicotinamide adenine dinucleotide (NAD) depletion and in diabetic mouse and human livers. The NAD-dependent deacetylase sirtuin 2 (SIRT2) associated with and deacetylated K8. Pharmacologic or genetic inhibition of SIRT2 decreased K8 solubility and affected filament organization. Inhibition of K8 Lys-207 acetylation resulted in site-specific phosphorylation changes of K8. Therefore, K8 acetylation at Lys-207, a highly conserved residue among type II keratins and other IFs, is up-regulated upon hyperglycemia and down-regulated by SIRT2. Keratin acetylation provides a new mechanism to regulate keratin filaments, possibly via modulating keratin phosphorylation.  相似文献   

11.
12.
The desmosome anchors keratin filaments in epithelial cells leading to the formation of a tissue wide IF network. Loss of the desmosomal plaque protein plakophilin3 (PKP3) in HCT116 cells, leads to an increase in neoplastic progression and metastasis, which was accompanied by an increase in K8 levels. The increase in levels was due to an increase in the protein levels of the Phosphatase of Regenerating Liver 3 (PRL3), which results in a decrease in phosphorylation on K8. The increase in PRL3 and K8 protein levels could be reversed by introduction of an shRNA resistant PKP3 cDNA. Inhibition of K8 expression in the PKP3 knockdown clone S10, led to a decrease in cell migration and lamellipodia formation. Further, the K8 PKP3 double knockdown clones showed a decrease in colony formation in soft agar and decreased tumorigenesis and metastasis in nude mice. These results suggest that a stabilisation of K8 filaments leading to an increase in migration and transformation may be one mechanism by which PKP3 loss leads to tumor progression and metastasis.  相似文献   

13.
《The Journal of cell biology》1995,131(5):1303-1314
The two major intermediate filament proteins in glandular epithelia are keratin polypeptides 8 and 18 (K8/18). To evaluate the function and potential disease association of K18, we examined the effects of mutating a highly conserved arginine (arg89) of K18. Expression of K18 arg89-->his/cys and its normal K8 partner in cultured cells resulted in punctate staining as compared with the typical filaments obtained after expression of wild-type K8/18. Generation of transgenic mice expressing human K18 arg89-->cys resulted in marked disruption of liver and pancreas keratin filament networks. The most prominent histologic abnormalities were liver inflammation and necrosis that appeared at a young age in association with hepatocyte fragility and serum transaminase elevation. These effects were caused by the mutation since transgenic mice expressing wild-type human K18 showed a normal phenotype. A relative increase in the phosphorylation and glycosylation of detergent solubilized K8/18 was also noted in vitro and in transgenic animals that express mutant K18. Our results indicate that the highly conserved arg plays an important role in glandular keratin organization and tissue fragility as already described for epidermal keratins. Phosphorylation and glycosylation alterations in the arg mutant keratins may account for some of the potential changes in the cellular function of these proteins. Mice expressing mutant K18 provide a novel animal model for human chronic hepatitis, and for studying the tissue specific function(s) of K8/18.  相似文献   

14.
Keratin 8 (K8) and keratin-18 (K18) are the major intermediate filament proteins in the intestinal epithelia. The regulation and function of keratin in the intestinal epithelia is largely unknown. In this study we addressed the role and regulation of K8 and K18 expression by interleukin 6 (IL-6). Caco2-BBE cell line and IL-6 null mice were used to study the effect of IL-6 on keratin expression. Keratin expression was studied by Northern blot, Western blot, and confocal microscopy. Paracellular permeability was assessed by apical-to-basal transport of a fluorescein isothiocyanate dextran probe (FD-4). K8 was silenced using the small interfering RNA approach. IL-6 significantly up-regulated mRNA and protein levels of K8 and K18. Confocal microscopy showed a reticular pattern of intracellular keratin localized to the subapical region after IL-6 treatment. IL-6 also induced serine phosphorylation of K8. IL-6 decreased paracellular flux of FD-4 compared with vehicle-treated monolayers. K8 silencing abolished the decrease in paracellular permeability induced by IL-6. Administration of dextran sodium sulfate (DSS) significantly increased intestinal permeability in IL-6-/- mice compared with wild type mice given DSS. Collectively, our data demonstrate that IL-6 regulates the colonic expression of K8 and K18, and K8/K18 mediates barrier protection by IL-6 under conditions where intestinal barrier is compromised. Thus, our data uncover a novel function of these abundant cytoskeletal proteins, which may have implications in intestinal disorders such as inflammatory bowel disease wherein barrier dysfunction underlies the inflammatory response.  相似文献   

15.
为从细胞水平研究小鼠乳腺表达抗PD-1抗体对转基因鼠脾脏T细胞表面抗原蛋白、细胞因子表达、脾脏CD4+T细胞增殖以及增殖相关通路的影响,将8周龄未经历过怀孕的和18周龄经历过哺乳的表达抗人PD-1抗体的转基因小鼠分成两组,每组以转基因阴性鼠为对照,提取脾脏淋巴细胞,检测脾脏淋巴细胞的变化。与转基因阴性小鼠相比,乳腺表达抗PD-1抗体的转基因小鼠的免疫系统中的脾脏T细胞的效应T细胞比例上升,Treg细胞比例下降,CD4+T细胞表达的IFN-γ、IL-17以及IL-2有不同程度的增加。IL-4、IL-10以及TGF-β都没有发生变化。与T细胞刺激相关的一些细胞表面的蛋白分子也没有引起变化。转基因阳性鼠和转基因阴性鼠中T细胞增殖没有显著性差异,转基因阳性鼠中PI3K/Akt/mTOR和Ras/MEK/ERK这两条通路上的磷酸化蛋白只有部分表达上调,整个通路没有完全上调。结果表明,转基因小鼠作为表达抗PD-1抗体这类免疫系统相关单克隆抗体的宿主是可行的。  相似文献   

16.
Simple epithelia express keratins 8 (K8) and 18 (K18) as their major intermediate filament (IF) proteins. One important physiologic function of K8/18 is to protect hepatocytes from drug-induced liver injury. Although the mechanism of this protection is unknown, marked K8/18 hyperphosphorylation occurs in association with a variety of cell stresses and during mitosis. This increase in keratin phosphorylation involves multiple sites including human K18 serine-(ser)52, which is a major K18 phosphorylation site. We studied the significance of keratin hyperphosphorylation and focused on K18 ser52 by generating transgenic mice that overexpress a human genomic K18 ser52→ ala mutant (S52A) and compared them with mice that overexpress, at similar levels, wild-type (WT) human K18. Abrogation of K18 ser52 phosphorylation did not affect filament organization after partial hepatectomy nor the ability of mouse livers to regenerate. However, exposure of S52A-expressing mice to the hepatotoxins, griseofulvin or microcystin, which are associated with K18 ser52 and other keratin phosphorylation changes, resulted in more dramatic hepatotoxicity as compared with WT K18-expressing mice. Our results demonstrate that K18 ser52 phosphorylation plays a physiologic role in protecting hepatocytes from stress-induced liver injury. Since hepatotoxins are associated with increased keratin phosphorylation at multiple sites, it is likely that unique sites aside from K18 ser52, and phosphorylation sites on other IF proteins, also participate in protection from cell stress.  相似文献   

17.
VILIP-1, a member of the neuronal Ca2+ sensor protein family, is able to act as a tumor suppressor in carcinoma cells by inhibiting cell proliferation and migration. In order to study the role of VILIP-1 in skin carcinogenesis we generated transgenic mice overexpressing VILIP-1 in epidermis under the control of the bovine keratin K5 promoter (K5-VILIP-1). We studied the susceptibility of FVB wild type and VILIP-1 transgenic mice to chemically mediated carcinogenesis. After 30 weeks of treatment with a two-stage carcinogenesis protocol, all animals showed numerous skin tumors. Nevertheless, K5-VILIP-1 mice showed decreased squamous cell carcinoma (SCC) multiplicity of ∼49% (p<0.02) with respect to the corresponding SCC multiplicity observed in wild type (WT) mice. In addition, the relative percentage of low-grade cutaneous SCCs grade I (defined by the differentiation pattern according to the Broders grading scale) increased approximately 50% in the K5-VILIP1 mice when compared with SCCs in WT mice. Similar tendency was observed using a complete carcinogenesis protocol for skin carcinogenesis using benzo(a)pyrene (B(a)P). Further studies of tumors and primary epidermal keratinocyte cultures showed that matrix metalloproteinase 9 (MMP-9) levels and cell proliferation decreased in K5-VILIP-1 mice when compared with their wild counterparts. In addition tissue inhibitor of metalloproteinase 1 (TIMP-1) expression was higher in K5-VILIP-1 keratinocytes. These results show that VILIP-1 overexpression decreases the susceptibility to skin carcinogenesis in experimental mouse cancer models, thus supporting its role as a tumor suppressor gene.  相似文献   

18.
To model human papillomavirus-induced neoplastic progression, expression of the early region of human papillomavirus type 16 (HPV16) was targeted to the basal cells of the squamous epithelium in transgenic mice, using a human keratin 14 (K14) enhancer/promoter. Twenty-one transgenic founder mice were produced, and eight lines carrying either wild-type or mutant HPV16 early regions that did not express the E1 or E2 genes were established. As is characteristic of human cancers, the E6 and E7 genes remained intact in these mutants. The absence of E1 or E2 function did not influence the severity of the phenotype that eventually developed in the transgenic mice. Hyperplasia, papillomatosis, and dysplasia appeared at multiple epidermal and squamous mucosal sites, including ear and truncal skin, face, snout and eyelids, and anus. The ears were the most consistently affected site, with pathology being present in all lines with 100% penetrance. This phenotype also progressed through discernible stages. An initial mild hyperplasia was followed by hyperplasia, which further progressed to dysplasia and papillomatosis. During histopathological progression, there was an incremental increase in cellular DNA synthesis, determined by 5-bromo-2'-deoxyuridine incorporation, and a profound perturbation in keratinocyte terminal differentiation, as revealed by immunohistochemistry to K5, K14, and K10 and filaggrin. These K14-HPV16 transgenic mice present an opportunity to study the role of the HPV16 oncogenes in the neoplastic progression of squamous epithelium and provide a model with which to identify genetic and epigenetic factors necessary for carcinogenesis.  相似文献   

19.
Gastric pit cells are high‐turnover epithelial cells of the gastric mucosa. They secrete mucus to protect the gastric epithelium from acid and pepsin. To investigate the genetic mechanisms underlying the physiological functions of gastric pit cells, we generated a transgenic mouse line, namely, Capn8‐Cre, in which the expression of Cre recombinase was controlled by the promoter of the intracellular Ca2+‐regulated cysteine protease calpain‐8. To test the tissue distribution and excision activity of Cre recombinase, the Capn8‐Cre transgenic mice were bred with the ROSA26 reporter strain and a mouse strain that carries Smad4 conditional alleles (Smad4Co/Co). Multiple‐tissue PCR and LacZ staining demonstrated that Capn8‐Cre transgenic mouse expressed Cre recombinase in the gastric pit cells. Cre recombinase activity was also detected in the liver and skin tissues. These data suggest that the Capn8‐Cre mouse line described here could be used to dissect gene function in gastric pit cells. genesis 47:674–679, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Using a mouse neuroblastoma cell line, we have demonstrated that vaccination of tumor-free mice with a cell-based vaccine leads to productive immunity and resistance to tumor challenge, while vaccination of tumor-bearing mice does not. The T cell immunity induced by this vaccine, as measured by in vitro assays, is amplified by the depletion of Treg. Our goal is to understand this barrier to the development of protective cellular immunity. mRNA microarray analyses of CD8+ T cells from naïve or tumor-bearing mice undergoing vaccination were carried out with or without administering anti-CD25 antibody. Gene-expression pathway analysis revealed the presence of CD8+ T cells expressing stem cell-associated genes early after induction of productive anti-tumor immunity in tumor-free mice, prior to any phenotypic changes, but not in tumor-bearing mice. These data demonstrate that early after the induction of productive immune response, cells within the CD8+ T cell compartment adopt a stem cell-related genetic phenotype that correlates with increased anti-tumor function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号